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Abstract: We analyze a generalized form of the Fujikawas growth model which involves an adaptation
function that enhances the representation of the lag phase. This model is autonomous, and combines
a power law term, a saturation term and an adaptation function that suppresses the growth rate during
initial period corresponding to the lag phase. The properties of the adaptation function are determined,
and the proposed model is examined separately for the regular measure and the logarithmic measure,
including: Convergence and boundedness properties; population at the inflection point; conditions for
the existence of the inflection point and lag phase; effect of model parameters on the existence of
the inflection point and lag phase; population size of the inflection point under limiting values of the
model parameters; and parameter values that lead to inflection point located at the mean value of the
curve. Different combinations of model parameters lead to different possibilities for the existence of
the inflection point and the lag phase. It was noticed that the power law term has a strong effect on
the representation of the exponential growth phase, whereas the adaptation function has a strong effect
on the representation of the lag phase. The lag phase duration depends on the exponent parameter of
the adaptation function, and its dependence with respect to the power law parameter is low. Also, an
approach is proposed for the analytical determination of the lag time, based on the application of the
classical approach to a simplified model. Ascertained lag time values were obtained, what confirms
the assumptions. At last, the model is applied to experimental data.
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1. Introduction

Growth models have traditionally been used for representing the time course of microbial
concentration [1–3]. Also, there have been applications for representing the time course of other
variables, namely: Colony diameter [4–7]; tumor size [8]; weight of plant seedlings [9]; dry weight of
wheat grains [10]; cumulative epicotyl emergence (germination) of oaks [11]; body weight of Boer
goats [12], weight of pigs [13], size of Desinognathus [14], pressure variation [15], among others.

The quality of growth models fitting may be assessed in terms of its capability for representing the
slope at the inflection point (k) and the duration of the lag phase (tlag), rather than the squared error
(SSE) [16]. The lag phase duration indicates the time that the exponential phase begins. The
inflection point characterizes the shape of the curve, and it allows to determine the maximum slope of
the growth curve and the lag phase duration via the classical approach. In turn, the maximum growth
rate is a measure of the growth speed during the exponential phase. Particularly, in the study of
growth of undesired microorganisms on products, the lag phase duration indicates the initial time of
the exponential phase of contaminants, and the maximum growth rate indicates its speed of
growth [16, 17].

One way to have growth models capable of generating the lag phase is through a differential
equation, including a multiplicative term that suppresses the vector field for low values of the
population size, i.e. during the lapse after the initial time. In the model proposed by Baranyi, Roberts
and McClure [1], a time dependent adaptation function called adjustment function (αt) is incorporated
into a logistic-type model, yielding a non-autonomous model and achieving satisfactory
representation of the lag phase. However, autonomous differential equations also have a significant
capability for representing the lag phase and the inflection point, some examples are: The Verhulst’s
logistic equation [18], the generalized Gompertz function [19], the Putter-Bertalanffy model [20], the
generalized logistic model [19], the autonomous neoclassical model of Vadasz, Vadasz [21], and the
model of Fujikawa, Kai, Morozumi [16]. Also, they allow performing equilibrium stability
analysis [20]. Additional discussion is presented in section 2.

It is worth noticing that Tsoularis and Wallace [19] and Ohnishi, Yamakawa and Akamine [20]
determined the analytical expression for the population at the inflection point, and assessed the effect
of exponential parameter values on the existence or absence of the inflection point and lag phase,
based on the curve of the growth rate versus population size. Tsoularis and Wallace [19] noticed that
there is no logarithmic inflection point for certain parameter values. Also, they determined the limit
values of the population at the inflection point for parameter values approaching zero or infinite.
Ohnishi, Yamakawa and Akamine [20] observed that negative parameter values also lead to inflection
point and lag phase, thus representing real life behavior. In contrast to these studies, in this work we
consider the generalized Fujikawa’s model which included the function fc = (1 − Nmin/N)c that
characterizes the original Fujikawa’s model, the power law function Nα and a saturation term. We
assess the effect of exponential parameters on the growth curve, considering separately the
population N and the logarithmic population y = ln(N/Nto), with negative and positive parameter
values. Indeed: i) we determine the ranges of parameter values that lead to existence or absence of
inflection point, and those for the existence or absence of lag phase; ii) we assess the effect of different
combinations of positive and negative parameter ranges on the existence or absence of inflection point
and lag phase; iii) we determine the parameter ranges that lead to monotonic decreasing behavior of
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the slope of the growth rate curve; iv) we propose an approach for the analytical determination of the
lag phase duration. Numerical simulations illustrate the approach. In summary, the main contribution
of this work is the determination of the capability of a generalized Fujikawa’s model to capture all the
features of real life monotonic growth behavior, including lag phase and inflection point.

The organization of the study is as follows. Section 2 presents some Preliminaries on the study of
growth models. Section 3 presents the proposed model and the properties of the adaptation function.
Section 4 presents the features of the regular growth model: Convergence and boundedness
properties; determination of the regular inflection point and conditions for its existence; effect of
model parameters on the existence of the inflection point and the lag phase; and properties of the
regular inflection point, including population size of the inflection point under limiting values of the
model parameters, and parameter values that lead to inflection point located at the mean value of the
curve. Section 5 presents the features of the logarithmic growth model: Convergence and
boundedness properties; determination of the logarithmic inflection point and conditions for its
existence; effect of model parameters on the existence of the inflection point and the lag phase; and
properties of the logarithmic inflection point, including population size of the logarithmic inflection
point under limiting values of the model parameters, and parameter values that lead to inflection point
located at the mean value of the curve. In section 6, an approach is proposed for determining the lag
phase duration, for each the regular and the logarithmic growth curves. In section 7 the model is
applied to experimental data, what includes the arrangement of the model and its properties in terms
of the logarithmic measure, and a numerical fitting example. Finally, in section 8 the conclusions are
drawn.

2. Preliminaries

2.1. Growth models study

In microbial culture studies, a typical monotonic growth curve comprises the following phases: Lag
phase, exponential growth phase, and stationary phase, although the lag phase may not appear. Thus,
monotonic growth does not comprise decay phase or oscillations [17, 21, 22]. The lag phase involves
the physiological adaptation of microbial cells to the new environment, resulting in low or negligible
growth rate. The exponential growth phase involves exponential reproduction of microorganisms. The
stationary phase comprises constant population of microorganisms [16,22–24]. The maximum growth
rate occurs in the exponential growth phase, at the so-called inflection point [17, 24, 25].

In growth model studies for microbial count data (cfu/mL), the logarithmic measure defined as
y = ln(N/Nto) or y = ln(N), is used as dependent variable for curve fitting and determination of the
inflection point and lag phase duration [2, 26, 27].

The inflection point is characterized by the fact that the derivative of the dependent variable is
maximum (the growth rate is maximum) [19, 21]. The existence of the inflection point requires a
convex shape in the growth rate versus population curve [17,25]. In turn, the existence of the lag phase
requires the existence of the inflection point, and it is possible that the inflection point exists while the
lag phase does not. In autonomous growth models the lag phase is generated if the initial population
size (Nto) is sufficiently close to the unstable equilibrium point, thus yielding small value of the initial
growth rate (dN/dt|t=to). In this case, the escaping of the population from the neighborhood of the
unstable equilibrium point takes more time [17, 21].
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The lag phase duration can be quantified via the classical approach, or based on the third derivative
(maximum acceleration of the growth rate) or the maximum curvature [18,24]. The classical approach
is based on the intersection of the tangent line at the inflection point with the horizontal line that meets
the initial point [17, 24].

2.2. The model of Vadasz and Vadasz

The model of Vadasz and Vadasz [17,21] comprises a quadratic term, which defines a stable and an
unstable equilibrium point. Certain values of the model parameters, corresponding to a specific region,
render the model capable of representing the inflection point and the lag phase. For this parameter
region, the value of the stable equilibrium point is higher than the unstable one, both being positive. The
stable equilibrium point is the carrying capacity. The state variable behaves monotonically, escaping
from the unstable equilibrium point towards the stable one. In addition, the model showed a high
capacity to represent the lag phase and the inflection point for experimental data.

2.3. The generalized logistic model

The generalized logistic model proposed by Tsoularis and Wallace [19] is:

dN
dt

= rNα

1 − (
N

Nmax

)βγ (2.1)

Where r, α, β, γ, Nmax are positive constants, N is the population size, and Nmax is the limit value,
usually called carrying capacity. This model combines the function Nα, α > 0, with the logistic type
model.

dN
dt

= r
1 − (

N
Nmax

)βγ (2.2)

Therein, model simulations with α = 1.5 and α = 3 indicated their capability for representing the lag
phase. In addition, several growth models that are capable of representing the lag phase can be
expressed in this form, namely: The Korfs form, the hyperbolic form for regenerative growth, the
Smiths equation and the Richard model [19, 25]. Moreover, the Smiths equation has achieved
satisfactory representation of the lag phase for experimental data [9].

2.4. The Putter-Bertalanffy model

The Putter-Bertalanffy model analyzed by [20], can be expressed as

dN
dt

= rN1−ar

[
1 −

(
N

Nmax

)γ]
(2.3)

where r, Nmax and γ are positive constants, and N is the population size. It is a Savageau’s model,
which is in turn a particular case of the generalized logistic function analyzed by [19]. The possible
ranges of (1− ar), either positive, negative or zero, lead to different possibilities of the existence of the
inflection point and the lag phase.
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2.5. Fujikawa’s model

The model of Fujikawa, Kai and Morozumi is [16, 28]:

dN
dt

= rN
(
1 −

N
Nmax

) (
1 −

Nmin

N

)c

(2.4)

where N is the population size, r, c, Nmin, Nmax are positive constants, Nmax > Nmin and
Nto ∈ (Nmin, Nmax). This model was constructed by adding the function fc = (1 − Nmin/N)c to the
logistic model

dN
dt

= rN
(
1 −

N
Nmax

)
The function fc strongly suppresses the growth rate during the lag phase, whereas the term (1−N/Nmax)
strongly suppresses the growth rate during the stationary phase. The fc function is not mechanistically
inspired. Fujikawa, Kai and Morozumi fitted the new model and the traditional model of Baranyi and
Roberts [29] for data of E. coli culture. The tlag of the new model was similar to that of the Baranyis
model, although slightly less ascertained. In contrast, the slope (k) was more ascertained than that of
Baranyis model. In the fitting, it was found that a small (Nto−Nmin) value is necessary for the estimated
c being less dependent on initial population. To this end, the value Nmin = (1 − 1 × 10−6)Nto was used,
yielding appropriate representation of the lag phase

3. Proposed model and basic properties

3.1. Statement of the generalized Fujikawa’s model

We propose the following modification of the Fujikawas model:

dN
dt

= rNα

(
1 −

N
Nmax

)γ (
1 −

Nmin

N

)c

(3.1)

where r, α, γ, c, Nmin, Nmax are constants, and r > 0, Nmax > Nmin > 0; N is the population size, and
Nmax is the carrying capacity. In turn, the model (3.1) combines the term fc = (1 − Nmin/N)c with the
hyperlogistic function:

dN
dt

= rNα

(
1 −

N
Nmax

)γ
(3.2)

The difference of model (3.1) with the Fujikawas model (2.4) is the exponents α and γ. Indeed,
Fujikawas model can be regarded as a simplified variant corresponding to α = 1, γ = 1. The model
coefficients are assumed constant in order to facilitate the study of model properties. Despite this
assumption, the model parameters can be defined as function of growth variables in further studies.

Remark 3.1. The term fc = (1 − Nmin/N)c with c > 0 slows the growth rate of the population size
N during the lag phase, provided small positive (NtoNmin). In turn, this is related to the fact that
dN/dt|N=Nto

is proportional to (NtoNmin)c. In contrast, a c < 0 value and a positive small (NtoNmin)
value imply: i) dN/dt|N=Nto

values are high, so that the initial time period of the N versus t curve
features large slope; ii) (1/N)(dN/dt)|N=Nto

values are large, so that the initial time period of the y
versus t curve features large slope.
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Remark 3.2. In the generalized logistic form of Tsoularis and Wallace [19], Eq (2.1), and in the
hyperlogistic form (3.2), the suppression of the growth rate during the lag phase is due to the term Nα,
with α > 0, whereas in the proposed model (3.1), it is due to the term fc with c > 0.

Remark 3.3. The c = 0 value implies absence of the fc term in model (3.1), so that it reduces to the
hyperlogistic model (3.2), which was studied by Tsoularis & Wallace [19].

Remark 3.4. The shape of the growth curve and the existence of the lag phase are related to the
equilibrium points of the system. The term Nα, α > 0 generates the equilibrium point Neq = 0, whereas
the term (1 − N/Nmax)γ, γ > 0 yields Neq = Nmax; and the term (1 − Nmin/N)c, c > 0 yields Neq = Nmin.
For γ > 0, c > 0 and Nto > Nmin, the N versus t curve escapes from the equilibrium Neq = Nmin and
approaches equilibrium Neq = Nmax. The lag phase occurring at N ≈ Nmin is related to a trajectory
that begins close to Nmin, so that it takes more time near Nmin. Therefore, the existence of the lag phase
occurring at N ≈ Nmin requires: i) the existence of the equilibrium point Neq = Nmin, what in turn
implies c > 0; ii) a Nto value such that Nto − Nmin is small positive.

At what follows, we state the definitions of the growth rate curve related to the mean between lower
and higher populations. The mean between Nmin and Nmax is:

Nmn =
Nmin + Nmax

2
(3.3)

The logarithmic population y, and its minimum and maximum values are defined as:

y = ln
(

N
Nto

)
(3.4)

ymin = ln
(

Nmin

Nto

)
(3.5)

ymax = ln
(

Nmax

Nto

)
(3.6)

As a consequence of the above definitions, y|t=to = 0. The mean between ymin and ymax is:

ym =
ymin + ymax

2
(3.7)

Substituting the definition of ymin and ymax, that is, Eqs (3.5) and (3.6), into ym, gives:

ym = ln
( √

NminNmax

Nto

)
(3.8)

To obtain the value of N corresponding to y = ym, we use the definition y = ln(N/Nto), what gives:

Nmy =
√

NminNmax (3.9)

3.2. Properties of the adaptation function

The adaptation function fc = (1 − Nmin/N)c, c > 0, has the following properties:

i) fc|N=Nmin
= 0; fc|N=Nmax

=

(
1 −

Nmin

Nmax

)c

< 1; fc ∈ (0, 1) for N ∈ (Nmin, Nmax] (3.10)
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ii)
d fc

dN
= cNminN−2

(
1 −

Nmin

N

)c−1

, hence d fc/dN > 0 for N ∈ (Nmin, Nmax],

iii)
d fc

dc
= ln(1 − Nmin/N)eln(1−Nmin/N)c, so that d fc/dc < 0 for N ∈ (Nmin, Nmax] (3.11)

iv)
d
dc

(
fc|N=Nmax

)
< 0, so that as c increases, fc|N=Nmax

decreases (3.12)

Remark 3.5. Property ii implies that fc is monotonically increasing with respect to N, for
N ∈ (Nmin, Nmax]

Remark 3.6. Properties ii, iii and iv imply that fc is lower for high c values and for small positive
values of (N − Nmin). As a consequence, the dN/dt value is suppressed for small positive values of
(Nto − Nmin).

Property iv follows from:

d
dc

(
fc|N=Nmax

)
= ln

(
1 −

Nmin

Nmax

)
eln(1−Nmin/Nmax)c (3.13)

Moreover, fc exhibits an inflection point with the following features:

i) If c > 1, then fc has an inflection point at N? = (c + 1)Nmin/2, so that N? > Nmin(3.14)

ii) fc|N=N? =

(
c − 1
c + 1

)c

, c > 1 (3.15)

iii)
d fc

dN

∣∣∣∣∣
N=N?

= 4
c

(c + 1)(c − 1)Nmin

(
c − 1
c + 1

)c

, c > 1 (3.16)

Remark 3.7. The inflection point of fc leads to a steep change of the fc versus N curve; and
consequently a steep change of the dN/dt versus t curve for c > 1.

Figure 1 shows the fc versus N curve for Nmin = (1 − 1 × 10−6)Nto, Nto = 1 and several c values.
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Figure 1. Simulation of the adaptation function. Left: fc versus population size; right: Detail
for low values of N.
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4. Features of the regular growth model

Proposition 4.1. Boundedness and convergence. Consider the growth model (3.1) with γ > 0, real
values of α and c, and Nmax > Nmin > 0. If Nto ∈ (Nmin, Nmax), the population size N exhibits the
following properties: i) N increases monotonically from N = Nto to Nmax, so that limt→∞ N = Nmax; ii)
N ∈ [Nto, Nmax) ∀t ≥ to.

Proof. The above proposition follows from the values of the growth rate dN/dt: i) dN/dt = 0 for
N = Nmax; ii) dN/dt > 0 for N ∈ (Nmin, Nmax). �

4.1. Determination of the regular inflection point and existence conditions

In this study, the regular inflection point (t#, N#) is defined as the point of the N versus t curve where
dN/dt is maximum, being dN/dt|N=N# the maximum growth rate.

Proposition 4.2. Consider the model (3.1) with γ > 0; real values of α and c; Nmax > Nmin > 0; and
Nto ∈ (Nmin, Nmax). With these conditions the regular inflection point population, N#, is provided by:

α

N# −
γ

Nmax − N# +
cNmin

N#(N# − Nmin)
= 0 (4.1)

Proof. As the regular inflection point corresponds to a maximum of the dN/dt versus t curve, then

d2N/dt2
∣∣∣
N=N# = 0, dN/dt|N=N# > 0 (4.2)

The condition Nto ∈ (Nmin, Nmax) implies that N ∈ (Nmin, Nmax) ∀t ≥ to, according to
Proposition 4.1. The condition dN/dt|N=N# > 0 implies that N# , Nmax. The above two results imply
N# ∈ (Nmin, Nmax). This result and Eq (4.2) give

d
dN

(
dN
dt

)∣∣∣∣∣∣
N=N#

= 0, N# ∈ (Nmin, Nmax) (4.3)

finally, applying condition (4.3) for the growth model (3.1), yields Eq (4.1). �

Remark 4.1. The condition (4.3) implies that N# corresponds to a maximum of the dN/dt versus N
curve.

Proposition 4.3. Consider growth model (3.1) with real values of α, c and γ, Nmax > Nmin > 0 and
Nto ∈ (Nmin, Nmax). If N# < Nto, then N > N# ∀t ≥ to; that is, the N versus t curve exhibits no inflection
point. If N# = Nto, then N = N# for t = to; that is, the regular inflection point occurs at t = to, N = Nto.

Proof. Since the N versus t curve is monotonic and N ≥ Nto ∀t ≥ to, then N > N# ∀t ≥ to if
N# < Nto. �

Remark 4.2. Consider growth model (3.1), with γ > 0 and real values of α and c, and Nmax > Nmin > 0.
The existence of the inflection point in the N versus t curve requires: i) the existence of a maximum
in the dN/dt versus N curve, which is given by Eq (4.1), subject to N# ∈ (Nmin, Nmax), and ii) that
Nto < N# where Nto > Nmin > 0. The existence of the lag phase requires the existence of the inflection
point and a small value of dN/dt|t=to. In turn, this implies a positive c value and a small positive
(Nto − Nmin) value.
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Proposition 4.4. Consider growth model (3.1) with real values of α, c, γ, and Nmax > Nmin > 0 and
Nto ∈ (Nmin, Nmax):

i) if

γ > 0, and c ∈ (0, ∞) (4.4)

holds, then the dN/dt versus N curve exhibits a maximum at N = N#, N# ∈ (Nmin, Nmax).
ii) the inflection point population, N#, satisfies:

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
> 0 for Nmin < N < N#

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N# < N ≤ Nmax

(4.5)

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
= 0 for N = N# (4.6)

iii) if either

i) γ > 0, α ∈ (0, ∞) and c ∈ (−∞, −α(Nmax/Nmin − 1)]
or ii) γ > 0, α ∈ (−∞, 0], and c ∈ (−∞, 0]

(4.7)

holds, the dN/dt versus t curve is monotonic decreasing for N ∈ (Nmin, Nmax).

Proof. Model (3.1) with Nmax > Nmin > 0 subject to parameter regime (4.4) gives:

dN
dt

∣∣∣∣∣
N=Nmin

= 0;
dN
dt

∣∣∣∣∣
N=Nmax

= 0;
dN
dt

∣∣∣∣∣
N∈(Nmin, Nmax)

> 0 (4.8)

Therefore, the dN/dt versus N curve exhibits a maximum at N = N#, with N# ∈ (Nmin, Nmax).

In addition, we notice from Eq (4.1) that the inflection point population N# is provided by
D2|N=N# = 0, where

D2 =
α

N
+

cNmin

N(N − Nmin)
−

γ

Nmax − N
(4.9)

The D2 term exhibits vertical asymptotes at N = Nmin and at N = Nmax. In addition, if parameter
regime (4.4) holds, then

lim
N→N−max

D2 = −∞ (4.10)

lim
N→N+

min

D2 = +∞ (4.11)

so that there is at least one N value that belongs to range (Nmin, Nmax) and leads to D2 = 0. Then,
there exists a maximum in the dN/dt versus N curve, at N = N#, N# provided by Eq (4.6), and
N# ∈ (Nmin, Nmax).
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For the second part, we recall that for model (3.1) with Nto ∈ (Nmin, Nmax), the inflection point of
the N versus t curve satisfies Eq (4.2). As the inflection point corresponds to a maximum of the dN/dt
versus t curve, then

d
dt

(
dN
dt

)
> 0 for t < t#

d
dt

(
dN
dt

)
< 0 for t > t#

d
dt

(
dN
dt

)
= 0 for t = t#

(4.12)

according to [30]. Equivalently, (
dN
dt

)
· d

dN

(
dN
dt

)
> 0 for t < t#(

dN
dt

)
· d

dN

(
dN
dt

)
< 0 for t > t#(

dN
dt

)
· d

dN

(
dN
dt

)
= 0 for t = t#

(4.13)

As dN/dt > 0 for N ∈ (Nmin, Nmax), real values of α, c, γ and Nmax > Nmin > 0, then the conditions
t < t#, t = t# and t > t# are equivalent to N < N#, N = N# and N > N#, respectively, for N ∈
(Nmin, Nmax). Therefore, expressions (4.13) lead to

d
dN

(
dN
dt

)
> 0 for Nmin < N < N#

d
dN

(
dN
dt

)
< 0 for N# < N < Nmax

d
dN

(
dN
dt

)
= 0 for N = N#

(4.14)

For model (3.1), and N ∈ (Nmin, Nmax), we have

d
dN

(
dN
dt

)
= rNα

(
1 −

N
Nmax

)γ (
1 −

Nmin

N

)c ( α
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)

)
(4.15)

This and expressions (4.14) lead to

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
> 0 for Nmin < N < N#

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N# < N < Nmax

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
= 0 for N = N#

(4.16)

This and condition N ∈ (Nmin, Nmax) result in second part of Proposition.

For the third part, we notice that if γ > 0, and (4.7) holds, then

α

N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N ∈ (Nmin, Nmax) (4.17)

This and Eq (4.15) lead to

d
dN

(
dN
dt

)
< 0 for N ∈ (Nmin, Nmax) (4.18)
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As dN/dt > 0 for N ∈ (Nmin, Nmax), then(
dN
dt

)
.

d
dN

(
dN
dt

)
< 0 for N ∈ (Nmin, Nmax) (4.19)

thus d2N/dt2 < 0 for N ∈ (Nmin, Nmax). Equivalently, the dN/dt versus t curve is decreasing. �

Remark 4.3. In first part of Proposition 4.4 not only the values belonging to the parameter regime (4.4)
lead to existence of a maximum in the dN/dt versus N curve. Indeed, certain negative c values with
γ > 0 also lead to a maximum. The third part of Proposition 4.4 corresponds to the parameter
conditions for the absence of a maximum in the dN/dt versus N curve, hence absence of the regular
inflection point.

4.2. Effect of model parameters on the existence of the regular inflection point and lag phase

At what follows, the effect of model parameters on the existence of the inflection point and lag phase
is assessed, on the basis of the growth rate versus population size. The effect of model parameters on
the dN/dt vs N curve and the N vs t growth curve for the model (3.1) is illustrated in Figures 2–4.
The following parameter values are used: Nmax = 100, γ = 1, Nmin = (1 − 1 × 10−6)Nto, Nto = 1.
As the advantage of the proposed model is its capacity to represent the lag phase, it is assumed that
γ is positive, and its effect is not assessed. There are four different cases of the α, c values, yielding
different possibilities of the existence of the lag phase and the inflection point:

• α > 0, c > 0: Pi) dN/dt = 0 for N = Nmin; Pii) dN/dt = 0 for N = Nmax; Piii) dN/dt > 0
for N ∈ (Nmin, Nmax). The first part of Proposition 4.4 applies, so that the inflection point occurs
provided Nto < N# and the lag phase existence depends on the (Nto − Nmin) value. Simulations are
shown in Figure 2.
• α > 0 and c < 0: Pi) dN/dt = ∞ for N = Nmin, that is, there is a vertical asymptote at N = Nmin;

Pii) dN/dt = 0 for N = Nmax; Piii) dN/dt > 0 for N ∈ (Nmin, Nmax). Property Pi implies
that dN/dt|N=Nto

is overly high for low values of (Nto − Nmin), so that there is no lag phase. The
occurrence of the inflection point is determined by Eq (4.6) subject to N# ∈ (Nmin, Nmax), provided
Nto < N#. The third part of Proposition 4.4 indicates that for c ≤ −α(Nmax/Nmin − 1) values, there
is no inflection point. Moreover, simulations show that for some parameter values there is a local
minimum and a local maximum in the range N ∈ (Nmin, Nmax). As a consequence, there may be
inflection point but there is no lag phase. Simulation shown in Figure 3 confirm the above facts,
and also shows that the inflection point is owed to the term Nα.
• α < 0 and c > 0: The properties Pi to Piv of case α > 0, c > 0 are fulfilled. The first part of

Proposition 4.4 applies, so that the inflection point occurs provided Nto < N#, and the lag phase
existence depends on the (Nto − Nmin) value. Simulation shown in Figure 4 confirms the above
facts, and also show that: i) the effect of negative values of α on the lag phase duration is low;
ii) the maximum growth rate is overly low, so that the slope of the population at the exponential
growth phase is overly low. This confirms the importance of the Nα term for the slope of the
exponential growth phase.
• α < 0 and c < 0: Pi) dN/dt = ∞ for N = Nmin, that is, there is a vertical asymptote at N = Nmin;

Pii) dN/dt = 0 for N = Nmax; Piii) dN/dt > 0 for N ∈ (Nmin, Nmax). Proposition 4.4 applies,
so that the dN/dt versus N curve is monotonically decreasing for N ∈ (Nmin, Nmax). Thus, no
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inflection point occurs, and therefore no lag phase occurs. Simulations in Figure 2 confirm the
above properties.

Intermediate cases are:

• α > 0 and c = 0: The term fc is absent, so that the model becomes dN/dt = rNα(1−N/Nmax)γ, and:
Pi) dN/dt > 0 for N = Nmin; Pii) dN/dt = 0 for N = Nmax; Piii) dN/dt > 0 for N ∈ (Nmin, Nmax);
Piv) dN/dt|N=Nto

is positive and it is proportional to Nα
to. Thus, the dN/dt versus N curve exhibits

a maximum with N# ∈ (Nmin, Nmax), so that there is an inflection point provided Nto < N#, and it
is owed to the term Nα with α > 0. For general (not small) values of Nto, dN/dt|t=to is not small,
so that there is no lag phase. Simulations are shown in Figure 3.
• α = 0 and c < 0: The term Nα is absent, and the properties are similar to those of case α < 0

and c < 0: Pi) dN/dt = ∞ for N = Nmin, that is, there is a vertical asymptote at N = Nmin; Pii)
dN/dt = 0 for N = Nmax; Piii) dN/dt > 0 for N ∈ (Nmin, Nmax). According to Proposition 4.4, the
dN/dt versus N curve exhibits monotonic decreasing behavior, so that no inflection point occurs,
and therefore lag phase neither occurs, what is confirmed by simulation in Figure 3.
• α = 0 and c > 0: The term Nα is absent, and the properties Pi to Piv of case α < 0 and c > 0

are fulfilled. The first part of Proposition 4.4 applies, so that an inflection point occurs provided
Nto < N# and the lag phase existence depends on the (Nto − Nmin) value. Although simulations
are not shown, they indicate that the maximum occurs at low values of the population size (N#

is low), and the maximum growth rate is overly low, so that the slope of the growth curve at the
exponential growth phase is overly low.

Remark 4.4. The above cases of α and c values indicate that the c parameter has a significant
influence on the lag phase duration but the influence of the α value is low. Concerning the slope at the
exponential growth phase, the α value has a significant influence, whereas the influence of the c value
is low.
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Figure 2. Simulation of the model (3.1) for various values of α and c: Left: Time course of
population size; right: Growth rate versus population size.
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Remark 4.5. The parameter region α < 0 leads to low slope of the population at the exponential
growth phase, whereas c < 0 implies that no lag phase occurs. Thus, the condition c > 0 is required
for representing the lag phase, whereas α > 0 is required for higher slopes of the population at the
exponential growth phase. This is in accordance with the fact that the formulation of the adaptation
function fc by Fujikawa, Kai and Morozumi [16] aimed at suppressing the growth rate during the lag
phase, but without affecting the rest of the population growth behavior.
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Figure 3. Simulation of model (3.1) for non-positive values of c: Left: Time course of
population size; right: Growth rate versus population size.

4.3. Properties of the regular inflection point

Proposition 4.5. Consider the model (3.1) with γ > 0. The population at the inflection point, N#, is
defined by:

āx2 + b̄x + c̄ = 0, x =
N#

Nmin
(4.20)

where

ā = α + γ; b̄ = (−1)
(
α
(
1 + Nmax

Nmin

)
+ γ − c

)
; c̄ = (α − c) Nmax

Nmin
(4.21)

And the discriminant is

b̄24āc̄ =

(
α

(
1 −

Nmax

Nmin

)
+ γ − c

)2

+ 4γc
Nmax

Nmin
(4.22)

so that no imaginary solutions are possible for γc ≥ 0. If ā > 0, c > 0, and b̄24āc̄ is non-negative, only
the positive square root can lead to N# > Nmin.
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Proof. The population at the regular inflection point is obtained by applying Eq (4.3) to the growth
model (3.1), leading to

α(Nmax − N)(NNmin) − γN(NNmin) + cNmin(Nmax − N))|N=N# = 0 (4.23)

Rearranging yields the quadratic Eq (4.20). In order to determine whether the negative square
root term can lead to N# > Nmin for ā > 0, we use Proposition A.1 presented in Appendix B. Using the
definition of ā, b̄, c̄, we have: c̄+ ā+ b̄ = (−1)c(Nmax/Nmin−1). Since (Nmax/Nmin) > 1, then c̄+ ā+ b̄ < 0
for c > 0, so that the condition c̄ + ā + b̄ > 0 is not fulfilled for c > 0. Consequently, only the positive
square root term leads to N#/Nmin > 1. End of the proof. �

Proposition 4.6. Limit values of N#. Consider model (3.1), with α > 0, γ > 0, c ≥ 0. The limit values
of the regular inflection point, N#, are:

i) lim
γ→0

N# = Nmax

ii) lim
γ→∞

N# = Nmin

iii) lim
c→0

N# =
Nmin

2(α + γ)

[
α

(
1 +

Nmax

Nmin

)
+ γ +

∣∣∣∣∣∣(−1)α
(

Nmax

Nmin
− 1

)
+ γ

∣∣∣∣∣∣
]

iv) lim
c→∞

N# = Nmax

v) lim
α→0

N# =
Nmin

2γ

γ − c +

√
(c − γ)2 + 4cγ

Nmax

Nmin


vi) lim

α→∞
N# = Nmax

(4.24)
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Figure 4. Simulation of model (3.1) for positive values of c: Left: Time course of population
size; right: Growth rate versus population size.

Proof. The above limit values are obtained by substituting γ → 0, γ → ∞, c → 0, c → ∞, α → 0,
α→ ∞ in Eq (4.23), and solving for N#. �
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Remark 4.6. The above proposition indicates that the limit values of N# for α → 0 depends on the
values of c and γ; whereas the limit value of N# for c→ 0 depends on the values of α, γ.

Proposition 4.7. Conditions for N# = Nto. Consider the model (3.1). The population at the regular
inflection point, N#, satisfies: N# = Nto for

c
γ + α

(
Nmax

Nmin
−

Nto

Nmin

)
=

(
Nto

Nmin
− 1

) (
Nto

Nmin
−

α

γ + α

Nmax

Nmin

)
(4.25)

Proof. Using N# = Nto in Eq (4.23) and arranging yields Eq (4.25). �

Remark 4.7. The above proposition implies that in the N versus t curve, with Nto ∈ (Nmin, Nmax), the
maximum (dN/dt) occurs at t = to, N = Nto, if the α, γ, c values are such that Eq (4.25) holds true.

Proposition 4.8. Conditions for N# = Nmn. Consider model (3.1). The population at the regular
inflection point, N#, satisfies N# = Nmn for

c
γ + α

=
1
2

(
1 +

γ − α

γ + α

Nmax

Nmin

)
(4.26)

Proof. Using N# = Nmn in Eq (4.23) and arranging yields Eq (4.26). �

Remark 4.8. The above proposition implies that in the N versus t curve, with Nto ∈ (Nmin, Nmn), the
maximum dN/dt occurs at N = Nmn where Nmn = (Nmin + Nmax)/2, if the α, γ, c values are such that
Eq (4.26) holds true.

Remark 4.9. The determination of the lag time of the regular growth curve via the classical approach
requires the determination of the inflection point, as shown in Appendix A. To this end, the population
at the inflection point (N#) can be computed using expressions (4.20), (4.21), and the inflection time
(t#) must be computed numerically.

5. Features of the logarithmic growth model

Proposition 5.1. Boundedness and convergence. Consider growth model (3.1) with γ > 0 and real
values of α, c. If Nto ∈ (Nmin, Nmax), equivalently yto ∈ (ymin, ymax), then ymin < 0 < ymax,
yto ∈ (ymin, ymax) and the logarithmic population y exhibits the following features: i) y increases
monotonically from y = yto to y = ymax, so that lim yt→∞ = ymax; ii) y ∈ [yto, ymax) ∀t ≥ to.

Proof. For y = ln(N/Nto) and the growth model (3.1), with γ > 0 and real values of α, c, the specific
growth rate dy/dt = (1/N)(dN/dt) fulfills the following properties: i) (dy/dt) = 0 for N = Nmax;
ii) (dy/dt) > 0 for N ∈ (Nmin, Nmax). �

5.1. Determination of the logarithmic inflection point and existence conditions

In this study, the logarithmic inflection point (t∗, N∗, y∗) is defined as the point of the y versus t
curve where dy/dt is maximum, being [dy/dt]y∗ the maximum specific growth rate; and N∗ the value
of N corresponding to y∗, ie N∗ = Ntoey∗ .
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Proposition 5.2. Consider the growth model (3.1) with γ > 0; real values of α, c; Nmax > Nmin > 0;
and Nto ∈ (Nmin, Nmax), equivalently yto ∈ (ymin, ymax): The logarithmic inflection point population,
N∗, is provided by

α − 1
N∗

−
γ

Nmax − N∗
+

cNmin

N∗(N∗ − Nmin)
= 0 (5.1)

Proof. As the logarithmic inflection point corresponds to a maximum of the dy/dt = (1/N)(dN/dt)
versus t curve, then

d2y/dt2
∣∣∣
N=N∗

= 0, dy/dt|N=N∗ > 0. (5.2)

The condition Nto ∈ (Nmin, Nmax) implies that N ∈ (Nmin, Nmax) ∀t ≥ t0, equivalently
y ∈ (ymin, ymax) ∀t ≥ t0, according to Proposition 5.1. The condition dy/dt|N=N∗ > 0 implies that
N∗ , Nmax (equivalently y∗ , ymax). The above two results imply that N∗ ∈ (Nmin, Nmax), equivalently
y∗ ∈ (ymin, ymax). This result, Eq (5.2) and using y = ln(N/Nto), yield

d
dN

(
1
N

dN
dt

)∣∣∣∣∣∣
N=N∗

= 0; N∗ ∈ (Nmin, Nmax) (5.3)

Applying this condition to the growth model (3.1), yields Eq (5.1). �

Remark 5.1. The condition (5.3) implies that N∗ provided by Eq (5.1) corresponds to a maximum of
the (1/N)(dN/dt) versus N curve [21].

Proposition 5.3. Consider the logarithmic measure y = ln(N/Nto), being N provided by growth
model (3.1) with real values of α, c, γ, and Nmax > Nmin > 0; and Nto ∈ (Nmin, Nmax). If N∗ < Nto,
(equivalently y∗ < yto) then N > N∗ ∀t ≥ to; that is, the y versus t curve exhibits no inflection point. If
N∗ = Nto, (equivalently y∗ = yto), then N = N∗ for t = to; that is, the logarithmic inflection point
occurs at t = to, N = Nto.

Proof. Recall that the N versus t curve is monotonic and N ≥ Nto ∀t ≥ to. Then, N > N∗ ∀t ≥ to for
N∗ < Nto. Consequently, y > y∗ ∀t ≥ to for y∗ < yto. �

Remark 5.2. Consider the logarithmic measure y = ln(N/Nto) provided by growth model (3.1), with
γ > 0, real values of α, c, and Nmax > Nmin > 0, and Nto ∈ (Nmin, Nmax). The existence of the
inflection point of the y versus t curve requires: i) the existence of a maximum in the (1/N)(dN/dt)
versus N curve which is given by Eq (5.1) subject to N∗ ∈ (Nmin, Nmax), and ii) that Nto < N∗ where
Nto > Nmin > 0. The existence of the lag phase requires the existence of the inflection point and a small
value of (1/N)(dN/dt)|t=to. In turn, this implies a positive c value and a small positive (Nto − Nmin)
value.

Proposition 5.4. Consider the logarithmic measure y = ln(N/Nto), being N provided by growth
model (3.1) with real values of α, c, γ, and Nmax > Nmin > 0; and Nto ∈ (Nmin, Nmax):

i) If

γ > 0, and c ∈ (0, ∞) (5.4)

holds, then the (1/N)(dN/dt) versus N curve exhibits a maximum at N = N∗, N∗ ∈ (Nmin, Nmax).
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ii) The logarithmic inflection point population N∗, satisfies:

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
> 0 for Nmin < N < N∗

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N∗ < N ≤ Nmax

(5.5)

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
= 0 for N = N∗ (5.6)

iii) If either

γ > 0, α > 1, and c ∈ (−∞, −(α − 1)(Nmax/Nmin − 1)]
or γ > 0, α ∈ (−∞, 1] and c ∈ (−∞, 0]

(5.7)

then (1/N)(dN/dt) versus t curve is monotonic decreasing for N ∈ (Nmin, Nmax).

Proof. Model (3.1) with Nmax > Nmin > 0 subject to parameter regime (5.4) gives:

1
N

dN
dt

∣∣∣∣∣
N=Nmin

= 0;
1
N

dN
dt

∣∣∣∣∣
N=Nmax

= 0;
1
N

dN
dt

∣∣∣∣∣
N∈(Nmin, Nmax)

> 0 (5.8)

Therefore, the (1/N)(dN/dt) versus N curve exhibits a maximum at N = N∗, with
N∗ ∈ (Nmin, Nmax). In addition, we notice from Eq (5.1) that the inflection point population N∗ is
provided by D2|N=N∗ = 0, where

D2 =
(α − 1)

N
+

cNmin

N(N − Nmin)
−

γ

Nmax − N
(5.9)

The D2 term exhibits vertical asymptotes at N = Nmin and at N = Nmax. In addition, if parameter
regime (5.4) holds, then

lim
N→N−max

D2 = −∞ (5.10)

lim
N→N+

min

D2 = +∞ (5.11)

so that there is at least one N value that belongs to range (Nmin, Nmax) and leads to D2 = 0. Then,
there exists a maximum in the (1/N)(dN/dt) versus N curve, at N = N∗, N∗ provided by Eq (5.1), and
N∗ ∈ (Nmin, Nmax).

For the second part, we recall that for the model (3.1) with Nto ∈ (Nmin, Nmax), the inflection point
of the y versus t curve satisfies Eq (5.2). As the inflection point corresponds to a maximum of the dy/dt
versus t curve, then

d
dt

dy
dt > 0 for t < t∗

d
dt

dy
dt < 0 for t > t∗

d
dt

dy
dt = 0 for t = t∗

(5.12)

according to [30]. As y = ln(N/Nto), then

d2y
dt2 =

(
dN
dt

)
.

d
dN

(
1
N

dN
dt

)
(5.13)
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Combining this with Eq (5.12) yields:

dN
dt ·

d
dN

(
1
N

dN
dt

)
> 0 for t < t∗

dN
dt ·

d
dN

(
1
N

dN
dt

)
< 0 for t > t∗

dN
dt ·

d
dN

(
1
N

dN
dt

)
= 0 for t = t∗

(5.14)

As (dN/dt) > 0 for N ∈ (Nmin, Nmax), real values of α, c, γ and Nmax > Nmin > 0, then the
conditions t < t∗, t = t∗ and t > t∗ are equivalent to N < N∗, N = N∗ and N > N∗, respectively, for
N ∈ (Nmin, Nmax). Therefore, expression (5.14) leads to

d
dN

(
1
N

dN
dt

)
> 0 for Nmin < N < N#

d
dN

(
1
N

dN
dt

)
< 0 for N# < N < Nmax

d
dN

(
1
N

dN
dt

)
= 0 for N = N#

(5.15)

For model (3.1), and N ∈ (Nmin, Nmax), we have

d
dN

(
1
N

dN
dt

)
= rNα−1

(
1 −

N
Nmax

)γ (
1 −

Nmin

N

)c [α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)

]
(5.16)

This and expressions (5.15) lead to

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
> 0 for Nmin < N < N∗

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N∗ < N < Nmax

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
= 0 for N = N∗

(5.17)

This and condition N ∈ (Nmin, Nmax) results in second part of Proposition.
For the third part, we notice that if (5.7) holds, then

α − 1
N
−

γ

Nmax − N
+

cNmin

N(N − Nmin)
< 0 for N ∈ (Nmin,Nmax) (5.18)

This and Eq (5.16) lead to

d
dN

(
1
N

dN
dt

)
< 0 for N ∈ (Nmin, Nmax) (5.19)

As (dN/dt) > 0 for N ∈ (Nmin, Nmax), then(
dN
dt

)
.

d
dN

(
1
N

dN
dt

)
< 0 for N ∈ (Nmin, Nmax) (5.20)

thus d2y/dt2 < 0 for N ∈ (Nmin, Nmax). Equivalently, the dy/dt versus t curve is decreasing. �

Remark 5.3. In first part of Proposition 5.4, not only the parameter values belonging to parameter
regime (5.4) lead to existence of a maximum in the (1/N)(dN/dt) versus N curve. Indeed, certain
negative c values with γ > 0 also lead to a maximum. The third part of Proposition 5.4 corresponds
to absence of a maximum in the (1/N)(dN/dt) versus N curve, therefore absence of the logarithmic
inflection point.
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5.2. Effect of model parameters on the existence of the logarithmic inflection point and lag phase

At what follows, the effect of model parameters on the existence of the inflection point and lag
phase is assessed, on the basis of the specific growth rate versus population size curve.

The effect of model parameters on the (1/N)(dN/dt) vs N curve and the y vs t curve is illustrated in
Figures 5–7. The following parameter values are used: Nmax = 100, γ = 1, Nmin = (1 − 1 × 10−6)Nto,
Nto = 1. As the advantage of the proposed model is its capacity to represent the lag phase, it is assumed
that γ is positive and its effect is not assessed. There are four different cases of the α, c values, yielding
different possibilities of the existence of the lag phase and the inflection point in the y versus t curve:

• α > 1, c > 0: Pi) (1/N)(dN/dt) = 0 for N = Nmin; Pii) (1/N)(dN/dt) = 0 for N = Nmax; Piii)
(1/N)(dN/dt) > 0 for N ∈ (Nmin, Nmax). The first part of Proposition 5.4 applies, so that the
(1/N)(dN/dt) versus N curve exhibits a maximum at N = N∗, N∗ ∈ (Nmin, Nmax). Thus, the
inflection point occurs provided Nto < N∗, and the lag phase existence depends on the (Nto−Nmin)
value. Simulation is shown in Figure 5.
• α < 1 and c > 0: The properties Pi to Piv of case α > 1, c > 0 are fulfilled. The first part of

Proposition 5.4 applies, so that the inflection point occurs provided Nto < N∗, and the lag phase
existence depends on the (Nto − Nmin) value. Simulation is shown in Figure 6, confirming the
above facts, and also shows that: i) the effect of α < 1 values on the lag phase duration is low;
ii) the maximum growth rate is overly low, leading to low values of the slope of the population at
the exponential growth phase. This confirms the importance of the Nα term for the slope of the
exponential growth phase.
• α > 1 and c < 0: Pi) (1/N)(dN/dt) = ∞ for N = Nmin, that is, there is a vertical asymptote at

N = Nmin; Pii) (1/N)(dN/dt) = 0 for N = Nmax; Piii) (1/N)(dN/dt) > 0 for N ∈ (Nmin, Nmax).
Property Pi implies that (1/N)(dN/dt)|N=Nto

is overly high for low values of (Nto − Nmin), so that
there is no lag phase. The occurrence of inflection point is determined by Eq (5.6) subject to
N∗ ∈ (Nmin, Nmax), and provided Nto < N∗. The third part of Proposition 5.4 indicates that
for c ≤ (−1)(α − 1)(Nmax/Nmin − 1) values there is no inflection point. Moreover, simulations
show that for some parameter values there is a local minimum and a local maximum in the range
N ∈ (Nmin, Nmax). As a consequence, there may be inflection point but there is no lag phase.
Simulation in Figure 7 confirms the above facts.
• α < 1 and c < 0: Pi) (1/N)(dN/dt) = ∞ for N = Nmin, that is, there is a vertical asymptote at

N = Nmin; Pii) (1/N)(dN/dt) = 0 for N = Nmax; Piii) (1/N)(dN/dt) > 0 for N ∈ (Nmin, Nmax).
Proposition 5.4 applies, so that the (1/N)(dN/dt) versus N curve is monotonically decreasing
for N ∈ (Nmin, Nmax). Thus, no inflection point occurs, and therefore lag phase neither occurs.
Simulation in Figures 5 and 7 confirms the above facts.

Intermediate cases are:

• α > 1 and c = 0: The term fc is absent, so that the model becomes
(1/N)(dN/dt) = rNα−1(1 − N/Nmax)γ, and: Pi) (1/N)(dN/dt) > 0 for N = Nmin;
Pii) (1/N)(dN/dt) = 0 for N = Nmax; Piii) (1/N)(dN/dt) > 0 for N ∈ (Nmin, Nmax);
Piv) (1/N)(dN/dt)|N=Nto

is positive and is proportional to Nα−1
to . Thus, the (1/N)(dN/dt) versus N

curve exhibits a maximum with N∗ ∈ (Nmin, Nmax), so that the inflection point occurs provided
Nto < N∗ and it is owed to the term Nα−1 with α > 1. For general (not small) values of Nto,
(1/N)(dN/dt)|t=to is not small, so that there is no lag phase. Simulations are shown in Figure 7.
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• α = 1 and c < 0: The term Nα−1 is absent, and the properties are similar to those of case α < 1
and c < 0: Pi) (1/N)(dN/dt) = ∞ for N = Nmin, that is, there is a vertical asymptote at N = Nmin;
Pii) (1/N)(dN/dt) = 0 for N = Nmax; Piii) (1/N)(dN/dt) > 0 for N ∈ (Nmin, Nmax). According to
the third part of Proposition 5.4, the (1/N)(dN/dt) versus N curve exhibits monotonic decreasing
behavior, so that no inflection point occurs, and therefore lag phase neither occurs.
• α = 1 and c > 0: The term Nα−1 is absent, and the properties Pi to Piv of case α < 1 and c > 0,

are fulfilled. The first part of Proposition 5.4 applies, so that the inflection point occurs provided
Nto < N∗; and the lag phase existence depends on the (Nto − Nmin) value. Simulation in Figure 5
confirms the above properties and: i) the maximum occurs at low values of the population size
(N∗ is low); ii) the maximum growth rate is overly low, so that the slope of the growth curve at
the exponential growth phase is overly low.

Remark 5.4. The above cases of α and c values indicate that the c parameter has a significant
influence on the lag phase duration but the influence of the α value is low. Concerning the slope at the
exponential growth phase, the α value has a significant influence, whereas the influence of the c value
is low.

Remark 5.5. The parameter region α < 1 leads to low slope of the population at the exponential
growth phase, whereas c < 0 implies that no lag phase occurs. Thus, the condition α > 1 is required
for higher slopes of the population at the exponential growth phase, whereas c > 0 is required for
representing the lag phase.
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Figure 5. Simulation of the logarithmic measure y = ln(N/Nto) for model (3.1) with various
values of α and c: Left: Time course of the logarithmic measure; right: Specific growth rate
versus population size.

5.3. Properties of the logarithmic inflection point

Proposition 5.5. Consider y = ln(N/Nto), and the model (3.1) with γ > 0. The population at the
logarithmic inflection point, N∗, is defined by

āx2 + b̄x + c̄ = 0, x =
N∗

Nmin
(5.21)
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where

ā = α − 1 + γ, b̄ = −

((
α − 1

) (
1 +

Nmax

Nmin

)
+ γ − c

)
, c̄ = (α − 1 − c)

Nmax

Nmin
(5.22)

and the discriminant is

b̄24āc̄ =

((
α − 1

) (
1 −

Nmax

Nmin

)
+ γ − c

)2

+ 4γc
Nmax

Nmin
(5.23)

so that no imaginary solutions are possible for γc ≥ 0. If ā > 0, c > 0 and b̄24āc̄ is non-negative, only
the positive square root leads to N∗ > Nmin.

Proof. The population at the logarithmic inflection point, N∗, is obtained by applying Eq (5.3) to the
growth model (3.1), leading to

((α − 1)(Nmax − N)(N − Nmin) − γN(NNmin) + cNmin(Nmax − N))|N=N∗ = 0 (5.24)

Rearranging yields the quadratic Eq (5.21). In order to determine whether the negative square root
term can lead to N∗ > Nmin for ā > 0, c > 0 we use Proposition A.1 presented in Appendix B. Using the
definition of ā, b̄, c̄, we have c̄+ ā+ b̄ = (−1)c(Nmax/Nmin−1). Since (Nmax/Nmin) > 1, then c̄+ ā+ b̄ < 0
for c > 0. Hence, the condition c̄ + ā + b̄ > 0 is not fulfilled for c > 0. Consequently, only the positive
square root term leads to N∗/Nmin > 1. �

Proposition 5.6. Limit values of N∗. Consider the model (3.1) with α − 1 > 0, γ > 0, c ≥ 0. The limit
values of the population at the logarithmic inflection point, N∗, are:

i) lim
γ→0

N∗ = Nmax

ii) lim
γ→∞

N∗ = Nmin

iii) lim
c→0

N∗ =
Nmin

2(α − 1 + γ)

[
(α − 1)

(
1 +

Nmax

Nmin

)
+ γ +

∣∣∣∣∣∣(−1)(α − 1)
(

Nmax

Nmin
− 1

)
+ γ

∣∣∣∣∣∣
]

iv) lim
c→∞

N∗ = Nmax

v) lim
(α−1)→0

N∗ =
Nmin

2γ

γ − c +

√
(c − γ)2 + 4cγ

Nmax

Nmin


vi) lim

(α−1)→∞
N∗ = Nmax

(5.25)

Proof. The above limit values of N∗ are obtained by substituting γ → 0, γ → ∞, c → 0, c → ∞,
(α − 1)→ 0, (α − 1)→ ∞ in Eq (5.24) and solving for N∗. �

Remark 5.6. The limit values of y∗ can be obtained straightforwardly by using y∗ = ln(N∗/Nto) and
the definitions (3.5), (3.6).

Proposition 5.7. Conditions for N∗ = Nto. Consider the model (3.1). The population at the logarithmic
inflection point, N∗, satisfies: N∗ = Nto for

c
γ + α − 1

(
Nmax

Nmin
−

Nto

Nmin

)
=

(
Nto

Nmin
1
) (

Nto

Nmin
−

α − 1
γ + α − 1

Nmax

Nmin

)
(5.26)
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Proof. Using N∗ = Nto in Eq (5.24) and arranging yields Eq (5.26). �
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Figure 6. Simulation of the logarithmic measure y = ln(N/Nto) for model (3.1) with positive
values of c: Left: Time course of the logarithmic population size; right: Specific growth rate
versus population size.

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

y

 

 

α=1.1,c=−1.5

α=1.1,c=0

α=0,c=−1.5

α=0,c=0

0 20 40 60 80 100

0

0.5

1

1.5

2

N

(1
/N

)d
N

/d
t

 

 

α=1.1,c=−1.5

α=1.1,c=0

α=0,c=−1.5

α=0,c=0

Figure 7. Simulation of the logarithmic measure y = ln(N/Nto) for model (3.1) with non-
positive values of c: Left: Time course of the logarithmic population size; right: Growth rate
versus population size.

Remark 5.7. The above proposition implies that in the y versus t curve, with Nto ∈ (Nmin, Nmax), the
maximum dy/dt occurs at t = to, N = Nto, if the α, γ, c values are such that Eq (5.26) holds true.

Proposition 5.8. Conditions for N∗ = Nmy (equivalently, y∗ = ym ). Consider model (3.1). The
population at the logarithmic inflection point, N∗, satisfies N∗ = Nmy for

c
γ + α − 1

= 1 −
α − 1

γ + α − 1

√
Nmax

Nmin
(5.27)
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Proof. Using N∗ = Nmy, Nmy = (NminNmax)1/2 in Eq (5.24) and arranging yields Eq (5.27). �

Remark 5.8. The above proposition implies that in the y versus t curve, with Nto ∈ (Nmin, Nmy), the
maximum dy/dt occurs at N = Nmy; where Nmy = (NminNmax)1/2, if the α, γ, c values are such that
Eq (5.27) holds true.

Remark 5.9. The determination of the lag time of the logarithmic growth curve via the classical
approach requires the determination of the inflection point, as shown in Appendix A. To this end,
the population at the inflection point (N∗) can be computed using expressions (5.21), (5.22), and the
inflection time (t∗) must be computed numerically.

6. Determination of the lag time using simplified models and the classical approach

In this section, we propose an approach for the analytical determination of the lag time, for each
the regular and the logarithmic measures. Also, a numerical example is provided, using the proposed
approach and the classical approach.

The classical measure of the lag time requires the determination of the inflection point, as shown in
Appendix A. In turn, the regular and the logarithmic population at the inflection point (N# and N∗) can
be computed using the expressions (4.20), (4.21), (5.21), (5.22). The inflection times (t#, t∗) must be
computed numerically.

The proposed approach is based on an application of the classical approach to a simplified growth
model whose lag time value is quite similar to that of the original model. The simplified model is
derived from proposed model (3.1) so as to fulfill the following properties: Ri) its lag time value is
quite similar to that of the original N versus t curve provided by model (3.1); Rii) it allows to obtain
an analytical expression of the population N; Riii) it allows to apply the classical tlag approach. Thus,
given a model simplified on the basis of the above facts, the tlag value of the simplified model can be
considered as a tlag measure of the original model.

Disregarding the saturation term (1−N/NNmax) simplifies the determination of the lag phase duration,
as was used by Baranyi, Roberts and McClure [1]. For the proposed model (3.1), with given values of
α, c, γ, remarks 4.4, 5.4 indicate that: i) the effect of parameter α on the lag phase and the lag time
is low; ii) during the lag phase and the early exponential growth phase, N ≈ Nto, so that the effect of
simplification (1 − N/Nmax)γ = (1 − Nto/Nmax)γ on the lag time is low. Thus, a simplified form that
accomplishes requirements Ri to Riii is:

dNs2

dt
= rNk1

s2

(
1 −

Nto

Nmax

)γ (
1 −

Nmin

Ns2

)c

(6.1)

with k1 ∈ {c − k2, c, 2, 3} (6.2)

where k2 is a positive integer, and the k1 option that is the nearest to the α value must be chosen. The
Ns2 model is obtained from the proposed model (3.1) with the simplification α = k1 and (1−N/Nmax)γ =

(1−Nto/Nmax)γ. The Ns2 curve has no inflection point, and it does not converge towards an equilibrium
point, but its lag phase and the early part of the exponential growth phase are similar to those of the
model (3.1). In the particular case k1 = c, the analytical solution of Eq (6.1) is:

1
1 − c

[
(Ns2 − Nmin)1−c − (Nto − Nmin)1−c

]
= r

(
1 −

Nto

Nmax

)γ
(t − to), c , 1 (6.3)
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The application of the classical tlag approach is different for the regular and the logarithmic growth
curves.

6.1. Determination of the lag time for the regular population size

To apply the classical tlag approach on the Ns2 versus t curve, we notice that this curve has no
inflection point. Thus, we choose other point, located in the exponential growth phase, whose N value,
denoted as N p

s2 equals the inflection point of the simplified N versus t curve provided by

dNs1

dt
= rNk1

s1

(
1 −

Ns1

Nmax

)γ (
1 −

Nmin

Ns1

)c

(6.4)

so that N p
s2 = N#

s1. This curve involves the simplification α = k1, k1 satisfying (6.2). In accordance
with the classical tlag approach, the intersection of the line that is tangent to the Ns2 versus t curve at
Ns2 = N#

s1, with the line Ns2 = Nto yields the tlag value. The N#
s1 value can be obtained via Eqs (4.20)

and (4.21), with α = k1. In the particular case k1 = c, the N#
s1 value is obtained by applying Eq (4.3) to

model (6.4) with k1 = c:

N#
s1 =

cNmax + γNmin

c + γ
(6.5)

The time for Ns2 = N#
s1 (denoted ts) is obtained from the analytical solution of Eq (6.1), and using

Ns2 = N#
s1. In the particular case k1 = c, ts is obtained using Eq (6.3):

ts = t0 +
1

r
(
1 − Nto

Nmax

)γ
(1 − c)

[
(N#

s1 − Nmin)1−c − (Nto − Nmin)1−c
]

(6.6)

The tlag can be computed from

tlag = ts −
(N#

s1 − Nto)
dNs2

dt

∣∣∣
Ns2=N#

s1

(6.7)

where (dNs2/dt) at Ns2 = N#
s1 can be computed using Eq (6.1).

In summary, the application of the proposed approach for the regular growth curve involves the
following steps:

• Recall the parameters of model (3.1) or obtain them by fitting to experimental data
• Select the k1 option (6.2) that is the nearest to the α value
• Determine the analytical expression of the Ns2 curve by using Eq (6.1), and in the case k1 = c use

Eq (6.3)
• Determine N#

s1 value using Eqs (4.20) and (4.21), with α = k1; in the particular case k1 = c, use
Eq (6.5)
• Compute the time for Ns2 = N#

s1 (that is, ts), using the analytical expression for Ns2.
• Compute the tlag value using Eq (6.7).

As a numerical example we consider model (3.1), with r = 1, Nmin = (1 − 1 × 10−6)Nto, Nto = 1,
γ = 1; α = 0.7 and c values c = 0.74, c = 1.1, c = 1.2. We apply the aforementioned procedure,
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choosing k1 = c, and the results are shown in Figure 8. Upper left: The time course of N for c = 0.74,
c = 1.1, c = 1.2 (solid, dash-dotted and dotted lines), with the inflection points (black squares) and
the lag time points (gray squares) determined via the classical approach. Each of the remaining figures
comprises: The N time course (thin solid line) with the inflection point (black square) and the lag time
point (gray square) determined via the classical approach; the Ns1 time course (dash-dot line); and the
Ns2 time course (thick solid line) with the point Ns2 = N#

s1 (black point), and the lag time point (gray
point) determined via the proposed approach. The c values used are c = 0.74 (upper right), c = 1.1
(lower left), and c = 1.2 (lower right).
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Figure 8. The original generalized Fujikawa’s model and proposed simplified model, with
the corresponding lag time points.

6.2. Determination of the lag time for the logarithmic population size

To apply the classical tlag approach on the ys2 = ln(Ns2/Nto) versus t curve, we notice that this curve
has no inflection point. Thus, we choose other point, located in the exponential growth phase, whose
ys2 value, denoted as yp

s2, results from the inflection point of the simplified y versus t curve provided
by:

ys1 = ln(Ns1/Nto) (6.8)
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dNs1

dt
= rNk1

s1

(
1 −

Ns1

Nmax

)γ (
1 −

Nmin

Ns1

)c

(6.9)

so that yp
s2 = y∗s1. This curve involves the simplification α = k1, being k1 chosen from options in (6.2).

In accordance with the classical tlag approach, the intersection of the line that is tangent to the ys2 versus
t curve at ys2 = y∗s1, with the line ys2 = ys2|t=to = 0 yields the tlag value.

The y∗s1 value and the corresponding N∗s1 value (which satisfies y∗s1 = ln(N∗s1/Nto)) are obtained from
Eqs (5.21) and (5.22) with α = k1. The time for ys2 = y∗s1, equivalently Ns2 = N∗s1, denoted as ts, is
obtained from the analytical solution of Eq (6.1) using Ns2 = N∗s1. In the particular case k1 = c, the
time ts is obtained using Eq (6.3) with Ns2 = N∗s1:

ts = t0 +
1

r
(
1 − Nto

Nmax

)γ
(−c + 1)

[
(N∗s1 − Nmin)−c+1 − (Nto − Nmin)−c+1

]
(6.10)

The tlag value can be computed from

tlag = ts −
ln(N∗s1/Nto)

dys2
dt

∣∣∣
Ns2=N∗s1

(6.11)

where dys2/dt|Ns2=N∗s1
can be computed using dys2/dt = (1/Ns2)dNs2/dt, being dNs2/dt provided by

Eq (6.1) with Ns2 = N∗s1.

In summary, the application of the proposed approach for he logarithmic growth curve involves the
following steps:

• Recall the parameters of model model (3.1) or obtain them by fitting to experimental data
• Select the k1 option (6.2) that is the nearest to the α value
• Determine the analytical expression of the Ns2 curve by using Eq (6.1), and in the case k1 = c use

Eq (6.3).
• Determine the y∗s1 = ln(N∗s1/Nto) value, using Eqs (5.21) and (5.22) with α = k1.
• Compute the time for ys2 = y∗s1 (that is, ts), using the analytical expression for Ns2 with Ns2 = N∗s1.
• Compute the tlag value, using Eq (6.11)

As a numerical example, we consider model (3.1), with r = 1, Nmin = (1 − 1 × 10−6)Nto, Nto = 1,
γ = 1; α = 0.7, and c values c = 0.74, c = 1.1, c = 1.2. We apply the aforementioned procedure,
choosing k1 = c, as shown in Figure 9. Upper left: Time course of y for c values c = 0.74, c = 1.1,
c = 1.2 (solid, dash-dotted and dotted lines), with the inflection points (black squares) and lag time
points (gray squares) determined via the classical approach. Each of the remaining figures comprise:
The y time course (thin solid line) with the inflection point (black square) and the lag time point (gray
square) determined via the classical approach; the ys1 = ln(Ns1/Nto) time course (dash-dot line); and
the ys2 = ln(Ns2/Nto) time course (thick solid line) with the point ys2 = y∗s1 (black point) and the lag
time point (gray point) determined via the proposed approach. The c values used are c = 0.74 (upper
right), c = 1.1 (lower left), and c = 1.2 (lower right).
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Figure 9. The logarithmic measure y provided by the generalized Fujikawa’s model and the
proposed simplified model, with the corresponding lag time points.

7. Application of the proposed model to experimental data

In this section, the proposed model (3.1) is applied to experimental microbial growth curves.

7.1. Arrangement of the proposed model for fitting to microbial growth curves

The differential Eq (3.1), the expression for the population at the inflection point N∗ and the
expression for the lag time (tlag) are rewritten in terms of the logarithmic measure y = ln(N/Na) as
follows, being Na a user defined positive constant. Using model (3.1), the above definition of y instead
of definition (3.4), and the definition

ymin = ln(Nmin/Na), ymax = ln(Nmax/Na), (7.1)

one obtains:
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dy
dt

= r̄e(α−1)y
(
1 − e(y−ymax)

)γ (
1 − e−(y−ymin)

)c
(7.2)

r̄ = rNα−1
a ,

and its parameters are r̄, α, γ, c, ymin, ymax. Using definition (7.1), the term Nmax/Nmin appearing in
definitions (5.22) can be expressed as

Nmax

Nmin
= eymax−ymin (7.3)

Definition y = ln(N/Na) implies y∗ = ln(N∗/Na). Using definition (7.1) and Eq (5.21), one further
obtains y∗ = ln(eymin x), being x obtained from Eq (5.21). The t∗ value can be computed numerically by
using Eq (7.2), so as to obtain y = y∗. The lag time can be computed via the classical approach with

tlag = t∗ +
(yto − y∗)

dy
dt |y=y∗

(7.4)

being (dy/dt)|y∗ obtained using Eq (7.2).

Remark 7.1. In summary, the model properties in terms of the logarithmic measure includes: i) the
logarithmic population at the inflection point (y∗), which can be computed using expression
y∗ = ln(eymin x), being x obtained from Eqs (5.21) and (5.22) with (Nmax/Nmin) = eymax−ymin; ii) the
inflection time (t∗), which can be computed numerically using Eq (7.2); and iii) the lag time tlag which
can be computed by means of Eq (7.4), being (dy/dt)|y∗ obtained using Eq (7.2). In this way, the
computation of y∗, t∗, tlag neither requires N∗ nor Na.

7.2. Survey of the model of Baranyi and Roberts and the Gompertz model

The model of Baranyi and Roberts [31] is:

y = Ln(N), (7.5)

y(t) = yo + µmaxAt −
1
m

Ln
(
1 +

em µmaxAt − 1
em(ymax−yo)

)
, (7.6)

At = t +
1
v

Ln
(
e−vt + qo

1 + qo

)
, (7.7)

its parameters are µmax, m, ymax, qo, v; and the lag time is tlag = (1/v)Ln(1 + 1/qo).

The Gompertz model is [32]:

y = ya + (ymax − ya)exp
(
−exp

(
1 +

e1µmax

ymax − ya
(λ − t)

))
(7.8)

its parameters are µmax, ymax, λ, ya; and the lag time is tlag = λ.
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7.3. Numerical fitting example

In order to assess the capability of the proposed model to simulate growth curves, it and also the
model of Baranyi and Roberts and the Gompertz model were fitted to growth records of Salmonellae.
The datasets were taken from [1], corresponding to constant temperature and pH. The proposed model,
the inflection point and the lag time expressed in terms of the logarithmic measure y are stated in
subsection 7.1, whereas the model of Baranyi and Roberts and the Gompertz model are stated in
subsection 7.2. The value Na = 1 is used for the proposed model, in order to compare the simulation
of y = ln(N) for the three models.

Model simulation and parameter estimation were performed using Matlab software (the Math Works
Inc., Natick, Mass.). The differential Eq (7.2) was numerically integrated using the ode45 routine.
Parameter estimation was carried out by minimizing the sum of the squared deviations between the
values calculated by the model and the experimental data. The R2 value was used to evaluate the
goodness of fit (see [33]), whereas the Akaike’s Information Criterion (AIC) allows to compare the
model acceptability on the basis of both fitting capability and complexity, being the complexity related
to number of parameters [34, 35]:

AIC = NLn
(RS S

N

)
+ 2(Nprm + 1) +

2(Nprm + 1)(Nprm + 2)
N − Nprm − 2

(7.9)

where N is the number of data points, Nprm is the number of model parameters, and RSS is the sum
of the squared deviations between the values calculated by the model and the experimental data. The
model with the lowest AIC value is the most acceptable. The fitting results are:

Generalized Fujikawa’s model :
r̄ = 0.92614, γ = 0.4745, α = 0.9647, c = 0.8210, ymin = 7.7897, ymax = 20.15,
y∗ = 10.977, t∗ = 8.715h, tlag = 3.492h, R2 = 0.9919, AIC = −11.35,

Model of Baranyi and Roberts :
µmax = 0.5518, m = 1.1051, ymax = 20.31, qo = 0.0004574, v = 2.7169
tlag = 2.8305h, R2 = 0.9922, AIC = −16.4288,

Gompertz model :
µmax = 0.69007, ymax = 21.013, λ = 3.7876h, Ya = 7.5373
R2 = 0.9883, AIC = −11.4761,

There is a good agreement between model simulation and experimental measurements (Figure 10),
with a relatively high and similar R2 value for all the models. The estimated α, γ, c, are positive, and α
is close to 1.0. The lag time tlag values were not quite similar. In terms of the AIC value, the Baranyi
model is the most acceptable. This is partially related to the number of parameters, indeed Nprm = 6,
Nprm = 5, Nprm = 4 for the proposed model, the Baranyi’s model and the Gompertz model, respectively.
This worsens the AIC value of the proposed model in comparison with that of Baranyi’s model. The
fitting of the three models exhibit disagreement for the lag phase points (first seven points). In view of
the above limitations, the fitting of the models to the lag phase points was improved, although at the
cost of lowering the overall R2 value; α = 1 was used in the proposed model, what is a common value,
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see [16, 28]; and the R2 for the lag phase (R2
lag) was calculated. The fitting results are:

Generalized Fujikawa’s model (α = 1) :
r̄ = 0.61107, γ = 1.1423, c = 0.88021, ymin = 7.7785, ymax = 20.2143, y∗ = 13.866,
t∗ = 14.94h, tlag = 4.9822h, R2 = 0.98845, AIC = −4.9322, R2

lag = 0.9663
Model of Baranyi and Roberts :
µmax = 0.6114, m = 0.92099, ymax = 20.1474, qo = 0.047274, v = 0.69237
tlag = 4.4745h, R2 = 0.9886, AIC = −8.1242, R2

lag = 0.96475
Gompertz model :
µmax = 0.69168, ymax = 20.9808, λ = 4.00h, Ya = 7.3672
R2 = 0.98695, AIC = −9.0126, R2

lag = 0.84902
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Figure 10. Model fitting to Salmonellae growth data. Inflection point of the proposed model
(black square); lag time point of the proposed model (gray square). Left: Overall growth
curve. Right: Detail of lag phase.
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Figure 11. Model fitting to Salmonellae growth data, with improved fitting to lag phase data.
Inflection point of the proposed model (black square); lag time point of the proposed model
(gray square). Left: Overall growth curve. Right: Detail of lag phase.
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The three models achieved satisfactory agreement between simulation and experimental data, with
a high R2 value (Figure 11). In terms of the AIC value, the Gompertz model is the most acceptable,
but it exhibits significantly flawed fitting of several data points. The Baranyi model exhibits the second
best AIC value. Both the Baranyi’s model and the proposed model achieved proper fitting of the lag
phase points, and the highest R2

lag was achieved by the proposed model.
The obtained results confirm the capability of the proposed model to simulate monotonic growth

curves, mainly those involving lag phase.

8. Conclusions

The studied generalized form of the Fujikawas growth model is autonomous, exhibits monotonic
behavior of the population size and is capable of generating the common features of monotonic
growth of microorganisms along time, including growth with decreasing slope without inflection
point and growth with inflection point and lag phase. Indeed, either a large or a small lag time can be
combined with either a large or a small slope of the exponential growth phase. Thus, the model is
highly flexible and is suitable for different applications. Although Fujikawa, Kai and
Morozumi [16, 28] only employed positive values of α, c, negative values lead to features of the y
versus t curve that are possible in real situations.

A deep insight on the growth curves is obtained by analyzing the dN/dt versus N curve at
N = Nmin, N = Nmax and for N ∈ (Nmin, Nmax), in addition to assessing the presence of a maximum
(which corresponds to an inflection point) or a minimum. A minimum and a maximum occur for
α > 0 and c < 0, what is not common in growth curves.

The study of the effect of α and c values on the existence of the regular inflection point and lag
phase indicates that: i) if both are positive, the inflection point occurs provided adequate Nto; ii) if
either α or c is negative, the occurrence of the inflection point is possible; iii) if both parameters are
negative, there is no inflection point nor lag phase. The existence of lag phase depends on the value of
the growth rate at initial time, what is proportional to (Nto − Nmin).

The α and c parameters also affect the lag time magnitude and the slope of the exponential growth
phase: i) the α value has a significant influence on the slope at the exponential growth phase, whereas
the influence of the c value is low; ii) the c parameter has a significant influence on the lag phase
duration but the influence of the α value is low. For adequate representation of a growth curve that
exhibits lag phase and steep exponential growth phase, it is required that both the α and the c values
be positive.

The limit values of the inflection point population N# confirms it great flexibility, due to the
parameters α, c, γ.

The numerical fitting example indicated the capability of the proposed model for fitting to
experimental data of microbial growth. Indeed, the R2 value is high and similar to that of the Baranyi
model.

Acknowledgments

A Rincón was supported by Universidad Católica de Manizales.
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A. Appendixes

A.1. Appendix 1. Classical determination of the lag phase duration

For the regular measure (N), the tangent line at the inflection point (t#,N#) is

N =
dN
dt

∣∣∣∣∣
t=t#

t + N# −
dN
dt

∣∣∣∣∣
t=t#

t# (A.1)

The lag phase duration (tlag) is obtained from the intersection of this line with the horizontal line
N = Nto, what gives

tlag = t# (N# − Nto)
dN/dt|t=t#

(A.2)

For the logarithmic measure y = ln(N/Nto), the tangent line at the inflection point (t∗, y∗) is

y =
dy
dt

∣∣∣∣∣
t∗

t + y∗ −
dy
dt

∣∣∣∣∣
t=t∗

t∗ (A.3)

where
dy
dt

∣∣∣∣∣
t=t∗

=
1
N

dN
dt

∣∣∣∣∣
N=N∗

(A.4)

The lag phase duration (tlag) is obtained from the intersection of this line with the horizontal line
y = yto = 0, what gives

tlag = t∗
y∗

dy/dt|t=t∗
= t∗

ln(N∗/Nto)
dy/dt|N=N∗

(A.5)

A.2. Appendix 2. Conditions for selecting the solution of quadratic algebraic equations

Proposition A.1. Consider the quadratic algebraic equation

āx2 + b̄x + c̄ = 0 (A.6)

being b̄24āc̄ non-negative. If ā > 0, the solution with negative square root requires c̄ + ā + b̄ > 0 for
obtaining x > 1.
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Proof. Consider the quadratic Eq (A.6), with ā > 0, and the solution comprising the negative square
root term. Accomplishment of condition x > 1 implies

−

√
b̄2 − 4āc̄ > 2ā + b̄√

b̄2 − 4āc̄ < (−1)(2ā + b̄) (A.7)

This expression implies that 2ā+ b̄ < 0. Taking squares to Eq (A.7) and arranging yields −c̄ < ā+ b̄.
Therefore, the solution with negative square root term, requires the condition c̄+ā+b̄ > 0 for achieving
x > 1. �
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