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Abstract: Citrus Huanglongbing (HLB) is the most devastating citrus disease worldwide. In this
paper, a deterministic dynamical model is proposed to explore the transmission dynamics of HLB
between citrus tree and Asian citrus psyllid (ACP). Using the theory of dynamical system, the dynamics
of the model are rigorously analyzed. The results show that the disease-free equilibrium is globally
asymptotically stable when the basic reproduction number R0 < 1, and when R0 > 1 the system
is uniformly persistent. Applying the global sensitivity analysis of R0, some parameters that have
the greatest impact on HLB transmission dynamics are obtained. Furthermore, the optimal control
theory is applied to the model to study the corresponding optimal control problem. Both analytical and
numerical results show that: (1) the infected ACP plays a decisive role in the transmission of HLB in
citrus trees, and eliminating the ACP will be helpful to curtail the spread of HLB; (2) optimal control
strategy is superior to the constant control strategy in decreasing the prevalence of the diseased citrus
trees, and the cost of implementing optimal control is much lower than that of the constant control
strategy; and (3) spraying insecticides is more effective than other control strategies in reducing the
number of ACP in the early phase of the transmission of HLB. These theoretical and numerical results
may be helpful in making public policies to control HLB in orchards more effectively.
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1. Introduction

Citrus Huanglongbing (HLB) is a global citrus disease occurring in almost all citrus-growing
regions [1, 2]. HLB was first reported in southern China in 1919, and now it is discovered and spread
in 50 different countries [1]. It causes substantial economic burdens to individual growers, citrus
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industries and governments [2]. A large number of countries, such as the United States, Brazil and
China, are severely affected by the disease. In Florida, America, the commercial citrus acreage has
reduced to 531,493 acres in the fall of 2012, a 28% decrease from 748,555 acres in 2004 [3]. In São
Paulo, Brazil, a heavy toll has been taken by HLB. 6.9% of the citrus trees, and even 64.1% of the
commercial citrus orchards were affected by HLB in 2012 [4]. Till now, in China, the damaged
product of citrus is more than 85% of the total product [5]. Due to the great harm of HLB to public
society, it is significant to increase understanding of HLB transmission dynamics and to take some
measures in curbing its transmission.

Mathematical models have been playing a great role in understanding the epidemiology of vector
transmitted plant pathogens [6–25]. In recent years, several mathematical models explored how HLB
transmits within individual citrus trees, within a citrus orchard, or among orchards [2, 6, 15, 19, 25].
For the purpose of highlighting the role of flush for Asian citrus psyllid (ACP) dynamics,
Chiyaka et al. [6] proposed a mathematical model of differential equations to describe and investigate
the spread of HLB within a tree. Jacobsen et al. [19] developed a model for the transmission of HLB
within a single citrus orchard, which included the control strategy of roguing. Vilamiu et al. [26]
proposed a deterministic mathematical model with delay times and human intervention for the
transmission of HLB between citrus plants, and the dynamical characteristics of ACP and the
development of disease were investigated. In [15], Gao et al. investigated a stage-structured
mathematical model of HLB with time delay. These models are of great help to our understanding of
the law of transmission of HLB.

Most of the HLB models mentioned above does not consider a variety of control measures for the
comprehensive management of the transmission of HLB. Thus, in order to fight HLB and protect
citrus plants, various control strategies are needed. Currently, there are a variety of feasible control
strategies, including antibiotics, insecticides, biological control agents, physical methods, nutritional
supplements, etc. Perhaps it is partly because of the simplification of control measures that HLB still
remains a major plant disease in China, despite the control program of HLB in China launched
in 2005 and sustained over 10 years. Therefore, in order to control the transmission of HLB
effectively, a variety of control strategies should be considered simultaneously. Simultaneous
implementation of multiple control strategies may help guide us to reduce and eliminate the incidence
of HLB in orchards.

Motivated by the above researches, in this paper, we formulate a compartmental mathematical
model to describe the transmission dynamics of HLB within a single orchard of citrus trees. The
model represents healthy, infected and asymptomatic, infectious and asymptomatic, and infectious
and symptomatic individuals in the citrus trees and healthy, infected individuals vector populations.
We derive the basic reproductive ratio, a threshold value below which the HLB disease can be
eliminated but above which the HLB disease will persist. The global dynamics of the HLB model are
further studied. Then, optimal control method is applied to the HLB model to discuss the
corresponding optimal control problems.

This article is organized as follows. In section 2, we introduce the deterministic mathematical
model to describe the transmission dynamics of HLB which incorporates citrus trees and ACP. In
section 3, we compute the basic reproduction ratio and local stability analysis of the six dimension
HLB system. Moreover, the global dynamics of the HLB model are discussed. In section 4, optimal
control problem of HLB is performed. Furthermore, in section 5, we propose some numerical
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simulations, and summarize some suggestions for HLB prevention and control. The paper ends with a
brief discussion of the results in section 6.

2. Model formulation

In this section, we mainly formulate the mathematical model to describe the transmission
dynamics of HLB.

HLB, a bacterial disease of citrus, mainly transmitted by the insect, i.e., ACP [27]. ACP is the
most important source of infection for HLB. In addition, Citrus HLB can also be spread by means of
grafting and dodder, but it contributes little to the overall transmission. ACP damages citrus directly
by feeding on new leaf growth (flush). It takes the bacteria into its body when it feeds on
bacteria-infected plants. The disease spreads when a bacteria-carrying ACP flies to a healthy plant
and injects bacteria into it as it feeds. In this article, we only consider the scenario that HLB are
transmitted between citrus trees and ACP.

According to the transmission of Citrus HLB, the citrus tree population is assumed to divide into
four different classes, namely, healthy individuals, H(t), infected and asymptomatic individuals, W(t)
(which are not yet infectious), infectious and asymptomatic individuals, X(t), and infectious and
symptomatic individuals, Y(t), at any time t. Let P(t) be the total number of citrus tree population,
i.e., P(t) = H(t) + W(t) + X(t) + Y(t). The population of ACP is similarly divided into two different
classes, namely, susceptible ACP (S (t)) and infected ACP (I(t)), respectively. The total population of
ACP is denoted by N(t), i.e., N(t) = S (t) + I(t).
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Figure 1. A schematic of the system (2.1) showing transitions to different classes for citrus
trees and ACP.
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The transition diagram for the transmission of HLB pathogens is shown in Figure 1. Based on the
above transition diagram, the model for HLB transmission is described by:



dH(t)
dt

= α
(
1 − P(t)

P0

)
− β1H(t)I(t) − δH(t) + ησY(t),

dW(t)
dt

= β1H(t)I(t) − γ1W(t) − δW(t) + (1 − η)σY(t),

dX(t)
dt

= γ1W(t) − γ2X(t) − δX(t),

dY(t)
dt

= γ2X(t) − δY(t) − σY(t),

dS (t)
dt

= Λ − β2(X(t) + θY(t))S (t) − µS (t),

dI(t)
dt

= β2(X(t) + θY(t))S (t) − µI(t).

(2.1)

In system (2.1), α denotes the number of new citrus trees replanted. The maximum number of
citrus trees that can be planted in the grove is represented by P0 (P(t) ≤ P0). β1 is the HLB bacterial
transmission probability from ACP to citrus tree. β2 is the HLB bacterial transmission probability from
citrus tree to ACP. The natural mortality of citrus tree population is denoted by δ. σ denotes the removal
rate of symptomatic citrus trees. η represents the proportion of healthy trees in replanted citrus trees. γ1

represents the conversion rate from non-infectious citrus to infectious citrus trees, and γ2 represents the
conversion rate from asymptomatic citrus trees to symptomatic citrus trees. Λ is the recruitment rate
of ACP, and µ is the death rate of ACP. θ denotes the increased infectiousness of Y(t). All parameters
and its biological interpretation of the HLB model (2.1) are summarized in Table 1.
Let

Ω =

{
(H(t),W(t), X(t),Y(t), S (t), I(t)) ∈ R6

+ : H(t) ≥ 0,W(t) ≥ 0, X(t) ≥ 0,Y(t) ≥ 0, S (t) ≥ 0, I(t) ≥ 0,

0≤H(t) + W(t) + X(t) + Y(t) ≤
αP0

α + δP0
, 0≤S (t) + I(t) ≤

Λ

µ

}
,

where

ΩH =

{
(H(t),W(t), X(t),Y(t)) ∈ R4

+ : 0≤P(t) = H(t) + W(t) + X(t) + Y(t) ≤
αP0

α + δP0

}
,

ΩV =

{
(S (t), I(t)) ∈ R2

+ : 0 ≤ N(t) = S (t) + I(t) ≤
Λ

µ

}
.

Then it follows from the above discussion that all solutions of the system (2.1) starting in Ω remain
in Ω for all t ≥ 0. Therefore, Ω is a positively invariant, and it is sufficient to consider only the solutions
in the region Ω. In this region, the usual existence, uniqueness, and continuation results hold for the
system (2.1). In what follows, we always assume that the initial conditions of system (2.1) lie in Ω.
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Table 1. Description of the parameters for the system (2.1).

Parameter Description Baseline values Range Reference
α The number of new citrus trees

replanted
600 540–660 Estimated

P0 Maximum number of citrus
trees that can be planted in the
grove

1000 900–1100 Estimated

β1 HLB bacterial transmission
probability from ACP to citrus
tree (year−1)

4.8830 × 10−4 1 × 10−5–1 × 10−4 [2]

β2 HLB bacterial transmission
probability from citrus tree to
ACP (year−1)

3.9064 × 10−4 1 × 10−5–1 × 10−4 [2]

δ Natural mortality in citrus
trees (year−1)

0.04 0.03–0.05 [28]

σ Removal rate of symptomatic
citrus trees (year−1)

0.6 0–1 Estimated

η Pproportion of healthy trees in
replanted citrus trees (year−1)

0.95 0–1 Estimated

γ1 Rate at which infected citrus
tree becomes infectious
(year−1)

1.9 1.6425–13.2495 [6]

γ2 Rate at which asymptomatic
infected citrus tree becomes
symptomatic (year−1)

12.97 1.6425–13.2495 [6]

Λ Recruitment rate of ACP
(year−1)

3.3253 × 105 3 × 105–5 × 105 [2]

µ Natural death rate of ACP
(year−1)

5.9441 1–8 [2]

θ Increased infectiousness of
Y(t)

1.01 1–3 [6]

τ Conversion rate 0.75 0–1 [6]

3. Model analysis

In this section, we mainly investigate the dynamics of the model (2.1).
The model (2.1) always has the disease-free equilibrium (DFE), namely E0 = (H0,W0, X0,Y0, S 0,

I0) =
(

αP0
α+δP0

, 0, 0, 0, Λ
µ
, 0

)
.

It is noted that system (2.1) has four infected individuals, namely W(t), X(t), Y(t), and I(t). Using
the notations in [29, 30], the matrices F and V , for the new infection terms and the remaining transfer
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terms respectively, are given by

F =


0 0 0 αP0

α+δP0
β1

0 0 0 0
0 0 0 0
0 Λ

µ
β2

Λ
µ
β2θ 0

 , V =


γ1 + δ 0 −(1 − η)σ 0
−γ1 γ2 + δ 0 0

0 −γ2 δ + σ 0
0 0 0 µ

 . (3.1)

It follows that the basic reproduction number of the model (2.1), denoted by R0, is

R0 = ρ(FV−1)

=
1
µ

√
β1β2αP0Λγ1(σ + δ + θγ2)

(α + δP0)[(σ + δ)(γ1 + δ)(γ2 + δ) − (1 − η)σγ1γ2]
,

where ρ(FV−1) is the spectral radius of the matrix FV−1. Using Theorem 2 in [30], we have

Theorem 3.1. The DFE (E0) of the system (2.1) is locally asymptotically stable (LAS) if R0 < 1, and
unstable if R0 > 1.

In what follows, we show that the global stability of DFE (E0) when R0 < 1.

Theorem 3.2. If R0 < 1, then the system (2.1) is globally asymptotically stable (GAS).

Proof. If R0 < 1, by Theorem 3.1, it follows that the DFE (E0) is LAS. Next, we only need to prove
that the DFE (E0) is a global attractor.

It follows from system (2.1) that we have

dW(t)
dt

≤ β1
αP0
α+δP0

I(t) − (γ1 + δ)W(t) + (1 − η)σY(t),

dX(t)
dt
≤ γ1W(t) − (γ2 + δ)X(t),

dY(t)
dt
≤ γ2X(t) − (σ + δ)Y(t),

dI(t)
dt
≤ β2(X(t) + θY(t))Λ

µ
− µI(t).

(3.2)

Consider the following auxiliary equations

dW̃(t)
dt

= β1
αP0
α+δP0

Ĩ(t) − (γ1 + δ)W̃(t) + (1 − η)σỸ(t),

dX̃(t)
dt

= γ1W̃(t) − (γ2 + δ)X̃(t),

dỸ(t)
dt

= γ2X̃(t) − (σ + δ)Ỹ(t),

dĨ(t)
dt

= β2(X̃(t) + θỸ(t))Λ
µ
− µĨ(t).

(3.3)

From the system (3.3), we can easily verify that the system is an irreducible cooperative system in R4
+.

Furthermore, it follows from Theorem 11.3 in [31] that the global stability of the origin of system (3.3)
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is entirely determined by the stability of the Jacobian matrix JE0 = F − V . If R0 < 1, it follows from
Theorem 2 in [30] that JE0 is stable. Then we have

lim
t→∞

W̃(t) = 0, lim
t→∞

X̃(t) = 0, lim
t→∞

Ỹ(t) = 0, lim
t→∞

Ĩ(t) = 0.

By the comparison principle [32], it follows that

lim
t→∞

W(t) = 0, lim
t→∞

X(t) = 0, lim
t→∞

Y(t) = 0, lim
t→∞

I(t) = 0.

Then, substituting them into model (2.1), the limiting system can be obtained as follows:
dH(t)

dt
= α

(
1 − H(t)

P0

)
− δH(t),

dS (t)
dt

= Λ − µS (t).
(3.4)

Solving the equations of system (3.4), we have limt→∞ H(t) = αP0
α+δP0

, and limt→∞ S (t) = Λ
µ
. Since the

system (3.4) is the limiting system of (2.1), from the Theorem 2.3 in the [33], we further obtain that
the DFE (E0) is the global attractor of the model (2.1). This completes the proof of Theorem 3.2. �

In what follows, we investigate the uniform persistence of system (2.1) when R0 > 1.

Theorem 3.3. If R0 > 1, then the system (2.1) is uniformly persistent, i.e., there is a positive constant
ξ such that every positive solution (H(t),W(t), X(t),Y(t), S (t), I(t)) of (2.1) satisfies

lim inf
t→∞

H(t) ≥ ξ, lim inf
t→∞

W(t) ≥ ξ, lim inf
t→∞

X(t) ≥ ξ, lim inf
t→∞

Y(t) ≥ ξ,

lim inf
t→∞

S (t) ≥ ξ, lim inf
t→∞

I(t) ≥ ξ.

Proof. Define

χ =
{
(H(t),W(t), X(t),Y(t), S (t), I(t)) : H(t) ≥ 0,W(t) ≥ 0, X(t) ≥ 0,Y(t) ≥ 0, S (t) ≥ 0, I(t) ≥ 0

}
,

χ0 =
{
(H(t),W(t), X(t),Y(t), S (t), I(t)) : H(t) > 0,W(t) > 0, X(t) > 0,Y(t) > 0, S (t) > 0, I(t) > 0

}
,

∂χ0 = χ\χ0.

In order to show that the system (2.1) is uniformly persistent, we only need to demonstrate that ∂χ0

repels uniformly the solutions of χ0.

First, it follows from system (2.1) that both χ and χ0 are positively invariant. Clearly, ∂χ0 is
relatively closed in χ and (2.1) is point dissipative. Set

M∂ =
{
(H(0),W(0), X(0),Y(0), S (0), I(0)) : (H(t),W(t), X(t),Y(t), S (t), I(t)) ∈ ∂χ0,∀t ≥ 0

}
.

We now show that

M∂ =
{
(H(t),W(t), X(t),Y(t), S (t), I(t)) ∈ χ : W2(t) + X2(t) + Y2(t) + I2(t) = 0

}
. (3.5)
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Assume (H(0),W(0), X(0),Y(0), S (0), I(0)) ∈ M∂. It suffices to demonstrate that W2(t)+ X2(t)+Y2(t)+

I2(t) = 0 for all t ≥ 0. Suppose not . Then there exists a t0 ≥ 0 such that W2(t0) + X2(t0) + Y2(t0) +

I2(t0) > 0. Without loss of generality, we only discuss the case I(t0) > 0, H(t0) = 0, W(t0) = 0,
X(t0) = 0, Y(t0) = 0, S (t0) = 0. Analogously, the other cases can be derived in the same way. Since

dH(t)
dt
|t=t0 = α

(
1 − P(t0)

P0

)
− β1H(t0)I(t0) − δH(t0) + ησY(t0) = α > 0,

dS (t)
dt
|t=t0 = Λ − β2(X(t0) + θY(t0))S (t0) − µS (t0) = Λ > 0,

and
dI(t)

dt
≥ −µI(t),

it follows that there is an ε0 small enough such that H(t) > 0, S (t) > 0, I(t) > 0 for all t0 < t < t0 + ε0.

Furthermore, let t1 = t0 + ε0
2 , then we have H(t1) > 0 and I(t1) > 0.

If W(t1) > 0, we have

dW(t)
dt

= β1H(t)I(t) − (γ1 + δ)W(t) + (1 − η)σY(t) > − (γ1 + δ)W(t).

This means that W(t) > 0 for all t ≥ t1; if W(t1) = 0, we get

dW(t)
dt
|t=t1 = β1H(t1)I(t1) + (1 − η)σY(t1) ≥ β1H(t1)I(t1) > 0.

It then follows that there is an ε1 < ε0
2 such that W(t) > 0 for all t1 < t < t1 + ε1. Similarly, there

exists ε2 < ε1
2 and ε3 < ε2

2 such that X(t) > 0 for all t ∈ (t1 + ε1
2 , t1 + ε1

2 + ε2) and Y(t) > 0 for all
t ∈ (t1 + ε1

2 + ε2
2 , t1 + ε1

2 + ε2
2 + ε3), respectively. Thus, for all t1 + ε1

2 + ε2
2 < t < t1 + ε1

2 + ε2
2 + ε3 we have

H(t) > 0, S (t) > 0, I(t) > 0, W(t) > 0, X(t) > 0 and Y(t) > 0. This contradicts the assumption that
(H(0),W(0), X(0),Y(0), S (0), I(0)) ∈ M∂. This proves (3.5).

It is obvious that E0 =
(

αP0
α+δP0

, 0, 0, 0, Λ
µ
, 0

)
is the unique equilibrium in M∂, where P0 = αP0

α+δP0
and

N0 = Λ
µ

. We now demonstrate that E0 repels the solutions in χ0. It can be seen that

R0 > 1⇔ R2
0 > 1⇔ β1β2P0N0γ1(σ + δ + θγ2) > µ[(σ + δ)(γ1 + δ)(γ2 + δ) − (1 − η)σγ1γ2]. (3.6)

We can choose ζ1 > 0 small enough such that

β1β2(P0 − ζ1)(N0 − ζ1)γ1(σ + δ + θγ2) > µ[(σ + δ)(γ1 + δ)(γ2 + δ) − (1 − η)σγ1γ2]. (3.7)

If (3.6) holds, i.e., det(JE0) < 0, we can also select ζ1 > 0 small enough such that∣∣∣∣∣∣∣∣∣∣∣
−(γ1 + δ) 0 (1 − η)σ β1(P0 − ζ1)

γ1 −(γ2 + δ) 0 0
0 γ2 −(σ + δ) 0
0 β2(N0 − ζ1) β2θ(N0 − ζ1) µ

∣∣∣∣∣∣∣∣∣∣∣ < 0. (3.8)

By calculations, we can select ξ1 > 0 small enough such that
αP0−4αξ1

α+δP0+β1P0ξ1
> P0 − ζ1,

Λ
µ+β2(1+θ)ξ1

> N0 − ζ1.
(3.9)
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Suppose (H(t),W(t), X(t),Y(t), S (t), I(t)) is a solution of system (2.1) with (H(0),W(0), X(0),Y(0),
S (0), I(0)) ∈ χ0. We now claim that

lim sup
t→∞

max
{
W(t), X(t),Y(t), I(t)

}
> ξ1. (3.10)

For the sake of contradiction, suppose that there is a T0 > 0 such that W(t) ≤ ξ1, X(t) ≤ ξ1, Y(t) ≤ ξ1,

I(t) ≤ ξ1, for all t ≥ T0. By the first and fifth equations of the model (2.1), we have
dH(t)

dt
≥ α

(
1 − P(t)

P0

)
− β1H(t)ξ1 − δH(t),

dS (t)
dt
≥ Λ − β2(1 + θ)S (t)ξ1 − µS (t),

for t ≥ T0. Consider the following system
dH̄(t)

dt
= α

(
1 − P̄(t)

P0

)
− β1H̄(t)ξ1 − δH̄(t),

dS̄ (t)
dt

= Λ − β2(1 + θ)S̄ (t)ξ1 − µS̄ (t).
(3.11)

As in our previous analysis of the model (3.4), we can restrict ξ1 to be small enough such that (3.11)
admits a positive equilibrium (H̄0, S̄ 0), where

H̄0 =
αP0 − 4αξ1

α + δP0 + β1P0ξ1
, S̄ 0 =

Λ

µ + β2(1 + θ)ξ1
.

Moreover, the unique positive equilibrium (H̄0, S̄ 0) is GAS for system (3.11). By (3.9) and the
comparison principle, there is a τ0 > 0 such that H(t) ≥ P0 − ζ1, S (t) ≥ N0 − ζ1 for t > T0 + τ0.
Consequently, for t ≥ T0 + τ0, we get

dW(t)
dt

≥ β1I(t)(P0 − ζ1) − γ1W(t) − δW(t) + (1 − η)σY(t),

dX(t)
dt
≥ γ1W(t) − γ2X(t) − δX(t),

dY(t)
dt
≥ γ2X(t) − δY(t) − σY(t),

dI(t)
dt
≥ β2(X(t) + σY(t))(N0 − ζ1) − µI(t).

Consider an auxiliary system

dŴ(t)
dt

= β1 Î(t)(P0 − ζ1) − γ1Ŵ(t) − δŴ(t) + (1 − η)σŶ(t),

dX̂(t)
dt

= γ1Ŵ(t) − γ2X̂(t) − δX̂(t),

dŶ(t)
dt

= γ2X̂(t) − δŶ(t) − σŶ(t),

dÎ(t)
dt

= β2(X̂(t) + σŶ(t))(N0 − ζ1) − µÎ(t).

(3.12)
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The coefficient matrix ĴE0 of the right hand of (3.12) is given by

ĴE0 =


−(γ1 + δ) 0 (1 − η)σ β1(P0 − ζ1)

γ1 −(γ2 + δ) 0 0
0 γ2 −(σ + δ) 0
0 β2(N0 − ζ1) β2θ(N0 − ζ1) −µ

 .
Since ĴE0 admits positive off-diagonal elements, Perron-Frobenius Theorem indicates that there is

a positive eigenvector νM for the maximin eigenvalue λM of ĴE0 . Extensive calculations yield that
λM > 0 since (3.7) and (3.8) hold. Based on the linear system theory, it is clear that limt→∞ Ŵ(t) = ∞,

limt→∞ X̂(t) = ∞, limt→∞ Ŷ(t) = ∞, limt→∞ Î(t) = ∞. Then by the comparison principle, we get
limt→∞W(t) = ∞, limt→∞ X(t) = ∞, limt→∞ Y(t) = ∞, limt→∞ I(t) = ∞. This contradicts W(t) ≤ ξ1,

X(t) ≤ ξ1, Y(t) ≤ ξ1, I(t) ≤ ξ1 for all t ≥ T0. This proves (3.10). Thus W s(E0) ∩ χ0 = ∅. Obviously,
every forward orbit in M∂ converges to E0. By Theorem 4.6 of [34] we can draw a conclusion that the
system (2.1) is uniformly persistent with respect to (χ0, ∂χ0). This completes the proof of Theorem 3.3.

�

Remark 3.1. By Theorem 3.3, it follows from Theorem 2.3 in [31] that the system (2.1) has at least
one positive solution when R0 > 1. Furthermore, let E∗ = (H∗,W∗, X∗,Y∗, S ∗, I∗) be any endemic
equilibrium of the system (2.1). By setting the right equations of model (2.1) equal to zero, we can
obtain

H∗ =
µ2[(σ + δ)(γ1 + δ)(γ2 + δ) − (1 − η)σγ1γ2]

γ1β1β2(σ + δ + θγ2)(Λ − µI∗)
, W∗ =

µ2(σ + δ)(γ2 + δ)I∗

γ1β2(σ + δ + θγ2)(Λ − µI∗)
,

X∗ =
µ2(σ + δ)I∗

β2(σ + δ + θγ2)(Λ − µI∗)
, Y∗ =

µ2γ2I∗

β2(σ + δ + θγ2)(Λ − µI∗)
, S ∗ =

Λ − µI∗

µ
,

where

I∗ =
µ2(α + δP0)[(σ + δ)(γ1 + δ)(γ2 + δ) − (1 − η)σγ1γ2](R2

0 − 1)
β1β2αP0γ1(σ + δ + θγ2) + µβ1α(σ + δ)(γ1 + γ2 + δ + γ1γ2) + µβ1ησP0γ1γ2

.

It is obvious to follow that I∗ > 0 if and only if R0 > 1. By the expressions of H∗, W∗, X∗, Y∗, S ∗

and R0 > 1, there is only one E∗ ∈ Ω for the system (2.1). We have the following result.

Theorem 3.4. The system (2.1) has at most one endemic equilibrium. More precisely,
(1) If R0 > 1, there exists a unique endemic equilibrium E∗.
(2) If R0 < 1, there is no endemic equilibrium.

Remark 3.2. Although we do not have an analytic result for the global stability of the positive
equilibrium E∗, our numerical studies indicate that E∗ is GAS whenever it exists, i.e., when R0 > 1.

4. Optimal control

In this section, we try to implement anti-HLB control to protect healthy citrus trees while
minimizing the total cost. As a matter of fact, this problem is a representative optimal control
problem.
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First, we assume the set of control variables as:

Φ =
{
(u1(t), u2(t), u3(t)) : [0, T f ]→ R3 | ui(t) ∈ [0,Ui], i = 1, 2, 3

}
,

where T f is the final time. Then, it is hypothesised that all control strategies are bounded and Lebesgue
measurable in this paper. The upper bound of control variable is defined by Ui (i=1, 2, 3). The control
function u1(t) indicates the reduction of the HLB bacterial transmission probability from ACP to citrus
trees. Some specific control measures can be taken such as injecting nutrient solution. u2(t) represents
an increase in the rate of removal of the infected and symptomatic citrus trees by fruit growers. u3(t)
shows the eradication effort of insecticide spraying.

In this paper, we consider the following objective function

J
(
u1(t), u2(t), u3(t)

)
=

∫ T f

0

[
a1P(t) + a2X(t) + a3Y(t) +

3∑
i=1

biu2
i (t)

]
dt, (4.1)

subject to 

dH(t)
dt

= α
(
1 − P(t)

P0

)
− β1(1 − u1(t))H(t)I(t) − δH(t) + η(1 + u2(t))σY(t),

dW(t)
dt

= β1(1 − u1(t))H(t)I(t) − γ1W(t) − δW(t) + (1 − η)σ(1 + u2(t))Y(t),

dX(t)
dt

= γ1W(t) − γ2X(t) − δX(t),

dY(t)
dt

= γ2X(t) − δY(t) − σ(1 + u2(t))Y(t),

dS (t)
dt

= Λ − β2(X(t) + θY(t))S (t) − µS (t) − τu3(t)S (t),

dI(t)
dt

= β2(X(t) + θY(t))S (t) − µI(t) − τu3(t)I(t),

(4.2)

where H(0) ≥ 0,W(0) ≥ 0, X(0) ≥ 0,Y(0) ≥ 0, S (0) ≥ 0, I(0) ≥ 0. The coefficients ai (i=1, 2, 3) are
positive constants indicating the weight of the total number of citrus trees, the number of the
infectious and asymptomatic trees, and the number of the infectious and symptomatic trees.
bi (i=1, 2, 3) are weight constants represent for the costs of injecting nutrient solution, removing the
infected and symptomatic trees, and spraying insecticide. The cost of a quarantine survey of all the
citrus trees in the grove is represented by a1P(t), the number of infectious citrus trees are represented
by a2X(t) + a3Y(t), and the total cost of implementing control measures is represented by

∑3
i=1 biu2

i (t).
The ultimate goal of HLB control is to protect the citrus trees health, and to minimize the diseased

trees and the cost of implementing the control, by using the possible minimal control variables ui(t)
(i=1, 2, 3), such that

J (u∗1(t), u∗2(t), u∗3(t)) = min
u1(t),u2(t),u3(t)∈Φ

J (u1(t), u2(t), u3(t)),

subject to the model given by (4.2).
Now the necessary conditions that (u∗1(t), u∗2(t), u∗3(t)) and corresponding states must satisfy is

derived. The existence of optimal control can be demonstrated by using the Pontryagin’s Maximum
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Principle [35]. In this problem, we can prove that the control set Φ is convex and closed and the
objective function is convex on Φ. To determine compactness for the existence of the optimal control,
the optimal system (4.2) is bounded.

To obtain the optimal solution, the Lagrangian and Hamiltonian function of the optimal control
system (4.2) need to be found. Firstly, the Lagrangian function L for (4.2) can be defined as

L = a1P(t) + a2X(t) + a3Y(t) +

3∑
i=1

biu2
i (t).

In order to get the optimal solution of the model (4.2), we define the Hamiltonian function H as
follows:

H (t,Z(t),U(t), λ(t)) =L (P(t), X(t),Y(t), u1(t), u2(t), u3(t))

+ λ1

[
α
(
1 −

P(t)
P0

)
− β1(1 − u1(t))H(t)I(t) − δH(t) + η(1 + u2(t))σY(t)

]
+ λ2

[
β1(1 − u1(t))H(t)I(t) − γ1W(t) − δW(t) + (1 − η)σ(1 + u2(t))Y(t)

]
+ λ3

[
γ1W(t) − γ2X(t) − δX(t)

]
+ λ4

[
γ2X(t) − δY(t) − σ(1 + u2(t))Y(t)

]
+ λ5

[
Λ − β2(X(t) + θY(t))S (t) − µS (t) − τu3(t)S (t)

]
+ λ6

[
β2(X(t) + θY(t))S (t) − µI(t) − τu3(t)I(t)

]
,

where 
Z(t) = (H(t),W(t), X(t),Y(t), S (t), I(t)),
U(t) = (u1(t), u2(t), u3(t)),
λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)).

Theorem 4.1. Given optimal controls u∗1, u∗2, u∗3 and solutions H∗, W∗, X∗, Y∗, S ∗, I∗ of the
corresponding state system (4.2). Then there exists adjoint variables
λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)) satisfying the equations as follows:

dλ1(t)
dt

=β1(1 − u1(t))I(t)(λ1(t) − λ2(t)) + (α1 + δ)λ1(t) − a1,

dλ2(t)
dt

=γ1(λ2(t) − λ3(t)) + α1λ1(t) + δλ2(t) − a1,

dλ3(t)
dt

=γ2(λ3(t) − λ4(t)) + β2S (t)(λ5(t) − λ6(t)) + α1λ1(t) + δλ3(t) − (a1 + a2),

dλ4(t)
dt

=ησ(1 + u2(t))(λ2(t) − λ1(t)) + σ(1 + u2(t))(λ4(t) − λ2(t)) + β2θS (t)(λ5(t) − λ6(t))

+ α1λ1(t) + δλ4(t) − (a1 + a3),
dλ5(t)

dt
=β2(X(t) + θY(t))(λ5(t) − λ6(t)) + (µ + τu3(t))λ5(t),

dλ6(t)
dt

=β1(1 − u1(t))H(t)(λ1(t) − λ2(t)) + (µ + τu3(t))λ6(t),

(4.3)

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2048–2069.



2060

with transversality conditions λi(t) = 0 (i = 1, 2, 3, 4, 5, 6). Furthermore, the optimal control are given
by 

u∗1 = max
{

0, min
{

1
2b1

(λ2 − λ1)β1H∗I∗, 1
}}

,

u∗2 = max
{

0, min
{

1
2b2

[
(λ4 − λ2) + η(λ2 − λ1)

]
σY∗, 1

}}
,

u∗3 = max
{

0, min
{

1
2b3

(λ5S ∗ + λ6I∗)τ, 1
}}

.

(4.4)

Proof. Based on Pontryagin’s Maximum Principle, we obtain

∂H (t,Z(t),U(t), λ(t))
∂U(t)

= 0, (optimality condition)

dλ(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂Z(t)
, (adjoint condition)

λ(T f ) = 0. (transversality condition)

Applying the adjoint conditions to H
(
t,Z(t),U(t), λ(t)

)
with Z = Z∗, that is

dλ1(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂H(t)
,

dλ2(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂W(t)
,

dλ3(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂X(t)
,

dλ4(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂Y(t)
,

dλ5(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂S (t)
,

dλ6(t)
dt

= −
∂H (t,Z(t),U(t), λ(t))

∂I(t)
.

The Eq (4.1) are obtained. The optimal conditions at U∗ can be calculated as follows:

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

that is 
2b1u∗1 + β1λ1H(t)I(t) − β1λ2H(t)I(t) = 0,
2b2u∗2 − σ[(λ4 − λ2) + η(λ2 − λ1)]Y(t) = 0,
2b3u∗3 − τλ5S (t) − τλ6I(t) = 0.

Using the lower and upper bounds of the controls, the optimal solutions of model (4.2) can be
obtained. This completes the proof of Theorem 4.1. �
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5. Numerical simulation

In this section, we mainly present some numerical simulation results, confirm or extend the
analysis results, which assess the impact of ACP on the transmission of HLB, and explore the effects
of various control strategies against HLB.

It follows from [28] that the average life expectancy of citrus trees is from 20 to 30 years. Based
on this, we assume an average life span of citrus trees is 1/δ = 25year, i.e., δ = 0.04(year−1).
According to the implementation of control strategies for HLB, all citrus trees infected by HLB must
be removed. However, HLB has an incubation period during which the infected citrus trees do not
show symptoms, thus we take the removal rate σ = 0.6 by empirical estimation. Assume that the
maximum number of citrus trees that can be planted in the orchard is 1000, i.e., P0 = 1000. It is
reported by Taylor et al. [2] that average nature death rate of ACP is µ = 5.9441(year−1). The other
parameter values in the model (2.1) are shown in Table 1. To examine the sensitivity of model results
to the uncertainty of parameters, we conducted sensitivity and uncertainty analysis.

Based on the above parameters of the model (2.1), we perform a global sensitivity analysis on the
basic reproductive number R0. Figure 2a,b present our sensitivity and uncertainty analysis, which
involved computing the Partial Rank Correlation Coefficients (PRCCs) of R0 using the Latin
Hypercube Sampling (LHS) method [36–39]. It indicates how uncertainty in model parameters may
influence R0. We observe in Figure 2a that R0 is very sensitive to the conversion rate (τ), the removal
rate of symptomatic citrus trees (σ), and the infectious enhancement coefficient (θ) of Y(t), but not
sensitive to the maximum number of citrus trees that can be planted in the grove (P0) and the
recruitment rate of ACP (Λ). For both transmission probabilities, β1 has a greater impact on R0.
Thus, decreasing β1 is more effective in reducing R0 in terms of controlling the disease. For
uncertainty analysis, according to Figure 2b, about 70% of the distribution of R0 is greater than 1,
indicating that persistent HLB bacterial infection is likely to occur. Furthermore, the mean and
standard deviation of R0 can be obtained to be 1.5159 and 0.6591, respectively.
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Figure 2. Sensitivity analysis and uncertainty analysis of the basic reproduction number R0.
Figure 2a shows the sensitivity indices of R0 and Fiure 2b shows histogram obtained from
LHS using a sample size of 1000 for R0.
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Figure 3. Number of infectious citrus trees (Figure 3a,b) and infectious ACP (Figure 3c)
under different control levels.

In what follows, using the numerical methods in [40], we explore the optimal solution of the
optimality system (4.2), the corresponding optimal control, and a reasonable explanation for each
case. The objective of this paper is to analyze the effect of three controls (i.e., injection of nutrient
solution, removal of diseased trees and application of insecticides) on the transmission of HLB. The
initial numbers of susceptible citrus trees and ACP are assumed that H(0) = 658, S (0) = 332280.
Then we assume that the initial numbers of infectious citrus trees and ACP are W(0) = 191,
X(0) = 78, Y(0) = 73, and I(0) = 250, respectively. In the simulations, the values of other parameters
are derived from Table 1.

In practice, the ideal weights are difficult to obtain. It requires an amount of work on data analysis
and fitting. Therefore, finding the right weights in practical problems is a very difficult task that requires
further research [41]. The costs associated with u1 mainly include the costs of nutrient solutions and
fruit growers injecting nutrient solutions into citrus trees. The costs associated with u2 mainly involve
the costs of fruit growers removing some of the symptomatic citrus trees. Then the costs associated
with u3 mainly include the costs of insecticides and fruit growers spraying insecticides. According to
these practical conditions, we consider that the weights in the objective function are a1 = 2, a2 = 10,
a3 = 2, b1 = 10, b2 = 2 and b3 = 2, respectively. It should be pointed out that the weights in
the simulations here are only of theoretical sense to illustrate the control strategies proposed in this
paper [42].

Figure 3a,b and Figure 3c depict the number of infectious citrus trees and the number of infectious
ACP under different control levels, respectively. In terms of reducing the total number of the diseased
citrus trees (or the diseased ACP), the optimal control strategy is consistent with the upper bound
control strategy and is superior to the constant control. Furthermore, as shown in Table 2, we can
conclude that the cost of the optimal control is less than the cost of the upper bound control. The
enhancement of the level of control can achieve significant effects on both the number of hosts and
vectors.

Figure 4 illustrates the optimal control law of u1, u2, and u3. At the beginning of simulation, the
control variables u1 and u2 maintain the upper bound, and then gradually decrease to 0 until the end of
simulation. However, the control variable u3 is 0 in simulation of the initial stage, then rises vertically,
and then remains horizontal, and finally drops vertically to 0.
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Figure 4. Optimal control law of u1, u2, and u3.

Figures 5 and 6 present the number of infectious citrus trees and infectious ACP under different
control strategies. These control strategies are : (I) u1, u2, u3; (II) u1 (u2= u3= 0); (III) u2 (u1= u3= 0);
(IV) u3 (u1=u2= 0); (V) u1, u2 (u3= 0); (VI) u1, u3 (u2= 0); (VII) u2, u3 (u1= 0). Firstly, the cost
of executing strategy (II) is lower than that of executing strategy (III) or (IV); the cost of executing
strategy (V) is less than that of executing strategy (VI) or (VII). Moreover, the cost of executing
strategy (V) is less expensive than executing strategy (II). Secondly, the number of infectious citrus
trees is the smallest when implementing strategy (I), while the number of infectious citrus trees is
the largest when implementing strategy (IV). Thirdly, in addition to strategy (I), the final number of
diseased ACP is the least when applying strategy (VII); and the final number of diseased ACP is the
most when applying strategy (II). Therefore, it is suggested that multiple control strategies should be
adopted simultaneously to inhibit the spread of HLB.
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Figure 5. Number of infectious citrus trees (Figure 5a,b) and infectious ACP (Figure 5c)
under different optimal control measures, i.e. (I) u1, u2 and u3; (II) u1 (u2 = u3 = 0); (III) u2

(u1 = u3 = 0); (IV) u3 (u1 = u2 = 0).
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Figure 6. Number of infectious citrus trees (Figure 6a,b) and infectious ACP (Figure 6c)
under different optimal control measures, i.e. (I) u1, u2 and u3; (II) u1, u2 (u3 = 0); (III) u1,
u3 (u2 = 0); (IV) u2, u3 (u1 = 0).

Figure 7 shows the optimal control trajectories under different control measures. It can be seen from
Figures 4 and 7 that in the early phase of HLB outbreak, the upper bound control strategies should be
adopted in most cases to suppress the transmission of the disease.
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Figure 7. Optimal control law of: (I) u1, (u2=u3=0); (II) u2, (u1=u3=0); (III) u3,
(u1=u2=0); (IV) u1, u2, (u3=0); (V) u1, u3, (u2=0); (VI) u2, u3, (u1=0).

Figures 8 and 9, Figure 10, and Figure 11 depict the trajectories of the diseased citrus trees, the
diseased ACP, and the optimal controls with different weights in objective function, respectively.
Based on the simulation results, we can get that the weights in the objective function have little or no
effect on the spread of HLB (Figures 8–10). However, the weights have a great impact on the control
cost (Table 2). They have little impact on the control strategy (Figure 11).
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Figure 8. Comparison of the number of infectious citrus trees X(t) with different weights.
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Figure 9. Comparison of the number of infectious citrus trees Y(t) with different weights.

0 10 20 30 40 50 60 70 80 90 100

t

0

200

400

600

800

1000

1200

1400

1600

1800

I

The weight in objective function are a1=1,a2=1,a3=1,b1=1,b2=1,b3=1.

u
1
=0, u

2
=0, u

3
=0

u
1
=0.15, u

2
=0.2, u

3
=0.2

u
1
=0.3, u

2
=0.4, u

3
=0.4

Upper bound control: u
1
=1, u

2
=1, u

3
=1

optimal control

(a)

0 10 20 30 40 50 60 70 80 90 100

t

0

200

400

600

800

1000

1200

1400

1600

1800

I

The weight in objective function are a1=100,a2=10,a3=2,b1=10,b2=2,b3=2.

u
1
=0, u

2
=0, u

3
=0

u
1
=0.15, u

2
=0.2, u

3
=0.2

u
1
=0.3, u

2
=0.4, u

3
=0.4

Upper bound control: u
1
=1, u

2
=1, u

3
=1

optimal control

(b)

0 10 20 30 40 50 60 70 80 90 100

t

0

200

400

600

800

1000

1200

1400

1600

1800

I

The weight in objective function are a1=0.5,a2=0.5,a3=1,b1=2,b2=1,b3=1.

u
1
=0, u

2
=0, u

3
=0

u
1
=0.15, u

2
=0.2, u

3
=0.2

u
1
=0.3, u

2
=0.4, u

3
=0.4

Upper bound control: u
1
=1, u

2
=1, u

3
=1

optimal control

(c)

0 10 20 30 40 50 60 70 80 90 100

t

0

200

400

600

800

1000

1200

1400

1600

1800

I

The weight in objective function are a1=50,a2=10,a3=2,b1=5,b2=2,b3=2.

u
1
=0, u

2
=0, u

3
=0

u
1
=0.15, u

2
=0.2, u

3
=0.2

u
1
=0.3, u

2
=0.4, u

3
=0.4

Upper bound control: u
1
=1, u

2
=1, u

3
=1

optimal control

(d)

Figure 10. Comparison of the number of infectious ACP I(t) with different weights.
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Figure 11. Comparison of the optimal controls with different weights.
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Table 2. The cost of the objective function under different weights and control measures.

(a1, a2, a3, b1, b2, b3) J(0, 0, 0) J(0.15, 0.2, 0.2) J(0.3, 0.4, 0.4) Jmax(1, 1, 1) Jopt(u∗1, u
∗
2, u

∗
3)

(2, 10, 2, 10, 2, 2) 2.9525 × 106 2.6765 × 106 2.3003 × 106 1.9013 × 106 1.8939 × 106

(1, 1, 1, 1, 1, 1) 1.3902 × 106 1.2652 × 106 1.1069 × 106 9.4559 × 105 9.4398 × 105

(100, 10, 2, 10, 2, 2) 9.5018 × 107 9.4742 × 107 9.4366 × 107 9.3967 × 107 9.3960 × 107

(0.5, 0.5, 1, 2, 1, 1) 9.0975 × 105 7.8638 × 105 6.3193 × 105 4.7674 × 105 4.7461 × 105

(50, 10, 2, 5, 2, 2) 4.8046 × 107 4.7770 × 107 4.7393 × 107 4.6990 × 107 4.6985 × 107

6. Conclusion

In this paper, the deterministic mathematical model is developed to depict the transmission
dynamics of HLB which incorporates citrus trees and ACP. According to the method of the
next-generation matrix, we obtain the expression of the basic reproductive ratio R0 and explain R0

from the biological point of view. Based on the above previous results, the dynamic behavior of the
six-dimensional nonlinear system is strictly analyzed by dynamic system theory. Theoretical results
indicate that if R0 < 1, the DFE (E0) is GAS and if R0 > 1, there is only one endemic equilibrium
point in the system. In addition, if R0 > 1, the HLB system (2.1) is persistent.

Moreover, the theory of optimal control is applied to the HLB model with vector and host to
investigate the corresponding problems of optimal control. The necessary conditions for the existence
of optimal solution of optimal control problems are obtained according to Pontryagin’s Maximum
Principle. Finally, we validate the theoretical results analyzed by numerical simulation, and explore
and compare the effects of various control strategies on the transmission of HLB. Based on analytical
and the numerical simulation results, the main conclusions can be summarized as follows:

(1) The infected ACP plays a decisive role in the transmission of HLB, and eliminating the
infected ACP will be helpful to curtail the spread of HLB in citrus trees.

(2) The optimal control strategy is superior to the constant control strategy in decreasing the
prevalence of the infected citrus trees, and the cost of implementing optimal control is much lower
than that of the constant control strategy.

(3) In the early phase of the transmission of HLB, spraying insecticides is more effective than other
control strategies in reducing the number of the infected ACP.

In this paper, we formulate a compartmental mathematical model to describe the transmission
dynamics of HLB in a single orchard of citrus trees. The dynamic model of HLB with optimal control
strategy can be useful for fruit growers in the comprehensive control of HLB. Our model is depicted
by the ordinary differential equations that do not include the stage-structure of the insect vector
population. However, some existing literature indicates that the stage-structure of ACP has a certain
influence on the transmission dynamics of HLB [6]. Therefore, we should incorporate the
stage-structure of the ACP population into the transmission dynamics model of HLB and consider it
in our future work.
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