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Abstract: We examined the use of bivariate mutual information (MI) and its conditional variant
transfer entropy (TE) to address synchronization of perinatal uterine pressure (UP) and fetal heart rate
(FHR). We used a nearest-neighbour based Kraskov entropy estimator, suitable to the non-Gaussian
distributions of the UP and FHR signals. Moreover, the estimates were robust to noise by use of
surrogate data testing. Estimating degree of synchronicity and UP-FHR delay length is useful since
they are physiological correlates to fetal hypoxia. Mutual information of the UP-FHR discriminated
normal and pathological fetuses early (160 min before delivery) and discriminated normal and
metabolic acidotic fetuses slightly later (110 min before delivery), with higher mutual information for
progressively pathological classes. The delay in mutual information transfer was also discriminating
in the last 50 min of labour. Transfer entropy discriminated normal and pathological cases 110 min
before delivery with lower TE values and longer information transfer delays in pathological cases, to
our knowledge, the first report of this phenomena in the literature.
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1. Introduction

Labour and delivery is routinely monitored electronically with sensors that measure and record
maternal uterine pressure (UP) and fetal heart rate (FHR), a procedure referred to as cardiotocography
(CTG). The objective of this monitoring is to detect the fetus at substantial risk of hypoxic injury so
that intervention can prevent its occurrence.

Clinicians’ interpretation of intra-partum CTG signals relies on the temporary decreases in FHR
(FHR decelerations) in response to uterine contractions. FHR decelerations are due mainly to two
contraction-induced events: (1) umbilical-cord compression and (2) a decrease in oxygen delivery
through an impaired utero-placental unit. There is general consensus that deceleration depth, frequency
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and timing with respect to contractions are indicators of both the insult and the ability of the fetus to
withstand it. In particular, later timing of decelerations, referred to as “late decelerations” are generally
less reassuring to clinicians than the more innocuous (and rare) “early decelerations”.

Assessing synchronization of the cardiotocography (CTG) signals uterine pressure (UP) and fetal
heart rate (FHR) is a challenge both because of signal non-stationarity and noise in the form of signal
discontinuities and maternal heart rate interference. As labour progress the maternal and fetal states
evolve: contractions get more frequent and the cumulative effect of reduced oxygen transfer means
that the fetus can experience increasing levels of hypoxia, progressing from respiratory to metabolic
acidosis and finally to direct myocardial depression. Measurements under these conditions show that
pH levels lower and base deficit increases: the buffer stores of the fetus which allow it to combat the
increased acidosis become depleted [1]. Under such conditions, the state of the fetus as indicated by
the FHR is quite non-stationary during labour and delivery.

We have characterized the stimulus-response system of UP and FHR using system identification
(SI) [2]. However, obtaining delay estimates from SI involved lengthy and iterative modelling with a
sweep of candidate delays. It would be helpful to have a better mechanism to estimate the delay before
estimating the SI models. It would also be helpful to compare SI models with other synchronization
estimates. In this study we used the model-free approaches of mutual information and transfer entropy
to estimate synchronization and delays using both FHR and UP signals.

While there have been numerous studies examining differences in entropy measures in fetal heart
rate variability (e.g., the use of approximate entropy in [3]), few fetal studies have applied mutual
entropy or transfer entropy to this domain. Authors in [4] computed the transfer entropy of maternal
and fetal heart rates using single lag analysis.

They calculated TE on maternal and fetal heart rates (derived from ECG) during gestation from 31
weeks onward. They observed a decrease in TE from fetus to mother over time and an increase in TE
from mother to fetus over time. Delays in the M → F direction were estimated by TE analysis to be
on the order of 5 s. We used mutual entropy in [5] to examine CTG synchronization and extend that
analysis to more robust mutual information estimates and to transfer entropy in this paper.

2. Data

We used CTG from singleton, term pregnancies having no known congenital malformations, with ≥
3 hours of tracing just prior to delivery. The CTG records for this study consisted of 42 pathological (P),
104 metabolic acidotic (MA) and 110 normal (N) fetuses. The pathological fetuses were severe enough
to have confirmed evidence of hypoxic ischemic encephalopathy (< 1st percentile of fetuses). The
metabolic acidotic fetuses were defined by base deficit ≥ 12 mmol/L and with no apparent neurological
injury (5th percentile of fetuses). It would be advantageous to identify these MA fetuses because they
can be considered “close calls”, where appropriate intervention can occur prior to the onset of injury.
The cesarean section rates for the N and MA cases were 19.2% and 30% respectively, while the rate for
the P cases was not consistently reported in our database. Data were provided from two US hospitals
in compliance with institutional regulations.
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3. Methods

3.1. Preprocessing

The CTG data was recorded in a clinical setting, so it was subject to specific types of noise. The
loss of sensor contact can temporarily interrupt the UP or FHR signals, and interference from the
(much lower) maternal heart rate can corrupt the FHR. These both appeared in the signal as a sharp
drop to much lower amplitude followed by a sharp signal restoration.As described in [6], we
preprocessed the data to bridge interruptions less than 15 s with linear interpolation. UP and FHR
with signal loss greater than 15 s were not included in the processed epochs and were removed from
consideration.

As in [2], we detrended the signals by a high-pass FIR filter with sufficient extent (1991 filter
coefficients) to pass a long contraction or deceleration without incurring excessive filter delay (there
were 1991 coefficients). We chose a filter with a cutoff frequency of 1

220s = 4.5 × 10−3 Hz as a
compromise between these competing demands. Finally, we decimated the UP and FHR signals to
0.25 Hz using an anti-aliasing low-pass filter with a cutoff frequency of 0.125 Hz, before
downsampling by 16. This was done to reduce the computational load of the entropy estimates
described below.

Longer epochs generally result in superior numerical estimates while being more subject to the
effects of non-stationarity. Following [2], we endeavoured to balance these competing effects by
extracted 20-min epochs with 10-min overlap between successive epochs. This epoch length typically
spanned several UP contraction-FHR deceleration pairs.

To address the issue of non-stationarity we extracted 20-min epochs with 10-min overlap between
successive epochs. This epoch length typically spanned several UP contraction-FHR deceleration
pairs. Epochs with insufficient valid signal were discarded.

3.2. Mutual Information

The mutual information MI(X; Y) of random variables X and Y is defined as

MI(X; Y) = H(X) − H(Y |X) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(3.1)

where H(X) is the entropy of X and H(X|Y) = H(X,Y) − H(Y) is the conditional entropy of X given
Y . Mutual information is therefore the amount of uncertainty (i.e., entropy) about Y that is resolved
by observing X. Reduction of uncertainty is equivalent to information [7]. Mutual information is
symmetrical: MI(X; Y) = MI(Y; X). In this work we use the natural logarithm, giving units of nats.

In a time-series context, following the notation of [8], the mutual information can be reformulated
as

MI(X; Y) = MI(XdX
t−τ; Yt) (3.2)

Here X and Y refer to the mutual information between Y at time instant t, Yt and the state XdX
t−τ,

encapsulates the recent past of X, where τ > 0 is a time lag in the information transfer and the
dimension dX is the number of the lags in the state influencing Yt. The dimension dX is data
dependent and limited in size only by candidate set of time lags C.
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We calculated MI for the preprocessed UP and FHR signal pair u(t) and f (t). In previous work [5],
we used binned estimates of the probability densities p(u), p( f ) and p(u, f ) in Eq 3.1. This binned
approach restricted the delay search to a single lag, i.e., dX = 1, from the source signal u(t) that
maximized MI(u(t − τ), f ). We repeated this calculation in this work, observing the time lag and
value of the maximum MI over a range of possible UP-FHR alignments for each 20 min epoch. The
candidate set C was the range of lags from −20 to 90 s (the negative lags are explained in the following
paragraphs).

We chose these alignments to capture the widest range of reasonable physiological delays,
empirically confirmed in [2]. We note also that UP is measured by tocography, which places a belt
with a strain-gauge pressure sensor on the maternal abdomen. Because this pressure sensor is an
indirect measure of intrauterine pressure [9], it may have an inherent mechanical delay, and the
measured UP may reflect this with delays in onset and termination of contractions [2]. For this reason,
we admitted negative alignments (i.e., −20 to 0 s).

In this work, we used a technique that admits multiple source lags to contribute to the MI; that is,
where dX ≥ 1. We computed this estimate using the Information Dynamics Toolkit (IDTxl) [10]. In
accordance with the possible negative delay noted previously, we shifted the UP earlier by 20 s before
estimating MI. We subsequently adjusted the lags analysis to account for this shift. Additionally,
given the non-Gaussian nature of the UP and FHR distributions, we used the IDTxl implementation of
the more robust k-nearest-neighbour algorithm [11] for the density estimates of Eq 3.1, with k set to
the default value of 4. Finally, we tested the MI estimates for significance using 200 realizations of
surrogate target data (i.e., FHR), that were generated by IDTxl by random permutations of the epoch
samples (p < 0.05 was considered significant). That is, if the MI with the UP corresponding to the
measured FHR is greater than the value of MI of at least 190 other FHR permutations, it is significant.
The surrogate testing ensures that spurious interactions in the data have a low probability (i.e., 5%) of
being considered significant.

IDTxl chooses an embedding set Z of dX delays in a greedy fashion, following [12]. At each step,
the delay from a candidate set C generating the highest MI and satisfying statistical significance is
added to set Z (and removed from C). The search is repeated using the reduced set C to add additional
delays to Z that increase the estimated MI, subject to significance testing. This continues until adding
more delays to the set fails to significantly increase the MI.

3.3. Transfer Entropy

Schreiber introduced the concept of conditional mutual information, also known as transfer entropy
T E) to address the question “What information does the past of X provide about the future of Y, that
the past of Y did not already provide?” [13]. The transfer entropy from random variable X to Y is
denoted T E(X → Y) and is not symmetrical, but directed: In general, T E(X → Y) , T E(Y → X). In
the time-series context, it is defined as:

T E(X → Y) = MI(Yt; XdX
t−τ; YdY

t−1)

= H(YdY
t−1,X

dX
t−τ) − H(Yt,YdY

t−1,X
dX
t−τ) + H(Yt,YdY

t−1) − H(YdY
t−1) (3.3)

Like mutual information, transfer entropy measures the amount of uncertainty about Y that is
resolved by observing the state XdX

t−τ, but it also removes the influence of the redundancy of the state
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YdY
t−1 on Y . This can decode influences of X on Y that are masked in the MI calculation. While this

formulation of T E allows a variable transfer delay of τ in the source X (as in Eq 3.2 for MI), it fixes
the target lag to 1 to fulfill what is referred to as T E self prediction optimality [14], that is, all the
recent past of Y is considered in the state YdY

t−1. For T E, source and target have variable state
dimensions, dX and dY, respectively.

Wibral offers a formal proof that the T E is maximized when τ = δ, the true interaction delay [14].
This proof of identifiability of the true delay in the information transfer holds strictly for the case of
zero observation noise. However, with numerous numerical simulations with nonlinear dynamical
systems, they demonstrate that the T E precision degrades gracefully under conditions of decreasing
SNR.

3.4. Statistical analysis

For each 20-min epoch of each CTG recording, we calculated the binned version of MI and the
nearest-neighbour versions of MI and T E and their associated lag(s). We assessed the differences of
the MI, T E and their associated delays for the three fetal classes N, MA and P at each epoch over the
last three hours of labour and delivery. We found that a single lag often dominated contributions to
MI and T E and so we summarized lag reporting with these single values. The Kolgomorov-Smirnov
(KS) test was used to test the null hypothesis that the distributions of pairwise-selected classes were
the same, using the significance threshold p < 0.05.

In addition to the full-epoch estimates, we observed “local” (i.e., “instantaneous”) MI and T E
estimates mi(t) and te(t) provided by IdTxl that indicate the relative coupling of individual samples
within the epoch. As discussed in [15], with sufficient data, overall MI and TE values are non-negative,
but these local estimates can be negative and are referred to as “misinformation”, corresponding to the
opposite of coupling (i.e., indicating an element of surprise between input and output).

In the results below, we refer to the binned estimates of MI as MIb and the Kraskov estimates of
MI as MIk. We refer to the single delay with the maximal contribution to MIk, that is, arg maxτ MIk(τ)
as τMIk max. We refer to the overall TE with contributions from all significant lags as TE. We refer to
the single delay with the maximal contribution to TE, that is arg maxτ T E(τ) as τT E max and the T E
contribution of that lag as T Emax.

While all analysis was done using lag delays with the time unit of a 0.25 Hz sample, for clarity we
convert these values to seconds in the subsequent time plots.

4. Results

Figure 1 shows typical histograms of UP and FHR for a 20 min epoch. These approximations
indicate that the univariate and joint densities are non-Gaussian, supporting the motivation to use the
Kraskov density estimator.

Figures 2 and 3 show calculations of the binned and Kraskov MIs and the Kraskov TE for typical
normal and pathological fetuses, demonstrating for these two cases the longer delay of the
pathological case.

The normal case has a maximal Kraskov MI delay at 0 s with secondary delays at 12, 84 and 90 s.
The TE is maximal at a sole delay of −4s. Visual inspection of the delay between UP contraction and
FHR deceleration onsets in this epoch indicate that a near-zero delay is plausible. On the other hand,
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the binned MI value has an erroneous peak at 70 s.
The pathological case has a maximal Kraskov MI delay at 64 s and a secondary delay at 36 s.

Visual inspection of the delay in this epoch indicates that these two delays are plausible. The TE is
maximal at the shorter delay of 36s only. The binned MI value peaks at 70 s, closer to the longer
delay.
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Figure 1. Histogram approximations to the univariate and joint densities of a typical UP (u)
and FHR (y) CTG pair for a 20 minutes epoch.

Table 1 summarizes the processing of MI and TE. MI or TE estimates were obtained when at least
one significant delay was estimated. Estimates can be missing when no significant delays are found
during the search. This can be the result of the absence of coupling from either signal loss and/or
noise as discussed in the Preprocessing section. We obtained ME estimates for P, MA and N fetuses
in 62.4%, 68.2% and 72.6% of the epochs, respectively. For TE these numbers were lower at 43.5%,
36.6% and 35.2%, respectively. The ratio of TE/MI estimates was higher for P cases: 69.7%, vs 53.6%
and 48.5% for MA and N, respectively.

Figure 4 shows per-class binned MI estimates MIb during the final 3 hours of delivery. The
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Figure 2. Typical 1200s epoch of a normal (N) case case showing (from top to bottom)
raw UP uraw(t), raw FHR fraw(t), UP u(t), FHR f (t); local mutual information and transfer
entropy mi(t) and te(t), respectively, starting at the maximum lag 90 + 20 s = 110 s; Kraskov
UP-FHR mutual information MIk (maximum and secondary MI delays and values indicated
by red and blue circles, respectively) and overall MIk value (blue line) with allowable lags
−20 to 90s and lag resolution τ = 4 s; binned mutual information MIb(u, f ) as a function of
shifting u and f with respect to each other from −20 to 90 s; Kraskov UP→FHR transfer
entropy T E delay (red circle) and overall T E value (blue line) with allowable lags and τ as
with MIk(u, f ). The horizonal axes of the top 6 plots and lower 3 plots are the epoch time
from 0 to 1200 s and the lag times from −20 to 90 s, respectively. The UP and FHR plots
have units of mmHb and beats per minute, respectively. The lower 6 entropy plots have units
of nats.

difference between N and P is statistically significant between 140 and 30 minutes before delivery.
N-MA differences are significant slightly later, between 110 and 10 minutes before delivery. There is
a tendency from N to MA to P fetuses to have higher MI. The delay at maximal MI (not shown) was
not discriminating.

Figure 5 shows per-class Kraskov MI estimates MIK during the final 3 hours of delivery. The
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Figure 3. Typical 1200s epoch of a pathological (P) case showing (from top to bottom)
raw UP uraw(t), raw FHR fraw(t), UP u(t), FHR f (t); local mutual information and transfer
entropy mi(t) and te(t), respectively, starting at the maximum lag 90 + 20 s = 110 s; Kraskov
UP-FHR mutual information MIk (maximum and secondary MI delays and values indicated
by red and blue circles, respectively) and overall MIk value (blue line) with allowable lags
−20 to 90 s and lag resolution τ = 4 s; binned mutual information MIb(u, f ) as a function
of shifting u and f with respect to each other from −20 to 90 s; Kraskov UP→FHR transfer
entropy T E delay (red circle) and overall T E value (blue line) with allowable lags and τ as
with MIk(u, f ). The horizonal axes of the top 6 plots and lower 3 plots are the epoch time
from 0 to 1200 s and the lag times from −20 to 90 s, respectively. The UP and FHR plots
have units of mmHb and beats per minute, respectively. The lower 6 entropy plots have units
of nats.

difference between N and P is statistically significant between 160 and 40 minutes before delivery.
N-MA differences are significant in two of these epochs, at 110 minutes and 70 minutes. There is
a tendency from N to MA to P fetuses to have higher MI. Furthermore, two epochs in the final 50
minutes of delivery show longer P delays τMIkmax with statistical significance, while one epoch did so
at 50 minutes for N-MA comparisons. There is a tendency from N to MA to P fetuses to have longer
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Figure 4. Group mean ± standard error of binned mutual information MIb in the last 3 hours
of labour and delivery. Epochs with statistically significant differences between N-P and
N-MA groups are indicated by red and blue asterisks, respectively (KS test with p < 0.05).

Table 1. Processing summary.

Fetal class P MA N

Number of recordings 42 104 110
Total epochs 756 1872 1980
MI: epochs estimated 472 1277 1437
TE: epochs estimated 329 685 697
MI: epochs estimated (%) 62.4% 68.2% 72.6%
TE: epochs estimated (%) 43.5% 36.6% 35.2%
Ratio TE/MI estimated 69.7% 53.6% 48.5%

delays.
Figure 6 shows per-class Kraskov TE estimates during the final 3 hours of delivery. The delay

with the maximal contribution to TE, τT E max shows differences between N and P that are statistically
significant in 4 epochs between 100 and 20 minutes before delivery. There is a tendency from N to
MA to P fetuses towards lower TE. Furthermore, one epoch in the final 20 minutes of delivery shows
longer P delays with statistical significance. The overall TE value T E shows a similar pattern but with
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Figure 5. Group mean ± standard error of a Kraskov 4-nearest neighbour estimate of mutual
information in the last 3 hours of labour and delivery, showing overall MI MIk, and the lag
at maximum MI τMIkmax . Epochs with statistically significant differences between N-P and
N-MA groups are indicated by red and blue asterisks, respectively (KS test with p < 0.05).

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2179–2192.



2189

-180 -160 -140 -120 -100 -80 -60 -40 -20

0.08

0.1

0.12

0.14

T
E

 (n
at

s)

-180 -160 -140 -120 -100 -80 -60 -40 -20

10

20

30

40

τ TE
_m

ax
 (s

)

-180 -160 -140 -120 -100 -80 -60 -40 -20

time (min)

0.06

0.08

0.1

T
E

m
ax

 (n
at

s) P n=44
MA n=113
N n=110

Figure 6. Group mean± standard error of UP-FHR synchronization in the last 3 hours
of labour and delivery using a Kraskov 4-nearest neighbour estimate of transfer entropy,
showing overall TE T E, and the lag and TE values at maximum TE τT E max and T Emax.
Epochs with statistically significant differences between N and P fetus are indicated by a red
asterisk (KS test with p < 0.05).
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few epochs having significant differences. The delay where the contribution to TE is greatest, T Emax,
shows differences in the final 50 minutes of delivery, but only 1 epoch was statistically significant (at
20 minutes before delivery). Again there is a tendency form N to MA to P fetuses to have longer delays
in these final epochs, although N-MA comparisons never reached statistical significance.

5. Discussion

The delay estimates in the typical epochs shown were plausible and in accordance with the clinical
expectation that pathology tends to be associated with longer delays between the mother and the fetus.
These results are borne out at the larger scale of per-class comparisons over time, with statistically
significant differences occurring early for both N-P cases but crucially for clinical significance, for
N-MA comparisons. Detecting MA cases early, before injury, allows time for appropriate cesarian
section to occur. It was also the case that MI and T E estimates were dominated by a single delay, and
this was the rationale for displaying the argmax plots of Figures 5 and 6.

The typical epochs also illustrate that even with restricting the epoch length to 20 minutes, non-
stationarity is present within the epoch, with delays occurring at at least two lags in the examples
shown. This clearly introduces noise into the per-class comparisons that consider a single lag, and this
noise diminishes discrimination.

Furthermore, we did not explicitly compare the degree of signal artefacts in this study among
groups, but the previous study [2] shared the same pathological cases and the figure of 42% artifact
for pathologicals vs. 8% for normal reported there is a valid comparison for this study. This can be a
source of bias in our analysis, but the fact that we excluded very long artefacts from consideration
diminishes this bias.

But despite these effects of non-stationarity and noise, the estimates do succeed about two-thirds of
the time for MI and less so for TE, suggesting the degradation effect shown in [14]. The robust nearest
neighbour Kraskov density estimator and the surrogate tests give confidence that the results are indeed
significant. The significance of the generally lower TE success rates and the higher TE/MI ratio of
epochs processed for P cases is interesting and merits further investigation, especially since TE values
tended to be lower for these fetuses.

The increasing MI with fetal pathology was expected from our previous study [5]. This is plausibly
explained by the fact that the fetus in distress reacts strongly, with deeper decelerations, to the onslaught
of maternal contractions. But the decreasing TE with pathology was an unforeseen and novel result
and cannot be explained merely by the fact that decelerations increase as labour progresses. This seems
to indicate that the balance between MI and TE tips in the direction of more and more signal properties
being (information-theoretically) redundant between source UP and target FHR. In contrast, more
complex, FHR target-state dependent processing seems to vanish, possible indicating some regulatory
mechanisms may be compromised. It is consistent with a view of a fetus in distress having difficulty
compensating neurologically to the effects of labour, especially persistent contractions.

6. Conclusions

We have demonstrated the utility of two new measures of perinatal fetal state, mutual entropy and
transfer entropy, that may have complementary information for estimating the nature and timing of the
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fetal response to labour. The observed statistically significant differences indicate that these indices
may be useful in future work for the development of a fetal state classifier.

Following from this study, we would like to assess and compare transfer entropy during specific
baseline, acceleration and deceleration time intervals of FHR. We also hope to include maternal heart
rate to obtain multivariate estimates of TE, which are currently supported by IDTxl. Further, we hope
to compare fetus → maternal TE, both for its inherent interest and also to aid in significance testing.
We have assumed in this study that maternal→ fetal causality likely predominates, but this may be a
matter of degree that is informative.

Finally, Wibral refers to “anticipative synchronization” occurring when a slave system (Y) can
anticipate the dynamics of a master system X when X is subject to a long feedback loop [14]. By
testing TE (X→X) it is possible to tests for “feedback” in the source signal. This may be a way to
overcome the challenges of detecting phase with signals like CTG with their inherent periodicity and
under conditions of small sample sizes. This could benefit TE analysis with UP as a source in
particular, especially at the end of labour when contractions become more frequent.
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