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Abstract: Modern next generation sequencing technologies produce huge amounts of genome-wide 
data that allow researchers to have a deeper understanding of genomics of organisms. Despite these 
huge amounts of data, our understanding of the transcriptional regulatory networks is still incomplete. 
Conformation dependent chromosome interaction maps technologies (Hi-C) have enabled us to detect 
elements in the genome which interact with each other and regulate the genes. Summarizing these 
interactions as a data network leads to investigation of the most important properties of the 3D genome 
structure such as gene co-expression networks. In this work, a Pareto-Based Multi-Objective 
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Optimization algorithm is proposed to detect the co-expressed genomic regions in Hi-C interactions. 
The proposed method uses fixed sized genomic regions as the vertices of the graph. Number of read 
between two interacting genomic regions indicate the weight of each edge. The performance of our 
proposed algorithm was compared to the Multi-Objective PSO algorithm on five networks derived 
from cis genomic interactions in three Hi-C datasets (GM12878, CD34+ and ESCs). The experimental 
results show that our proposed algorithm outperforms Multi-Objective PSO technique in the 
identification of co-interacting genomic regions. 

Keywords: community detection; genomics graph interaction; modularity; multi-objective 
optimization; health data analytics; genomic interacting regions 

 

1. Introduction 

Nowadays, in medical bioinformatics science, because of the complexity of the biomedical 
data [1], the diagnosis of disease related factors is challenging. Specially, for those genomics 
factors that are working together to perform a biological function [2]. The detection of these 
interacting genomic elements is very important for better understating of disease factors. 
Chromosome Conformation Capture (3C) assays are now the method of choice to study the role of 
DNA looping in transcriptional regulation. These assays directly identify genomic loci that are 
brought in close enough proximity to each other in living cells to be cross-linked. This new 
technology allows for the mapping of chromatin interactions on a whole genome level. Cabreros 
et al. used a community-based algorithm on Hi-C data to detect community of interacting genomic 
regions in mice and humans. Their proposed algorithm was able to detect a variety of communities. 
Also, this algorithm could detect communities of neighboring DNA locations [3]. In 2016, Fotuhi 
et al. presented a multivariate clustering algorithm for the chromosome configuration data analysis 
to identify patterns of chromosomal interactions [4]. In 2016, Li et al. presented an optimal multi-
objective algorithm based on the Particle Swarm Optimization algorithm (PSO) to detect 
communities in social networks [5]. In fact, this algorithm was able to detect the communities of 
nodes in each run. To test the effectiveness of this algorithm, the authors performed extensive 
experiments on artificial and real data. Finally, their experiments showed that their proposed 
method works better that those previous methods found in the literature [5]. In 2019, Zhou et al., 
proposed a graph-based clustering approach called “AR-Cluster” to identify communities in a complex 
network [6]. In this method, nodes in the graph are grouped together by a K-medoid framework. 

As it was mentioned earlier, the detection of the communities in a complex network is 
challenging in most research fields such as computer science, social networks, biology, physics and 
medicine. Many of the proposed methods are typically related to the topological issue, the 
similarities between the attributes, or the degree of input and output of each vertex [7–15]. However, 
when the graph is widespread and complex, the identification of the communities would be either 
inefficient or time consuming [16–20]. Therefore, community detection in complex graphs has 
always been challenging [21–26]. In order to resolve the challenge ahead, in this study, a Pareto-
based Multi-Objective Optimization Genetic Algorithm is proposed to identify communities in the 
complex networks. We performed our proposed method on Hi-C interactions in mouse genome to 
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identify interacting genomic regions. Our benchmarking results demonstrate that our proposed method 
work better than existing methods found in the literature to identify genomic interacting regions. 

2. Material and methods 

In the following sections, our proposed genetic-based multi-objective optimization algorithm 
to identify communities in Hi-C interactions of genomic regions is explained. In the network, 
regions of genome are demonstrated as the nodes and edges demonstrate the interactions between 
them. In addition, the weight of each edge is interrelated with these vertices.  In this study, the Hi-
C data obtained from NCBI database (GSE35156 and GSE69600) and analyzed by HiC-Pro 
package [27]. 

2.1. Problem statement 

A non-oriented weighted graph provides a network with nodes and edges which can be 
represented as G = (V, E). Here the graph components are: V which is the set of nodes and E which 
is the edge set. The non-oriented weighted graph G consists of |V| N  nodes with V
v , v , … , v  and |E| M  as E e , e , … , e  and W w ,w ,… ,w . Also, the set of 

communities of the graph is represented as C c , c , … , c  , in which any c ∈ C represents a 
community of the graph G. 

2.2. Detect of community in the graph 

In this section, our proposed method for exploring and extracting community in the genomic grid 
network is described. The proposed approach is a multi-objective genetic optimization algorithm based 
on Pareto optimization. To explain our model, assume that the graph G = (V, E) is the input of the 
algorithm in accordance with what was explained in the previous section. Below the objectives of our 
proposed method are explained one by one. 

2.2.1. First objective: Modularity function 

The modulatory function f  in G is defined as follows: 

 ∑ 	  (1) 

In this function, nc is the number of total community, nei the total number of edges in the community 

i, dvi the sum of the degrees of the vertices in the i-th community, and M the total number of edges in 

the graph [28–31]. In the proposed algorithm, the value of the f  function lies in the interval [0,1], 

where the best mode of the function f  is when its value is maximal [19]. 

2.2.2. Second objective: Average weight vertex function 

The average weight function of community f  is defined as follows: 
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 ∑ ∑ ∑  (2) 

Here, Ni is the number of vertices in the i-th community, Wjk the weight between vertex j and k. f  is 
the weighted average of the community obtained by the proposed algorithm. The best mode for f  is 
when it is maximal. 

Therefore, in genomic graphs, both objectives (f  and f ) must be considered to detect community. 
So, in each run, both objectives to be optimum in the sense of maximal. 

2.3. Multi-Objective Optimization (MOO) concept 

A multi-objective optimization problem with m decision variable and n objective is defined in 
relation 3 [32]. 

 Max	 y	 	f x 	Max	 f1 x … 	fn x  (3) 

where x = (x1,…xm)ϵX is a vector of the m-dimensional decision and X is the search space, and y = 
(y1,…yn)ϵY is the target vector and Y is the target space. In general, in MOO, there is no single optimal 
solution for all purposes. In such cases, the optimal solution is a set of optimal solutions for one or 
more goals [25,33–36]. This set is known as the optimal Pareto collection. Some of the Pareto concepts 
used in the multi-objective optimization are explained below. 

2.3.1. Concept of Pareto dominance 

To compare the qualities of the two solutions X and Y, we shall use the concept of dominance. 
For two decision vectors x1 and x2, the dominance (represented by ≺) is defined as Eq (4): 

 x1≺ x2 ⇐⇒	∀i fi(x1) ≤ fi(x2) ∧∃ fj(x1) < fi(x2) (4) 

The decision vector x1 dominates x2 if and only if x1 is better than x2 for all targets, and x1 is exactly 
higher than x2 for at least one target [34]. 

2.3.2. Pareto optimal collection 

The collection of all optimal Pareto decision vectors is referred as the PS optimal Pareto collection. 

 PS = {x1 ϵ X, | ∄x2ϵ X: x2 ≺x1} (5) 

The decision vector x1 is called the optimal Pareto when it is not dominated by all the other decision 
vectors x2 of the set. 

2.3.3. Optimal Pareto front 

The optimal front of the Pareto PF is the optimal Pareto image in the target space. 

 PF = {f(x) = (f1(x)… fn(x)) | x ϵ PS } (6) 
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2.3.4. Crowding distance 

The next concept used in multi-objective optimization based on Pareto is the crowding distance. 
Here we calculate the crowding distance for each of the objective functions separately. For example, 
if we have two objective functions, for each solution i, we calculate the crowding distance from i to all 
the other solutions j on the common front with i for both objective functions f1 and f2.We then consider 
the sum of these two distances as the crowding distance of the solution i. The crowding distance for 
the solution I is calculated as: 

 ∑ ∈  (7) 

To calculate the crowding distance i for each objective function, we also use the following formula: 

  (8) 

were fmax and fmin are the minimum and maximum of the target function, respectively, and fi-1 and fi1 
are the solutions before and after the solution i, respectively. 

In other words, for each objective function, first, the solutions are arranged in descending order, 
and then the maximum value is considered as fmax and the minimum value is considered as fmin. 
Afterwards due to sorting of solutions, one can also easily identify the previous and next solutions. 
The Eq (8) is computed for each i, and finally, after calculating di, we can calculate the distance of 
crowding for all target functions [33,34,37,38]. 

2.3.5. Non-dominated Sorting (NS) algorithm 

We use this algorithm to sort the paths and determine the Pareto fronts. This algorithm works in 
the following manner. 
1) For all members of the population, we define a set called sp with null value and one variable called 
np with zero initial value. Hence, we will have: 
sp = The set of answers that dominated by p. 
np = the number of times the solution is dominated by the other solutions. 
2) For each possible pair p and q of the population members we have: 
If p dominates q, then add q to sp 
If q dominates p, then add one unit to np 
3) Add all the members of the population with np = 0 to F1 (the first Pareto Front). 
Using the actual Pareto Front (Fk) the next Pareto Front (Fk+1) is created. For this purpose, by eliminating 
the effect of the members of the Fk, the members are not dominated form the Fk+1 members. 
4) We put the counter of fronts or fronts equal to 1, that is, k = 1 
5) Consider Q as a draft of Fk+1. 
6) For each member of Fk, such as p, and for each member of sp such as q (all qs that are dominated 
by p), one unit of nq is subtracted (i.e. the effect of p to q is not considered) 
7) If we get nq = 0 while decreasing, then add q to Q. 
8) If Q is empty (that is, nothing is left to add), the sorting process is over. And if Q is not empty, 
consider Fk+1 as Q and add one unit to k (Pareto front counter) and go to step 5. This will allow us to 
complete our Pareto fronts gradually [32,39]. 
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2.4. Multi-objective genetic optimization algorithm based on Pareto 

As mentioned before, the proposed algorithm for community in the genomic grid network is a 
multi-objective optimization algorithm based on Pareto optimization. Here, the optimal evaluation 
mode function is when this function is maximized. In fact, the maximum of the evaluation function is 
obtained when the values of both f1 and f2 are maximal. 

 
max	
max	  (9) 

In this research, we have converted the GA algorithm into the multi-objective algorithm to 
discover community by adding the following steps: 
1) The quality of the solution based on the concept of dominance and using the Non-dominated 
Sorting algorithm or the NS algorithm. 
2) Arranging the solutions based on the concept of crowding distance. 
In fact, multi-objective operations of the algorithm can be achieved by adding the following steps in 
the selection section of the solutions: 
a) Non-dominated sorting 
b) Calculating the Crowding distance  
c) Sorting the answers 

In multi-objective optimization, two criteria of the quality of solutions and their order are important: 
i) We look for an appropriate approximation of the Pareto front, which means that the answers we 
receive are surely non-dominated. 
ii) These answers cover virtually all of Pareto Front. 

The goal of solving a multi-objective optimization problem is to find a form that has the quality 
and the order at the same time. An algorithm can be suited only when it has, first and foremost, a good 
quality, and second, provides order. Here, our primary criterion is to compare Dominate answers (i.e., 
which solution will dominate). 

If, based on the dominance, we were not able to choose one of the two solutions, then the second 
factor would be the order. The proposed method is described in Figure 1. 

The highlights of the proposed algorithm are: 
i) The answer with no other answer better than that has more points. The answers are ranked and 
arranged based on how many answers are better than them. 
ii) The fitness for the answers is based on their ranks and failure of dominance by the other answers. 
iii) The fitness crossover method is used for close answers so that the distribution of the answers is 
optimally adjusted and the answers are distributed uniformly in the search space.  

2.4.1. Main components 

In this section, we introduce the main components of the proposed algorithm and describe each 
of them. 

1) The process of deleting and re-selecting 

Generally, the selection of parent members for the operation of the crossover operator occurs 
probabilistically. In other words, each member of the population with a specific probability of pc may 
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be involved in the creation of a child member. Also, it is necessary to consider the following when 
choosing the parent particles. 
a) Because of the probability of selecting the parent members, a member of the population may be 
selected twice as a parent member. In other words, a certain member may have the role of both parents 
at the same time. In this case, the child member will be the same as his male parent. For this reason 
and to avoid unnecessary crossovers, a combination test should be used. 
b) Sometimes a member may have a role in creating a parent member several times. Alternatively, 
one member may be selected many times as a parent member. This is problematic when using the 
fitting pattern appropriately. 

Before we introduce this component, we must first describe a comprehensive random selection 
method because ideas have been taken from this method. 

 

Figure 1. Pseudo-code of proposed algorithm. 

2) Comprehensive random selection method 

Using comprehensive random selection, it is possible to select members of the population based 
on their target function. In other words, the probability of chromosome selection is proportional to the 
value of the objective function of the chromosome. By this method, the time to find optimal solutions 
can be reduced. However, this method has its own disadvantages. For example, in the early generations, 
there is a tendency to dominate a number of superior chromosomes over the selection process while in 
the latter generations when the population converges completely, the competition between the 
chromosomes is not very serious but almost randomized. In the early generations, usually there are a 

1. Create an initial Population 

2. Calculation of fitness criteria 

3. Sorting the population based on dominance conditions 

4. Calculate the distance of crowding 

5. Selection: As soon as the initial population is sorted according to the dominance conditions, the distance of the crowd 

will be calculated and the selection starts from the initial population. This selection is based on two elements: 

5.1. POPULATION: Population is selected from lower ranks. 

5.2. Calculation of crowding distance: Assuming that p and q are two members of the same rank, that member is selected 

which has a greater crowding distance. It should be noted that the priority of the selection is first with the rank and then 

based on the distance of crowding. 

6. Performing of crossovers and mutations to produce new offspring. 

7. Composing the primary population with the population obtained from crossover and mutation. 

8. Replacing the parent population with the best members of the population integrated in the previous stages. In the first 

step, lower-ranking members replace older ones and are then ordered according to the crowding distance. Primary 

population and the population induced by crossover and mutation are first categorized by rank, and then, some of those 

ranked lower are eliminated. 

9. The remaining population is arranged according to the distance of crowding. Here the sorting is done in one front. 

10. All stages are repeated until reaching the desired generation (or optimal conditions). 
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lot of differences in fitting values. Hence, the likelihood of the presence of chromosomes with greater 
fittings is far higher. In the late generations, since the fittings of chromosomes are closely matched, 
choices are roughly random and the chances of choosing most of the chromosomes are equal. 

In this process, the proposed algorithm initially selects two parents to perform the crossover 
process similar to the general genetic algorithm. Parents are selected using binary tournament selection 
method. The goal here is to select the high-quality chromosomes immediately after the parents are 
selected. However, these two parents may not be the best of the population. The idea of a 
comprehensive random selection method is taken here. Here we have a control parameter for the 
substitution of the worst chromosome. The goal is to select the widest chromosomes each to carry out 
the crossover process. The value of this parameter in tests was 0.005. If the difference between the two 
selected parents exceeds the control parameter, the chromosome is worse than the crossover cycle and 
another parent is selected. The process of removing and re-replacing continues as long as the difference 
between the parents is less than the control parameter value. Parent comparison is based on a fitness 
function, and the parent who has a lower fitness value will be selected for the removal process. Fitness 
function is the sum of the functions f1 and f2. Figure 2 shows pseudo code of the process of deleting 
and re-selecting. 

 

Figure 2. Pseudo code of the process of deleting and re-selecting. 

2.4.2. Participation of the best chromosome in different generations in the crossover process 

The crossover process in the genetic algorithm creates children's chromosomes from parent 
chromosomes. A crossover operator is applied on one or more parent chromosomes at a time and 
creates one or more children. In practice, operators are defined in terms of the type of problem and are 
fully dependent on the ability of the analyst. The efficiency of these operators in giving the optimal 
solution varies from problem to problem. Some operators consider only one chromosome and based 
on their information create new chromosome. However, others do further operations on some or even 
all of the chromosomes in the population. 

α = 0.005; 

select Tow Chromosome with binary tournament selection method 

Calculate difference between fitness function of the two selected Chromosomes 

While (difference > α and difference <> 0) 

Find the worst Chromosome and select new chromosome 

Flag = 0; 

While flag == 0 

If newly chromosome was better than worst Chromosome 

Flag = 1; 

replace new chromosome with worst chromosome 

end while 

Calculate difference fitness function between new chromosome and selected Chromosome 

end while 
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In addition to choosing parent chromosome and the crossover process, the crossover operator 
takes into account an alternative policy so that after creating a child member, this one can replace the 
worst parent member. This type of replacement can be the source of the restriction that a child member 
should be better than parent member. Accordingly, the crossover operator must be executed so that the 
worst member in the population is replaced by the child member. 

In this process, the proposed algorithm utilizes the position of the best population chromosome 
in the current generation to carry out the crossover process. The purpose of using this component is to 
produce new opportunities near to the global optimal one. In this component, we use the one-point 
crossover method, but with the difference that the position of the best chromosome in this process will 
be considered. In this component, first, the one point is selected along the parent chromosomes, and 
then first the parent and after that the best chromosome takes the first child's position. The second child 
is also produced in the same way, but with the difference that first the second parent genes and then 
the genes of the best chromosome make up the child's chromosome. Figure 3 shows the crossover 
method with the participation of the best chromosome. 

 

Figure 3. Participation of the best chromosomes in different generations in the crossover 
process. 

2.4.3. The three-point mutation process 

The goal of the mutation is to express a genetic property that increases the diversity of the 
population's responses. In three-point mutation method, as in the usual methods in the general genetic 
algorithm, a member of the population is randomly selected and entered into the mutation process. In 
this case, three points are chosen randomly along the chromosome. Then, using the uniformly 



2202 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2193–2217. 

continuous randomized mutation operator, these three points will be changed in a way that the values 
of the two points of the three selected points are modified by the pattern of the best current 
chromosome. Here, according to Figure 4, three genes are selected randomly along the chromosome. 
Then these three genes are modified using the mutation operator, but with the difference that the 
position of the best chromosome is involved in the mutation process. In fact, two randomly selected 
genes are modified by the pattern of the best chromosome, and the other gene changes in accordance 
with the random procedure. 

 

Figure 4. The process of mutation operation in the proposed algorithm. 

2.5. Structure of chromosome in the proposed algorithm to detect community 

The structure of a chromosome in the proposed algorithm, as a 1 × N vector, contains the N genes. 
The N genes in this structure represent the vertices in a graph (Figure 5). 

 

Figure 5. Structure of chromosome. 

The content of each gene in the chromosome represents the community number that its vertex 
belongs to. In this structure, nc is the number of communities in each chromosome structure the amount 
of which is variable in each structure. Therefore, the desired chromosome is an N element array with 
each element indicating a vertex in the graph and its content denotes the community number to which 
it belongs. An example is given below for further explanation. Suppose there is a graph with 5 vertices 
and 5 edges as shown in Figure 6. 

Then a chromosome structure can be defined as shown in Figure 7. 
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In this case, the chromosome can be a solution to the problem of discovering the community in 
the graph with 5 vertices. Accordingly, the vertices 1 and 2 are in the first community and the vertices 
3–5 are in the second. 

Community 1: 1, 2 
Community 2: 3, 4, 5 

 

Figure 6. Discover two consonants in a graph with 5 vertices and 5 edges. 

 

Figure 7. The sample of chromosome. 

2.6. Parameters 

The parameters of the proposed algorithm were adjusted according to experiments with different 
values, and also by analyzing the researchers conducted in [21,33,39–42]. Figure 8 shows the diagram 
of the results pertaining to 100 executions of the algorithm upon the 5 Kbp graph concerning the data 
set ESCs with regard to different values of crossover operation, mutation percentage, and initial 
population. The diagram depicts the value results of the evaluation function which is the sum of two 
functions f1 and f2 for the 100 executions. Accordingly, for any of the three parameters, four different 
values were examined. The results show that the best values for crossover percentage, mutation 
percentage, and initial population are 0.8, 0.3 and 50, respectively. As observed, the algorithm gives 
similar results close to the 100 iterations. Hence, in the proposed algorithm according to Table 1, the 
maximum iteration is equal to 100, the number of sub iteration is 30, the population size is 50, the 
crossover rate is 80%, and the mutation rate is 30%. Also, this algorithm chooses roulette wheels to 
select people for crossover and mutation operations. After the crossover and mutation operations, the 
children obtained from these operations are evaluated using the Pareto optimal frontier. After that, 
these children are merged with the previous population and 50 members that are better than the 
population are chosen as the new population. After 100 iterations, the best member of the population 
is considered as the answer to the problem in accordance with Pareto optimization, which consists of 
all community detected in the input graph (Figure 8). 
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3. Results and discussion 

We evaluate our proposed method using three new benchmarks. These three benchmarks are 
the genomic interaction graphs namely, GM12878, CD34+, and ESCs. In this section, the multi-
objective optimization algorithm is used to find community in 10, 100, 500 kb, and 1 Mbp graphs 
resulting from interactions in the GM12878 and CD34+ blood cells and the 5 kb graph from the 
existing interactions in the Embryonic Stem Cells (ESCs) of mouse. Also, the efficiency of the 
proposed algorithm has been analyzed compared to multi-objective particle swarm optimization 
algorithm in community detection [5,32,40]. In Table 2, the detail information is provided for each 
of these graphs. 

 

Figure 8. Results 100 times implementation of the proposed algorithm for parameter 
adjustment. 

Table 1. Proposed algorithm parameters. 

Parameter Value 

Iteration Number 100 
Sub-iteration Number 30 
Population size 50 
Crossover rate 0.8 
Mutation rate 0.3 

Table 2. Graphs used for testing. 

Graph Number of vertex Number of edge 

5 kb 333 202 

10 kb 3715 2117 

100 kb 777 399 

500 kb 1086 622 

1 Mbp 497 309 
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3.1. Computational complexity 

In this section, our proposed algorithm, Multi Objective Genetic Algorithm Optimization 
Community Detection (MOGAOCD), is compared to Multi Objective Particle Swarm Optimization 
Community Detection (MOPSOCD) algorithm [32] from the viewpoints of CPU usage, RAM usage, 
and execution time. Here, the graphs are sorted increasingly according to the number of nodes as 5, 
10, 100, 500 kb, and 1 Mbp. Both algorithms are run on a same HP server and in the same conditions 
according to Table 3 with the following specifications. 

Figure 9. Number of CPU used, 3 CPU: In both algorithms (MOGAOCD (in red), 
MOPSOCD (in blue)) to community detection in all genomic graphs. 

3.1.1. CPU usage 

In this part, the CPU usage in the five graphs to detect the community in both algorithms are 
compared. Figure 9 shows the CPU usage in the MOGAOCD and MOPSOCD relative to execution 
time. As shown in this figure, the greater graph the less CPU usage due to longer execution time. 
Accordingly, both CPU usage and execution time are greater in the MOPSOCD algorithm compared 
to the MOGAOCD. 

To provide more insight, the CPU usages in both algorithms for all graphs are demonstrated in 
Figure 10. As shown in this figure, the CPU usage in our proposed algorithm is also less in average 
compared to other algorithms. 
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Table 3. Specification of the system. 

Computer system Number of CPU Capacity of RAM Capacity of H.D.D 

HP ProLiant DL380p 
Generation8 (Gen8) 

3 Intel® Xeon® E5-2609 
v2 (2.5 GHz/4-core/10 

MB/6.4 GT-s QPI/80W) 
16 (GB) 25 (TB) 

 

Figure 10. Average number of CPU used, 3 CPU: In MOGAOCD and MOPSOCD to 
community detection in five genomic graphs. 

3.1.2. RAM usage 

In this part, the RAM usage in the five graphs to detect the community in both algorithms are 
compared. According to Figure 11, in general, more RAM is used when the graph is bigger. As a result, 
RAM usage is greater in the MOPSOCD algorithm than in the MOGAOCD.  

To provide more insight, the RAM usages in both algorithms for all graphs are portrayed in Figure 
12. As shown in this figure the RAM usage in our proposed algorithm in average is also less than that 
other algorithms. 

3.1.3. Execution time 

Figure 13 shows the execution times in the MOGAOCD and the MOPSOCD algorithms for five 
graphs. As observed, the execution times of all graphs in the MOGAOCD are shorter than those in the 
MOPSOCD which is a token of the superiority of the MOGAOCD algorithm over the other. This 
preference due to a shorter execution time is more apparent in bigger graphs of 10, 100 and 500 kb 
which are more computational complex in community detection. 

We next compare the number of CPU cores used in both algorithms in the 5kb graph. Figure 14 
shows that the number of CPU cores used in both algorithms in this graph. According to this figure, 
the number of CPU cores used as well as the execution time in the MOPSOCD algorithm are greater 
than the MOGAOCD algorithm. Therefore, the MOGAOCD algorithm performs better than the 
MOPSOCD algorithm in number of CPU cores consumption and execution time. 
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Figure 11. RAM used (GB), 16 GB of RAM: In both algorithms (MOGAOCD (in red), 
MOPSOCD (in blue)) to community detection in all genomic graphs. 

 

Figure 12. Average RAM used (GB), 16 GB of RAM: In MOGAOCD and MOPSOCD to 
community detection in five genomic graphs. 
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Figure 13. Average execution time (h), 16 GB of RAM, 3 CPU: In MOGAOCD and 
MOPSOCD to community detection in five genomic graphs. 

 

Figure 14. Number of CPU cores, 12 CPU cores: In both algorithms (MOGAOCD (in red), 
MOPSOCD (in blue) to community detection in 5 kb graph. 

3.1.4. Scalability 

Figure 15 shows the scalability of the proposed algorithm in each of the five graphs. In this 
experiment, the graphs are given to the system individually in five stages where the execution times 
are computed, respectively. As it is shown, at each stage, 20% of the graph enters the system and the 
resultant execution time is recorded. As illustrates in Figure 15, the system is able to achieve better 
execution times through MOGAOCD when the number of nodes in each graph is increased. 
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Figure 15. Scalability of MOGAOCD to community detection in five genomic graphs. 

3.2. The performance of the proposed method in community detection for GM12878 and CD34+ 
genomic graphs 

In this section, the performance of the proposed algorithm using GM12878 and CD34+ graphs (in 
both graphs, the inter-genomic interactions are found at the same points of the genome) in the 10, 100, 
500 kb and 1 Mb size fragmentation are investigated and analyzed. Here, our proposed algorithm 
(MOGAOCD) is compared and analyzed along with the MOPSOCD algorithm [32] based on three 
criteria namely, the number of community detected, modularity value, and the mean weight of the 
vertices. The aim in each benchmark is to maximize these three criteria. Here both algorithms are 
implemented in MATLAB. In the evolutionary algorithms, the result of a single run is usually not 
enough to conclude generality. Hence the algorithm is executed 100 times and the average is derived 
from the obtained results. In each run, for the archival collections, the values of the two objects 
(modularity, the mean weight of the vertices) have been calculated. The 10 kbp graph contains 3715 
vertices and 2117 edges.  
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Here, the results of the implementation of the proposed algorithm and the Pareto-based 
comparison algorithm are depicted in order to optimize the two objectives. Also, the average results 
of the two target values in each run are also given. In order to display the results for two purposes, a 
two-dimensional diagram is considered, each dimension of which represents the amount of a target.  

In Figure 16, the solutions produced by the MOGAOCD and the MOPSOCD algorithms are 
shown in accordance with the Pareto front. The diagram consists of a number of red and blue points. 
The red dots represent the Pareto front solutions generated by the MOGAOCD and the blue dot, 
representing the Pareto-particle algorithm solutions in the MOPSOCD. As shown in Figure 16, the red 
dot contains the best responses as it has the highest modularity and the average weight of the vertices. 
By viewing the position of each solution, including red and blue points, the modularity value and the 
average weights of vertices in each solution can be observed. Figure 16 illustrates the preference of 
the MOGAOCD in community detection in the 10 kb graph over the MOPSOCD. 

 

Figure 16. The Pareto front diagram in two MOGAOCD and MOPSOCD algorithms on a 
10 kb graph to detect community. 

The results of the comparison of the MOGAOCD and MOPSOCD algorithms on the 100kb 
graph, including 777 vertices and 399 edges are presented in Figure 17. This figure shows the values 
of the two objectives obtained from the 100-times implementation of the MOGAOCD and the 
MOPSOCD algorithms. This figure also shows the optimization of the Pareto front for both 
algorithms. The red dot in the image shows the values of f1 and f2 for the solutions of the MOGAOCD 
and the blue points representing the same values for the solution of the generated the MOPSOCD. 
According to this figure, the MOGAOCD is able to outperform the MOPSOCD algorithm. As shown 
in Figure 17, both the MOGAOCD and the MOPSOCD algorithms have the same performance for 
the values of f1 in the range between 0 and 0.1. However, from the value of f1 = 0.1 to f1 = 1, our 
proposed algorithm has a better performance than the MOPSOCD in optimizing the solution. 
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Figure 17. The Pareto front diagram in two MOGAOCD and MOPSOCD algorithms on a 
100 kb graph to detect community. 

 

Figure 18. The Pareto front diagram in MOGAOCD and MOPSOCD algorithms on a 
500 kb graph to detect community. 

As shown in Figure 17, the red dot contains the best responses, since it has the highest modularity 
and the average weight of the vertices. By viewing the position of each solution, including red and 
blue points, the modularity value and the average weights of vertices in each solution are observable. 
The diagram in the Figure 18, illustrates the promising performance of the MOGAOCD in community 
detection in a 100 kb graph. 

In Figure 18, solutions generated by the MOGAOCD and the MOPSOCD algorithms in 500 kb 
graph are shown. In accordance with Figure 11, the red dot represents the Pareto front solutions via 
MOGAOCD, and the blue points represent the Pareto front solutions in the MOPSOCD. As the 
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generated diagram shows, the red dot contains the best responses since it has the highest modularity 
and the average weight of the vertices. By viewing the position of each solution including red and 
blue points, the modularity value and the average weights of the vertices in each solution can be 
observed. Note that some of the points (solutions) overlap each other which indicated the proximity 
of their values. 

Figure 19 shows the solutions generated by the MOGAOCD and MOPSOCD algorithms in 1 Mbp 
graph. According to this figure, the red dots indicate the solutions of the Pareto front created by the 
MOGAOCD and the blue points, representing the Pareto front in the MOPSOCD algorithm. This 
figure depicts the optimization of the Pareto front for both algorithms. According to Figure 19, 
MOGAOCD is able to perform better than MOPSOCD algorithm. As shown in this figure, 
MOGAOCD and MOPSOCD algorithm for the values f1 = [0, 0.6] have the same functionality. 
However, for the values f1 = [0.6, 1] the proposed algorithm has better performance than MOPSOCD 
in discovering the optimal solutions. Therefore, in general, the performance of the MOGAOCD 
algorithm is better than the MOPSOCD algorithm in community detect in the 1 Mbp graph. 

 

Figure 19. The Pareto front diagram in two MOGAOCD and MOPSOCD algorithms on 
1 Mbp graph to detect community. 

3.3. The performance of the proposed method in community detection on the ESCs genomic graph 

The Figure 20 shows all the community detected by the MOGAOCD and MOPSOCD algorithms 
in the 5 kb graph. The graph has 333 vertices and 202 edges. According to the figure, the red points 
represent the solutions of the Pareto front produced by the MOGAOCD and the blue points represent 
the solutions of the MOPSOCD algorithm. According to the Figure 20, the proposed algorithm is able 
to perform better than the MOPSOCD algorithm. As seen, the MOGAOCD and MOPSOCD algorithms 
for the values f1 = [0, 0.3] have the same functionality. However, for the values of f1 = [0.3, 1] the 
MOGAOCD algorithm has better performance than MOPSOCD in discovering optimal solutions. 
Therefore, it can be concluded that the performance of the MOGAOCD algorithm is better than the 
MOPSOCD algorithm in community detection in the 5 kb graph. 
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Figure 20. The Pareto front diagram in MOGAOCD and MOPSOCD algorithms on a 
5 kb graph to detect community. 

Table 4. Comparison between two MOGAOCD and MOPSOCD algorithms in accordance 
with three criteria. 

Graph 

MOPSOCD MOGAOCD 

Average 

values of f1 

Average 

values of f2 

Number of 

community 

detected 

Average 

values of f1 

Average 

values of f2 

Number of 

community 

detected 

5 kbp 0.48 1.65  105 123 0.58 1.79 164 

10 kbp 0.55 3.47  106 1121 0.59 3.63  106 1632 

100 kbp 0.53 6.53  107 327 0.57 6.55  107 378 

500 kbp 0.59 1.58  107 438 0.61 1.6  107 464 

1 Mbp 0.56 8.36  109 181 0.57 8.37  109 207 

3.4. Analysis of results in community detection 

In this section, the average results obtained from 100 implementations of MOGAOCD and 
MOPSOCD algorithms are analyzed on five benchmarks (5, 10, 100, 500 kb, 1 Mb) according to the 
three criteria of f1, f2, and the number of communities detected. According to Table 4, the 
MOGAOCD algorithm in 5 and 10 kb graphs in all three criteria has a better performance than the 
MOPSOCD algorithm. 

Meanwhile, the MOGAOCD algorithm in the 100, 500 kb, and 1 Mb graphs in accordance with 
the three evaluation criteria yields a slightly better performance than the MOPSOCD algorithm. Also, 
in many implementations, according to the results represented in the previous Sections, the 
MOGAOCD algorithm demonstrates better results compared to the MOPSOCD algorithm. As a result, 
it can be concluded that the MOGAOCD in graphs with smaller-size fragmentation has a better 
performance than genomic graphs with larger-size fragmentation in community detection. 
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4. Innovation of research 

This research deals with the current unsolved challenge in Genetics, that is, community detection 
in the genomic graph arisen from the inter-genome interactions. In view of that, we presented a Pareto-
based genetic multi-objective algorithm. In the genomic graphs, nodes, edges and weights are 
respectively regions of genome, interactions between nodes, and the number of interactions. The 
related challenge is that the number of communities is not known in advance, with the corresponding 
graph having no definite topology. Also, there should be graph regions in the detected community with 
maximum weights, namely, the most interactions. This means that detection of the community hinges 
on the edge’s weights. In these conditions, an algorithm that is capable of detecting the community 
when the nodes have the greatest weights is required. Thus, the weights of the edges between the nodes 
are put in the community. The present article offers a bi-objective heuristic algorithm based on genetics 
to solve the problem by detecting the community in five genomic graphs using two objective functions 
f1 and f2. In the following, benefits and drawback of proposed algorithm is described. 

Benefits of proposed algorithm: (1) Consideration of objectives in decision of a solution. (2) 
Optimization operations to decide the best solution. (3) Detecting of community without knowing 
the number of communities at first, and taking in to account the sum of weights of edges between 
the nodes. (4) Helping the science of Genetics to detect and treat diseases by detecting genomic 
communities which interact strongly. We believe the drawback of our method is that despite better 
performance, it still suffers from high computational and time complexity and further improvement 
is required. 

5. Conclusion 

Transcriptional regulatory elements can target protein coding and non-coding genes in different 
genomic distances through chromatin interactions. Chromosome conformation capture technique (Hi-
C) enables researchers to study the three-dimensional (3D) conformation of chromosomes in the cell 
nucleus and identify such regulatory interacting regions. Here, we proposed MOGAOCD as a new 
algorithm for community detection in chromosome conformation capture (Hi-C) data. MOGAOCD is 
able to identify sets of genomic interacting regions from Hi-C data, acting as a co-interaction regions. 
This would to study spatially colocalized genomic regions that are functionally relevant. Identified 
clusters by MOGAOCD share transcription factors and are enriched for transcriptional machinery, 
suggesting that chromosome intermingling regions play a key role in genome regulation. Our method 
provides a unique quantitative framework that can be broadly applied on chromosome conformation 
capture from different cells/tissues. 
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