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Abstract: Prostate adenocarcinoma (PRAD) is one of the most frequently diagnosed cancer in males.
Previous studies had demonstrated long non-coding RNAs (IncRNAs) played crucial roles in human
cancers. In present study, we reported ten disease-free survival time related IncRNAs in PRAD,
including RP11-468E2.5, GS1-393G12.13, CTD-2228K2.7, RP11-783K16.13, RP11-631N16.4,
CTC-435M10.12, RP11-1109F11.5, RP11-228B15.4, RP11-49619.1, and RP11-9502.5. Higher
expression of these INcCRNAs significantly correlates to shorter DFS time in patients with PRAD. We
next constructed INcCRNAs regulating PPI networks in PRAD. Bioinformatics analysis revealed these
DFS-related IncRNAs were associated with the regulation of cell cycle, glucose metabolic process,
histone modification, and RNA splicing. AR and SPOP were identified to be involved in regulating
these INCRNAs expression in PRAD. The prognostic value and molecular functions of these INRNAs
in human diseases remained largely unknown. We thought this study for the first time demonstrated
that they could act as novel potential biomarkers for PRAD.
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Abbreviations: PRAD: Prostate Adenocarcinoma; Lncrnas: Long Non-coding RNAs; PSA:
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1. Introduction

Prostate adenocarcinoma (PRAD) is one of the most frequently diagnosed cancer in males [1].
Prostate-specific antigen (PSA) measurements and the digital rectal examination (DRE) is the most
widely used for the screening and diagnosis of PRAD [2]. However, the specificity of both methods
was low. There was still an urgent need to identify novel and better biomarkers for PRAD. In the past
decades, several targets were found to be dysregulated and associated the progression of PRAD,
including long non-coding RNA PCA3 [3]. A recent study indicated the hypermethylation of
ST6GALNAC3 and ZNF660 promoter [4] could serve as the potential biomarker for PRAD tissues
and liquid biopsies.

Long non-coding RNAs (IncRNAs) were a class of non-coding RNAs longer than 200 bps [5].
Emerging studies demonstrated that IncRNAs played crucial roles in PRAD tumorigenesis and
progression. For instance, INCRNA TTTY15 was found to promote PRAD progression by sponging
let-7 [6]. LncRNA NEAT1, a target of estrogen receptor alpha was identified as a key regulator in
PRAD [7]. Interestingly, recent studies showed IncRNAs could serve as biomarkers for PRAD. For
example, multi-institutional analysis showed low expression of PCAT-14 correlated to poor
prognosis [8,9]. Wan et al. found AR-regulated IncRNAs could serve as new diagnostic and
prognostic markers for PRAD [10].

Disease-free survival (DFS) was defined as the length of time after primary treatment for a
cancer ends that the patient survives without any signs or symptoms of that cancer. Measuring the
disease-free survival is one way to see how well a new treatment works. The current study identifies
differentially expressed IncRNAs in PRAD using the Cancer Genome Atlas Project (TCGA)
database [11]. Ten IncRNAs were found to be correlated to the disease-free survival time in patients
with PRAD. Moreover, co-expression analysis and KEGG pathway analysis [12] was used to predict
the potential functions of ten novel IncRNAs in PRAD. Of note, we evaluated the potential up-stream
regulators of ten IncRNAs in PRAD. We thought this study could provide new insights into the
identifying effective biomarkers and mechanisms of PRAD.

2. Materials and methods
2.1. Data preparation and processing

The gene list of differently expressed INcRNAs in PRAD were downloaded from GEPIA dataset
(http://gepia.cancer-pku.cn/) [13]. Only IncRNAs with log2|FC| > 2.0 and P < 0.001 were defined as
significantly expressed IncRNAs. Moreover, the INCRNAs associated with disease-free survival time
in PRAD patients were also downloaded from GEPIA dataset. The median expression of target
IncRNA were considered as cutoff to divide PRAD samples as high- and low- group.

2.2. Co-expression network construction and analysis
In this study, the Pearson correlation coefficient was calculated according to the expression
value between INCcRNA-MRNA pair. The co-expressed DEG-IncRNA pairs with the absolute value of

Pearson correlation coefficient >0.75 were selected for the construction of co-expression network
using cytoscape software (Version 3.4.0, available online: http://www.cytoscape.org/).
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2.3. Statistical analysis

Statistical analyses were conducted using SPSS version 21.0 software, and graphs were
generated using GraphPad Prism 6.0 software (GraphPad Software Inc., La Jolla, CA, USA). All
values are expressed as the mean =SD. The two groups were compared using Students' t-test. The
differences between multiple groups were analyzed with one - way analysis of variance (ANOVA).
P < 0.05 was considered statistically significant.

3. Results
3.1. Identification of 10 disease-free survival time related IncRNAs in PRAD

In present study, we analyzed GEPIA dataset to identify disease-free survival (DFS) time related
InNcRNAs. The top 100 genes (including mRNAs and IncRNAs) were listed in Supplementary Table 1.
RP11-468E2.5,  GS1-393G12.13, CTD-2228K2.7, RP11-783K16.13, RP11-631N16.4,
CTC-435M10.12, RP11-1109F11.5, RP11-228B15.4, RP11-49619.1 and RP11-9502.5 were the most
significantly correlated to DFS time in PRAD patients.

As shown in Figure 1A-J, we found higher expression of RP11-468E2.5, GS1-393G12.13,
CTD-2228K2.7, RP11-783K16.13, RP11-631N16.4, CTC-435M10.12, RP11-1109F11.5,
RP11-228B15.4, RP11-49619.1 and RP11-9502.5 were significantly associated with shorter DFS
time in PRAD.

3.2. Disease-free survival time related IncRNAs were up-regulated in PRAD

Next, we evaluated the expression levels of these disease-free survival time related INcRNAs in
PRAD. Our results showed RP11-468E2.5, GS1-393G12.13, CTD-2228K2.7, RP11-783K16.13,
RP11-631N16.4, CTC-435M10.12, RP11-1109F11.5, RP11-228B15.4, RP11-49619.1, and
RP11-9502.5 were significantly overexpressed in PRAD compared to normal samples (Figure 2A-1J).

3.3. Construction of DFS related IncRNAs affecting PPI network in PRAD

Furthermore, we calculated the Pearson correlation coefficients of INCRNA-mRNA pairs using
GEPIA database. The top 200 correlated genes were selected as the potential targets of DFS related
IncRNAs. Then, PPI networks were constructed to reveal the relationship among the targets of each
InNcRNA. The PPI networks related to RP11-468E2.5 (Figure 3A), GS1-393G12.13 (Figure 3B),
CTD-2228K2.7 (Figure 3C), RP11-631N16.4 (Figure 3D), CTC-435M10.12 (Figure 3E),
RP11-1109F11.5 (Figure 3F), RP11-228B15.4 (Figure 3G), RP11-49619.1 (Figure 3H), RP11-9502.5
(Figure 31) and RP11-783K16.13 (Figure 3J) were shown in Figure 3.

In order to explore the molecular functions of each IncRNA in PRAD, we conducted clue-go
analysis for each of these INcRNAs by using their co-expressing genes in PPl networks. Our analysis
revealed that RP11-468E2.5 may affect small nuclear ribonucleoprotein complex through DDX39B
and SNRNP70, and affect formation of the spliceosomal b complex through PRPF3, SNRNP70,
SRRM2, RBM5, SRRT, and HNRNPU (Figure 3K).
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Figure 1. Identification of 10 disease-free survival time related IncRNAs in TC. A-J:
Higher expression levels of (A) GS1-393G12.13, (B) RP11-9502.5, (C) RP11-1109F11.5,
(D) RP11-49619.1, (E) RP11-468E2.5, (F) RP11-631N16.4, (G) RP11-228B15.4, (H)
CTD-2228K2.7, (I) CTC-435M10.12 and (J) RP11-783K16.13 were significantly
correlated to shorter disease-free survival time in patients with PRAD.

3.4. Bioinformatics analysis of differently expressed INcCcRNAs in PRAD
Furthermore, we performed bioinformatics analysis for differentially expressed INCRNAS in
PRAD using MCODE plugin in Cytoscape software (Figure 4). Our results showed 10 differently

expressed INcRNAs might be related to some pathways: Base-excision repair, protein export
fromnucleus, termination of RNApolymerase |l transcription, intrinsic apoptotic signaling pathway
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in response to DNA damage, cell cyclecheck point, DNA recombination, regulation of
G2/Mtransition of mitoticcell cycle, DNA-dependent DNA replication, DNA metabolic process,
DNA replication initiation, regulation of DNA replication, telomere maintenance, microtubule cyto
skeleton organization, glucose metabolic process, histone modification, RNA splicing, aerobic
respiration, histone lysine methylation, tRNA metabolic process, regulation of cyclin-dependent
protein serine/threonine kinase activity, regulation of extent of cell growth, dicarboxylic acid
transport, response toionizing radiation, spliceosome complex assembly.
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Figure 3. Construction of DFS-related IncRNAs regulating PPl network in PRAD.
Construction of PPl network related to (A) RP11-9502.5, (B) RP11-49619.1, (C)
RP11-228B15.4, (D) RP11-1109F11.5, (E) CTC-435M10.12, (F) RP11-631N16.4, (G)
RP11-783K16.13, (H) CTD-2228K2.7, (I) GS1-393G12.13 and (J) RP11-468E2.5 in
PRAD. Red nodes, INcRNA; green nodes, mRNA. (K) Bioinformatics analysis revealed
that RP11-468E2.5 may affect small nuclear ribonucleoprotein complex and formation of
the spliceosomal b complex.
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Figure 4. Bioinformatics analysis of differently expressed IncRNAs. MCODE plugin in
Cytoscape software was used to predict the potential functions in PRAD.

3.5. AR and SPOP were involved in regulating differently expressed IncRNAs in PRAD

The up-stream regulators of these differently expressed IncRNAs in PRAD remained elusive.
Androgen-receptor (AR) and SPOP is the most important regulators of PRAD progression.
Therefore, we explore whether AR and SPOP were involved in regulating differently expressed
IncRNAs in PRAD. As shown in Figure 5A-C, our results showed that AR was positively
correlated to the expression of RP11-783K16.13, RP11-228B15.4 and CTD-2228K2.7. However,
our results (Figure 5D-K) showed SPOP was significantly negatively correlated to the expression of
RP11-468E2.5, GS1-393G12.13, RP11-783K16.13, RP11-631N16.4, CTC-435M10.12,
RP11-1109F11.5, RP11-49619.1 and RP11-9502.5.
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Figure 5. AR and SPOP were involved in regulating differently expressed INcCRNAs
in PRAD. (A-C) AR was positively correlated to the expression of (A)
RP11-783K16.13, (B) RP11-228B15.4 and (C) CTD-2228K2.7. (D-K) SPOP was
significantly negatively correlated to the expression of RP11-631N16.4, RP11-9502.5,
CTC-435M10.12, RP11-1109F11.5, RP11-783K16.13, RP11-49619.1, RP11-468E2.5
and GS1-393G12.13. The x lab and y lab in All sub-figure is IncRNAs’ TPM value,
which is transformed to log2 value.

4. Discussion
Emerging studies had demonstrated INcRNAs played crucial roles in human cancers, including
PRAD. LncRNAs were involved in regulating cancer cell growth, apoptosis, metastasis and

autophagy. In PRAD, a few IncRNAs were reported to be associated the cancer progression. For
example, the longer transcripts of PCAT19 promoted PRAD cell cycle, growth and metastasis
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though interacting with HNRNPAB [14]. LncRNA ARLNC1 promoted PRAD progression though
activating global AR signaling [15]. Moreover, InCRNAs were found to be associated the diagnosis
and prognosis of PRAD. For example, PCA3 was reported to be a better biomarker than PSA in
PRAD [16]. LncRNA PVT1 predicted the prognosis of PRAD [17]. Exploring the functional roles of
InNcRNAs in PRAD could provide novel biomarkers for PRAD. The present study screened
disease-free survival (DFS) time related IncRNAs using GEPIA dataset. Higher expression of
RP11-468E2.5,  GS1-393G12.13, CTD-2228K2.7, RP11-783K16.13, RP11-631N16.4,
CTC-435M10.12, RP11-1109F11.5, RP11-228B15.4 and RP11-49619.1 were significantly associated
with shorter DFS time in PRAD.

In order to explore the potential roles of these INCRNAs in PRAD, we constructed INcRNAS
regulating PPl networks [18]. Bioinformatics analysis showed 10 differently expressed IncCRNAS
were significantly related to multiple biological processes in cancer, including cell cycle checkpoint,
DNA recombination, regulation of G2/M transition of mitotic cell cycle, DNA-dependent DNA
replication, regulation of cyclin-dependent protein serine/threonine kinase activity, regulation of
extent of cell growth and intrinsic apoptotic signaling pathway. Moreover, we found these INCRNAs
were involved in regulating RNA splicing and histone modification. RNA spicing had been
demonstrated as a key regulator of PRAD progression. For example, RNA Splicing of the BHC80
gene regulates neuroendocrine PRAD Progression [19]. A recent study showed alternative RNA
splicing of the GIT1 gene is associated with the progression of neuroendocrine PRAD [20].

AR signaling is the most important pathway in the regulation of PRAD [21]. AR signaling
involved in regulating multiple pathways in PRAD, including cell apoptosis, cell cycle and
metastasis. Recent studies demonstrated Androgen-responsive INCRNAs were involved in the
progression of PRAD. For instance, CTBP1-AS promotes both hormone-dependent and
castration-resistant PRAD growth though binding to PSF [22]. Higher expression of
AR-regulated IncRNA TMPO-AS1 was associated with tumor progression and poor prognosis in
PRAD [23]. In this study, we found AR was positively correlated to the expression of
RP11-783K16.13, RP11-228B15.4 and CTD-2228K2.7, suggested that AR is a positive regulator
of these IncRNAs. SPOP, a E3 ubiquitin ligase, is the most widely mutated gene in PRAD and
plays a critical role in PRAD [24]. SPOP acts as a tumor suppressor via destabilizing downstream
oncoproteins in PRAD, including FASN. However, the regulatory roles of SPOP in IncRNAs
remained unclear. This study showed SPOP was significantly negatively correlated to the
expression of RP11-468E2.5, (GS1-393G12.13, RP11-783K16.13, RP11-631N16.4,
CTC-435M10.12, RP11-1109F11.5, RP11-49619.1, and RP11-9502.5, suggested that SPOP may
serve as a negative regulator of these INCRNA:s.

5. Conclusion

In conclusion, we reported ten disease-free survival time related IncRNAs in PRAD, including
RP11-468E2.5,  GS1-393G12.13, CTD-2228K2.7,  RP11-783K16.13,  RP11-631N16.4,
CTC-435M10.12, RP11-1109F11.5, RP11-228B15.4, RP11-49619.1, and RP11-9502.5. Higher
expression of these INcRNAs significantly correlates to shorter DFS time in patients with PRAD. We
next constructed INCRNAs regulating PPI networks in PRAD. Bioinformatics analysis revealed these
DFS-related INcCRNAs was related to cell cycle, glucose metabolic process, histone modification, and
RNA splicing. AR and SPOP were identified to be involved in regulating these INcCRNAs expression
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in PRAD. The prognostic value and molecular functions of these INRNAs in human diseases
remained largely unknown. We thought this study for the first time demonstrated that they could act
as novel potential biomarkers for PRAD.
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