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Abstract: In supply chain management, fast and accurate decisions in supplier selection and order 
quantity allocation have a strong influence on the company's profitability and the total cost of 
finished products. In this paper, a novel and non-linear model is proposed for solving the supplier 
selection and order quantity allocation problem. The model is introduced for minimizing the total 
cost per time unit, considering ordering, purchasing, inventory, and transportation cost with freight 
rate discounts. Perfect rate and capacity constraints are also considered in the model. Since 
metaheuristic algorithms have been successfully applied in supplier selection, and due to the 
non-linearity of the proposed model, particle swarm optimization (PSO), genetic algorithm (GA), 
and differential evolution (DE), are implemented as optimizing solvers instead of analytical methods. 
The model is tested by solving a reference model using PSO, GA, and DE. The performance is 
evaluated by comparing the solution to the problem against other solutions reported in the literature. 
Experimental results prove the effectiveness of the proposed model, and demonstrate that 
metaheuristic algorithms can find lower-cost solutions in less time than analytical methods. 
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As a consequence of globalization, supply chain management has faced important challenges 
due to the competitive markets. One of the most critical challenges is the minimization of production 
costs [1]. Therefore, several operational activities, such as ordering, purchasing, transportation, 
inventory control, manufacturing, and distribution, are fundamental in determining the total cost of 
finished products [2]. 

Purchasing has a strong influence on a company’s profitability and the total cost of products [3]. 
For that reason, making correct decisions about purchasing will reduce production costs, including 
the inventory cost of a company. However, the purchasing operation is not an easy task since there 
are many aspects in consideration, namely, the supplier selection, the order cycle frequency, the 
number of orders assigned to each supplier, and the number of units per order [4]. Consequently, 
when the manufacturer requires distinct materials to produce a single product, the available suppliers, 
offered items, different prices, lead times, production capacities, shipping costs, etc., must be 
considered as part of the total cost. These are decision variables that provide an infinite number of 
possible solutions, even for a single purchasing material [3,5]. 

Specifically, supplier selection has a high impact on the purchasing process. An appropriate 
choice of suppliers has become a crucial activity since it improves the competitive advantages of 
industrial companies [4,6,7]. In that sense, selecting the best suppliers affects the quality and price of 
the final product, increasing customer satisfaction [8,9]. Nevertheless, supplier selection is a 
complicated process because several criteria must be considered, such as prices, volume discounts, 
reliability, and quality [10]. Therefore, companies are still exploring and applying different methods 
or decision models to select final suppliers [11]. 

Transportation costs also play an essential role in successful supply chain management [12,13]. 
In fact, freight transportation is one of the most researched issues, due to the negative effects on the 
average total cost in a supply chain [14]. Usually, shipping companies determine transportation costs 
depending on the shipped quantity, sometimes, assuming a constant unit shipping cost [15]. But, 
although some suppliers include volume discounts in the shipping cost, purchasing more items will 
increase the inventory storage cost [5,16–19]. In that context, inventory management is also a 
significant activity in supply chain management [5,20]. An efficient inventory policy will reduce the 
inventory-related and the average total cost. Consequently, a trade-off between purchasing and 
inventory costs must be contemplated. 

The development of supply chain models where, purchasing, inventory, and transportation costs 
are considered is an active research field, due to the complexity of the decision-making process 
involved. There are several models available in the literature, for instance, the model presented in [5], 
where inventory and transportation costs are considered for the supplier selection and order quantity 
allocation problem. A model where purchasing and transportation are included, to define the order 
quantity and reorder point that minimizes the total cost per time unit subject to quantity and freight 
rate discounts, is presented in [19]. An inventory model considering two modes of freight 
transportation and constant demand rate is studied in [21]. A model where setup, freight, production 
and inventory holding costs are contemplated for the lot-sizing problem under capacity constraints, is 
presented in [22]. A supplier selection and order quantity allocation model, for minimizing the total 
cost per time unit considering ordering, purchasing, inventory and transportation cost with freight 
rate discounts is shown in [5,23]. And, a model for a multi-item lot-sizing problem whit multiple 
suppliers, quantity discounts, time periods and back-ordering shortages is discussed in [24]. 
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Certainly, there is a wide variety of supply chain models proposed in the literature for solving 
different problems, but, when supply chain models include volume discounts in the transportation 
cost, they become complex and non-linear. Those models are commonly solved by commercial 
optimization software, such as LINGO. However, most of these optimizers do not guarantee to find 
the global optimal solution in a reasonable time. This issue is due to the non-linearity of the model, 
and because of the significant number of possible solutions involved [5,23]. Alternatives for 
simplifying these models have been proposed in the literature; a common one is restricting the 
number of possible solutions but, even in those cases, the software is not always able to find a 
solution in a suitable time [5,23]. Unfortunately, the making-decision process must not be a 
time-consuming task, since industrial companies may require purchasing different raw materials to 
produce a single product, and suppliers may change their policies from time to time. This situation 
has left open the necessity of exploring other models and other possible methods for solving these 
kinds of problems. 

In recent years, research studies have been applying artificial intelligence approaches, 
specifically metaheuristic algorithms, for optimizing supply chain models [25]. They have found in 
metaheuristic algorithms, an alternative to solve complex and non-linear models, since analytical 
methods (like multi-criteria decision-making [26] and mathematical programming [27]) may not be 
able to find feasible solutions in a suitable time with commercial solvers. Due to its simplicity and 
easiness of implementation, some of the most popular employed metaheuristic algorithms for 
optimizing supply chain models are particle swarm optimization (PSO) [28] and genetic algorithms 
(GA) [29,30]. 

Metaheuristic algorithms have been primary techniques for solving the supplier selection 
problem [31]. They have also been successfully applied in different models, such as the optimization 
of an integrated production-inventory model, where the objective is to minimize the inventory cost of 
the system [32]. An inventory problem, where the total cost is minimized considering the re-order 
point, the order quantity, and the chance-constraint joint single vendor-single buyer is reported in 
[33]. The inventory control system optimization, where a relaxation of continuous and periodic 
review assumptions of multi-periodic inventory control problems are presented, and the periods 
between two replenishments are assumed independent and identically distributed random variables, 
is shown in [34]. The optimization of a two-echelon distribution supply chain network with multiple 
vendors and buyers, where the inventory cost including ordering, holding, and purchasing must be 
minimized is addresed in [35]. The supplier selection problem considering the minimization of the 
total cost including quality and lead time is presented in [36]. Other authors study the optimization of 
a supply chain scheduling model [37], and the optimization of a supply chain with multiple products 
and suppliers, considering capacity constraints, imperfect quality, and limited storage space [38]. 
More applications of metaheuristic algorithms in supply chain models can be found in [39–44]. 

With the aim of finding a feasible solution in a reasonable time for the supplier selection and 
order quantity allocation problem, a novel and non-linear model is proposed in this work. The model 
is introduced for minimizing the total cost per time unit considering ordering, purchasing, inventory, 
and transportation cost with freight rate discounts. Perfect rate and capacity constraints are also 
considered in the model. Since metaheuristic algorithms have been successfully applied in supplier 
selection models, and due to the non-linearity of the proposed model, particle swarm optimization 
(PSO), genetic algorithm (GA), and differential evolution (DE) are implemented. 
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The rest of the article is organized as follows: In section 2, related models are described; in 
section 3, a brief explanation of the metaheuristic algorithms employed in this work is presented; in 
section 4, the proposed model is presented; a detailed description of a reference problem for 
developing the proposed model is shown in section 5; in section 6, experimental results are reported 
and analyzed; finally, conclusions are discussed in section 7. 

2. Related models 

In this section, two related models reported in the literature for the supplier selection and order 
quantity allocation, are reviewed. These models are called P1 and P2. Both models are simplified to 
overcome the non-linearity and the non-differentiability presented due to the freight rate discounts. 
Without those simplifications, finding a feasible solution in a reasonable time, using analytical 
methods on commercial software, would be improbable. They have been tested by solving the same 
numerical reference problem, obtaining low-cost solutions, but in a significantly longer time. A brief 
description of these models is presented in the following sections. 

2.1. P1 model 

P1 is a mixed-integer non-linear programming model for solving the supplier selection and 
order quantity allocation problem [5]. This model includes purchasing, inventory, and transportation 
costs, with freight rate discounts under capacity and quality constraints, considering truck as the 
means of transportation. Since the model becomes non-differentiable and non-convex, due to the 
freight rate function, it considers actual freight rates and transportation costs as a piecewise linear 
function of the weight shipped, using binary variables. 

2.2. P2 model 

This model has been recently proposed for solving the supplier selection and order quantity 
allocation problem [23]. P2 is introduced for minimizing the total cost per time unit considering 
ordering, purchasing, inventory, and transportation cost with freight rate discounts. Capacity 
constraint is considered, and the desired perfect rate is included as a part of the order cycle 
parameters instead of being an individual constraint. Since volume discounts are included in the 
transportation cost, the model becomes complex and non-linear. Therefore, two simplifications are 
made to the model: (i) the number of orders is limited to an order cycle period, and (ii) the optimal 
quantity for each supplier is obtained by linearizing the structure of the transportation cost applying a 
break-point technique [5,46]. 

3. Metaheuristic algorithms 

Metaheuristic algorithms are powerful optimization methods that have been successfully 
applied to complex, high dimensional, and non-linear problems. Therefore, this work explores the 
application of these techniques to solve the proposed model. The employed metaheuristic algorithms 
are the discrete versions of the particle swarm optimization, genetic algorithm, and differential 
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evolution. Discrete versions are used because the problem has a discrete search space. This section 
presents a brief description of these methods. 

3.1. Particle swarm optimization 

Particle swarm optimization (PSO) algorithm simulates the behavior observed in flocks of birds 
[28]. The basic procedure consists of initializing a population of 𝑚𝑚 random particles. Each particle 
represents a possible solution that evolves over the course of iterations by updating its velocity. The 
PSO process is described as follows: 

3.1.1. Initialization 

The search process starts by initializing the population and its velocity. Particles are randomly 
generated and distributed over the search space, following a uniform probability distribution, 
considering the lower and upper bounds. After initialization, the population is evaluated in the 
objective function, and the local and global best particles are determined. Then, an iterative process 
starts, where the velocity and position updating operators are applied to the population. 

3.1.2. Update velocity 

The velocity is updated based on the local and global influence of the best particles. These 
influences can be manipulated with the cognitive and social factors, respectively. The velocity 𝐯𝐯𝑖𝑖𝑘𝑘  of 
each particle 𝐱𝐱𝑖𝑖𝑘𝑘  is updated using Eq (3.1). 

𝐯𝐯𝑖𝑖𝑘𝑘+1 = 𝐯𝐯𝑖𝑖𝑘𝑘 + 𝑐𝑐1 ⋅ �𝐫𝐫1
𝑘𝑘 ∙ �𝐩𝐩𝑖𝑖𝑘𝑘 − 𝐱𝐱𝑖𝑖𝑘𝑘��  + 𝑐𝑐2 ⋅ �𝐫𝐫2

𝑘𝑘 ∙ �𝐠𝐠𝑘𝑘 − 𝐱𝐱𝑖𝑖𝑘𝑘�� (3.1) 

where 𝑘𝑘 is the current iteration, 𝐯𝐯𝑖𝑖𝑘𝑘+1  is the updated velocity of the particle 𝐱𝐱𝑖𝑖𝑘𝑘  for the next 
generation 𝑘𝑘 + 1, 𝐯𝐯𝑖𝑖𝑘𝑘  is the current velocity, 𝐠𝐠𝑘𝑘  is the global best so far, 𝐩𝐩𝑖𝑖𝑘𝑘  is the local best so far 
of 𝐱𝐱𝑖𝑖𝑘𝑘 . Additionally, 𝐫𝐫1

𝑘𝑘  and 𝐫𝐫2
𝑘𝑘  are random values in the interval of [0, 1], while the constant 

parameters 𝑐𝑐1 y 𝑐𝑐2 are the cognitive and social factors, respectively. 

3.1.3. Update position 

Particles move through the search space to explore new possible solutions. The movement of 
each particle is determined according to its updated velocity. The position of each particle is updated, 
as shown in Eq (3.2): 

𝐱𝐱𝑖𝑖𝑘𝑘+1 = 𝐱𝐱𝑖𝑖𝑘𝑘 + 𝐯𝐯𝑖𝑖𝑘𝑘+1 (3.2) 

Here 𝐱𝐱𝑖𝑖𝑘𝑘+1 is the updated position of the particle 𝐱𝐱𝑖𝑖𝑘𝑘  where its updated velocity is 𝐯𝐯𝑖𝑖𝑘𝑘+1. 
Then, the updated particles are evaluated in the objective function, and the local and global best 

particles so far are updated. The whole process is repeated until the maximum number of iterations is 
reached. The PSO algorithm can be summarized in the flowchart shown in Figure 1. 
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Figure 1. Flowchart of particle swarm optimization. 

3.2. Genetic algorithm 

Genetic algorithm (GA) is based on the natural selection in the biological evolution process [29]. 
This method is able to find optimal solutions in high dimensional and non-linear problems. In this 
paper, a discrete and non-binary version of GA is considered. A detailed description of the algorithm 
is presented in the following. 

3.2.1. Initialization 

The search process starts by initializing a population of size 𝑚𝑚. Individuals are randomly 
generated and distributed over the solutions space, following a uniform probability distribution, 
considering the lower and upper bounds. After initialization, the population is evaluated in the 
objective function. Then, an iterative process starts where the cross-over, mutation, and selection 
operators are applied to the population. 

3.2.2. Cross-over 

In the cross-over operation, an offspring of individuals is generated by combining the 
individuals from the population. Sets of two individuals are randomly chosen from the population, 
using the proportional selection method [29]. The number of sets is determined according to a 
cross-over probability 𝐶𝐶𝐶𝐶. These pairs of individuals are selected to be the generators of new 
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individuals, by applying the cross-over operation. In this process, the genes of each pair of 
individuals are combined, as shown in Eqs (3.3) and (3.4): 

𝑦𝑦𝑐𝑐 ,𝑗𝑗
𝑘𝑘 = �

𝑥𝑥𝑎𝑎 ,𝑗𝑗
𝑘𝑘 , 𝑗𝑗 < 𝐶𝐶𝐶𝐶, ∀ 𝑗𝑗 = 1, … ,𝑛𝑛   
𝑥𝑥𝑏𝑏,𝑗𝑗
𝑘𝑘 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,

� (3.3) 

 

𝑦𝑦𝑑𝑑 ,𝑗𝑗
𝑘𝑘 = �

𝑥𝑥𝑏𝑏 ,𝑗𝑗
𝑘𝑘 , 𝑗𝑗 < 𝐶𝐶𝐶𝐶, ∀ 𝑗𝑗 = 1, … , 𝑛𝑛   
𝑥𝑥𝑎𝑎 ,𝑗𝑗
𝑘𝑘 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,

� (3.4) 

where an individual 𝐱𝐱𝑎𝑎𝑘𝑘  is combined with an individual 𝐱𝐱𝑏𝑏𝑘𝑘  to generate the new individuals 𝐲𝐲𝑐𝑐𝑘𝑘  and 
𝐲𝐲𝑑𝑑𝑘𝑘 . The constant 𝐶𝐶𝐶𝐶 determines how many genes from 𝐱𝐱𝑎𝑎𝑘𝑘  and 𝐱𝐱𝑏𝑏𝑘𝑘  are being taken to generate the 
offspring. The number of genes 𝑛𝑛 corresponds to the dimensions of the problem. The process is 
graphically explained in Figure 2. 

 

Figure 2. Cross-over process of GA. 

3.2.3. Mutation 

The mutation operator is applied to the offspring in order to promote the diversity of the 
population. In the process, the genes of the offspring mutate according to the mutation probability 
𝑀𝑀𝐶𝐶. This procedure is defined in Eq (3.5): 

𝑦𝑦𝑖𝑖 ,𝑗𝑗 𝑘𝑘 = �
𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑(𝑙𝑙𝑏𝑏, 𝑢𝑢𝑏𝑏), 𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑(0,1) < 𝑀𝑀𝐶𝐶,

𝑦𝑦𝑖𝑖 ,𝑗𝑗𝑘𝑘 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,           
� (3.5) 

where 𝑙𝑙𝑏𝑏 and 𝑢𝑢𝑏𝑏 are the lower and upper bounds of the search space. 
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3.2.4. Selection 

After the cross-over and mutation operators, the offspring is evaluated in the objective function. 
Then, the best individuals among the offspring and the population are selected to be the new 
generation. 

The GA algorithm can be summarized in the flowchart shown in Figure 3. 

 

Figure 3. Flowchart of the genetic algorithm. 

3.3. Differential evolution 

The differential evolution (DE) algorithm is a powerful method for global optimization [45]. DE 
is a population-based technique that employs mutation, cross-over, and selection operations. In the 
population, each individual is considered a potential solution vector that evolves over the course of 
iterations. The search process of classical DE can be summarized as initialization, mutation, 
cross-over, and selection. 

3.3.1. Initialization 

At the beginning of the search process, the population of size 𝑚𝑚 is randomly initialized over 
the search space. Considering the lower and upper bounds of the land space, individuals are 
generated and distributed following a uniform probability distribution. After initialization, the 
population is evaluated in the objective function. Then, an iterative process starts where mutation, 
cross-over, and selection operations are applied to the population. 
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3.3.2. Mutation 

This operator creates mutant vectors by calculating the sum of a random solution and the 
weighted difference between two random solutions. The mutation operator is defined in Eq (3.6): 

𝐯𝐯𝑘𝑘 = 𝐱𝐱𝑒𝑒3
𝑘𝑘 + 𝑭𝑭 ∗ �𝐱𝐱𝑒𝑒1

𝑘𝑘 − 𝐱𝐱𝑒𝑒2
𝑘𝑘 � (3.6) 

where 𝐯𝐯𝒌𝒌 is the mutant vector and 𝐱𝐱𝑒𝑒1
𝑘𝑘 , 𝐱𝐱𝑒𝑒2

𝑘𝑘  and 𝐱𝐱𝑒𝑒3
𝑘𝑘  are three different random solutions selected 

from the population. 𝑭𝑭 is a factor in the interval of [0, 2] for scaling differential vectors. 

3.3.3. Cross-over 

DE implements the cross-over operation to generate new solutions and increase the diversity of 
the population. This operator combines the mutant vector 𝐯𝐯𝒌𝒌 with a solution 𝐱𝐱𝑖𝑖𝑘𝑘  to create a trial 
vector 𝐮𝐮𝑘𝑘  using the following formulation in Eq (3.7): 

𝑢𝑢𝑖𝑖,𝑗𝑗 𝑘𝑘 = �
𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘 , 𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑(0,1) < 𝐶𝐶𝐶𝐶
𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

� (3.7) 

where 𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑(0,1) is a random number among 0 and 1. 𝐶𝐶𝐶𝐶 is a constant parameter which specifies 
the probability of cross-over. 

3.3.4. Selection 

In the selection process, the objective is to decide if the trial vector 𝐮𝐮𝑘𝑘  generated in the 
cross-over operation will replace the current solution 𝐱𝐱𝑖𝑖𝑘𝑘  for the next generation. This decision is 
based on the fitness value of both individuals. In a minimization problem, the selection process is 
defined as shown in Eq (3.8): 

𝐱𝐱𝑖𝑖𝑘𝑘+1 = �
𝐮𝐮𝑘𝑘 , 𝑓𝑓(𝐮𝐮𝑘𝑘) < 𝑓𝑓�𝐱𝐱𝑖𝑖𝑘𝑘�,
𝐱𝐱𝑖𝑖𝑘𝑘 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

� (3.8) 

where 𝐱𝐱𝑖𝑖𝑘𝑘+1 is the new individual for the next generation 𝑘𝑘 + 1, 𝑓𝑓(𝐮𝐮𝑘𝑘) and 𝑓𝑓(𝐱𝐱𝑖𝑖𝑘𝑘) are the fitness 
values of 𝐮𝐮𝑘𝑘  and 𝐱𝐱𝑖𝑖𝑘𝑘  respectively. The whole process is repeated until the maximum number of 
iterations is reached. The DE algorithm can be summarized in the flowchart shown in Figure 4. 
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Figure 4. Flowchart of the Differential Evolution algorithm. 

4. The proposed model 

The proposed model aims to solve the supplier selection and order quantity allocation problem. 
It is introduced for minimizing the total cost per time unit, considering ordering, purchasing, 
inventory, and transportation cost, with freight rate discounts. Perfect rate and capacity constraints 
are also included in the model. The mathematical model is defined by Eq (4.1) to Eq (4.5): 

min𝑍𝑍𝑇𝑇 =
𝑑𝑑𝑞𝑞𝑎𝑎

∑ 𝑅𝑅𝑖𝑖𝑞𝑞𝑖𝑖𝑒𝑒
𝑖𝑖=1

��𝑗𝑗𝑖𝑖𝑘𝑘𝑖𝑖

𝑒𝑒

𝑖𝑖=1

+ �𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖

𝑒𝑒

𝑖𝑖=1

+
ℎ

2𝑑𝑑�
𝑅𝑅𝑖𝑖2

𝑗𝑗𝑖𝑖

𝑒𝑒

𝑖𝑖=1

+
ℎ
𝑌𝑌�𝑅𝑅𝑖𝑖𝑙𝑙𝑖𝑖

𝑒𝑒

𝑖𝑖=1

+ �𝑗𝑗𝑖𝑖𝑇𝑇𝐶𝐶𝑖𝑖

𝑒𝑒

𝑖𝑖=1

� (4.1) 

subject to, 

𝑑𝑑𝑞𝑞𝑎𝑎𝑅𝑅𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖�𝑅𝑅𝑖𝑖𝑞𝑞𝑖𝑖

𝑒𝑒

𝑖𝑖=1

, ∀𝑖𝑖 = 1,⋯ , 𝑒𝑒, (4.2) 

𝑀𝑀 = �𝑗𝑗𝑖𝑖

𝑒𝑒

𝑖𝑖=1

, (4.3) 

𝑗𝑗𝑖𝑖 ≥ 0,    𝑖𝑖𝑛𝑛𝑜𝑜𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

𝑀𝑀 ≥ 1,   𝑖𝑖𝑛𝑛𝑜𝑜𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

(4.4) 

(4.5) 
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In Eq (4.1), the first term represents the order cycle frequency, which is the number of orders 
per time unit, usually given in months. The order cycle period 𝑇𝑇𝑐𝑐  is determined from the order cycle 
frequency, as shown in Eq (4.6): 

𝑇𝑇𝑐𝑐 =
∑ 𝑅𝑅𝑖𝑖𝑞𝑞𝑖𝑖𝑒𝑒
𝑖𝑖=1

𝑑𝑑𝑎𝑎
 , (4.6) 

𝑅𝑅𝑖𝑖 = 𝑗𝑗𝑖𝑖𝑄𝑄𝑖𝑖 , (4.7) 
𝑑𝑑𝑎𝑎 = 𝑑𝑑𝑞𝑞𝑎𝑎  (4.8) 

Here, 𝑒𝑒 is the number of available suppliers. In Eq (4.7), 𝑅𝑅𝑖𝑖  represents the total units ordered 
to supplier 𝑖𝑖 during the full order cycle period, where 𝑗𝑗𝑖𝑖  is the number of orders assigned to 
supplier 𝑖𝑖, and 𝑄𝑄𝑖𝑖  is the ordered quantity assigned to supplier 𝑖𝑖. The perfect rate of supplier 𝑖𝑖 is 
represented by 𝑞𝑞𝑖𝑖 . Eq (4.8) shows the effective demand 𝑑𝑑𝑎𝑎 , which is the number of non-defective 
parts that the customer requires for producing without shortages. The demand per time unit is 𝑑𝑑 and 
𝑞𝑞𝑎𝑎  is the customer minimum required perfect rate. 

The terms inside the brackets in the objective function, Eq (4.1), represent the ordering, 
purchasing, inventory, and transportation cost in the following order: 

The first term describes the ordering cost, Eq (4.9): 

�𝑗𝑗𝑖𝑖𝑘𝑘𝑖𝑖

𝑒𝑒

𝑖𝑖=1

, (4.9) 

where 𝑘𝑘𝑖𝑖  is the setup cost of supplier 𝑖𝑖. 
The second term represents the purchasing cost, which is the price of the items, in Eq (4.10): 

�𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖

𝑒𝑒

𝑖𝑖=1

 (4.10) 

Here, 𝑝𝑝𝑖𝑖  is the price per unit from supplier 𝑖𝑖. 
The inventory cost is included in the third and fourth term. The third term is the cost of 

inventory on hand, in Eq (4.11): 

ℎ
2𝑑𝑑�

𝑅𝑅𝑖𝑖2

𝑗𝑗𝑖𝑖

𝑒𝑒

𝑖𝑖=1

, (4.11) 

where ℎ is the inventory holding cost per item and time. The fourth term represents the cost of 
inventory in transit, in Eq (4.12): 

ℎ
𝑌𝑌�𝑅𝑅𝑖𝑖𝑙𝑙𝑖𝑖

𝑒𝑒

𝑖𝑖=1

, (4.12) 

where 𝑌𝑌 is the time length of the planning scenario, 𝑙𝑙𝑖𝑖  is the lead time of supplier 𝑖𝑖, and the 
proportion of the lead time over a month is 𝑙𝑙𝑖𝑖 𝑌𝑌⁄ . 

Finally, the fifth term represents the total transportation cost, in Eq (4.13): 
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�𝑗𝑗𝑖𝑖𝑇𝑇𝐶𝐶𝑖𝑖

𝑒𝑒

𝑖𝑖=1

 (4.13) 

In Eq (4.14), 𝑇𝑇𝐶𝐶𝑖𝑖  is the transportation cost of one order to supplier 𝑖𝑖, and 𝐹𝐹𝑦𝑦  is the freight rate 
of supplier 𝑖𝑖. The freight rate depends on the shipped weight range, which is determined by the order 
size and the weight of each item. The weight of an item shipped is defined as 𝑒𝑒. 

𝑇𝑇𝐶𝐶𝑖𝑖 = 𝐹𝐹𝑦𝑦(𝑄𝑄𝑖𝑖𝑒𝑒) (4.14) 

Eq (4.2) represents the capacity constraint, which ensures the monthly supplier capacity is not 
exceeded. Here, 𝑐𝑐𝑖𝑖  is the capacity of supplier 𝑖𝑖. In Eq (4.3), the total number of orders from 
selected suppliers has been redefined as 𝑀𝑀. Table 1 summarizes the notation of the model. 

Table 1. Notation of the proposed model. 

 
Data 

r Number of available suppliers 
 d Demand per time unit 

w 
 

Weight of an item shipped (lbs) 
h Inventory holding cost per item and time 
ki  Setup cost of supplier i ($/order) 
pi  Price per unit of supplier i 
li  Lead time of supplier i 
qi  Perfect rate of supplier i 
qa  Minimum required perfect rate 
Y Time length of the planning scenario 
ci  Capacity of supplier i (units per month) 
da  Effective demand (units per month) 
ji  Number of orders assigned to supplier i per order cycle 

Qi  Ordered quantity assigned to supplier  i (in units) 
Tc  
 

Order cycle period (in months) 
M Total number of orders per cycle 
Ri  Total number of items ordered to supplier i during the full order cycle period 

TCi  Transportation cost of one order from supplier i 
Fy  Freight rate 

5. Problem description 

In this section, the problem employed for developing the proposed model is presented. This 
problem is selected for comparison purposes. 

An industrial customer requires one thousand units a month of a particular item, 𝑑𝑑 = 1000. 
These units can be purchased from three different available suppliers, thus 𝑒𝑒 = 3. The shortage of 
this item is not allowed. Each supplier 𝑖𝑖 has a different but constant price 𝑝𝑝𝑖𝑖 , ordering cost 𝑘𝑘𝑖𝑖 , lead 
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time 𝑙𝑙𝑖𝑖 , monthly capacity 𝑐𝑐𝑖𝑖 , and perfect rate 𝑞𝑞𝑖𝑖 . The guarantee of non-defective parts over the total 
purchased units is given by the perfect rate, which represents the percentage of non-defective parts 
provided by each supplier. The customer has a minimum required perfect rate 𝑞𝑞𝑎𝑎 = 0.95. This 
means that at least 95% of the purchased items must be non-defective parts. The perfect rate 𝑞𝑞𝑎𝑎  
must be satisfied considering the average of the total purchased units. Therefore, the effective 
demand is 𝑑𝑑𝑎𝑎 = 950 units per month. Table 2 reviews the notation and the values of these 
parameters. 

Table 2. Notation and problem parameters. 

 
Data Problem parameters 

r Number of available suppliers 3 suppliers 

d Demand per time unit 1000 units a month 

w 

 

Weight of an item shipped (lbs) 16 lbs. 

h Inventory holding cost per item and time $10 per unit per month 

ki  Setup cost of supplier i ($/order) k1=160, k2=140, k3=130, dollars per order 

pi  Price per unit of supplier i p1=20, p2=24, p3=30, dollars per unit 

li  Lead time of supplier i l1=1, l2=3, l3=2, days 

qi  Perfect rate of supplier i q1=0.93, q2=0.95, q3=0.98 

qa  Minimum required perfect rate 0.95 

Y Time length of the planning scenario 1 month 

ci  Capacity of supplier i (units per month) c1=700, c2=800, c3=750, units a month 

da  Effective demand (units per month) da=950 

 In Table 3, the parameters of each supplier are summarized, noticing that each supplier 
guarantees a different perfect rate 𝑞𝑞𝑖𝑖 . 

Table 3. Parameters of potential suppliers. 

Supplier i Price pi  Ordering cost ki  Lead time li  Capacity ci   Perfect rate qi  

1 20 dollars 160 dollars 1 days 700 units a month 0.93 

2 24 dollars 140 dollars 3 days 800 units a month 0.95 

3 30 dollars 130 dollars 2 days 750 units a month 0.98 

The shipping cost is described by a non-linear function. Transportation cost is different from 
each supplier, and depends on the order size and the weight of each item. This cost is a non-linear 
function of the shipment weight. Table 4 shows the shipping cost of each supplier for this problem, 
which is given in dollars per hundred weight (CWT). In this case, dollars per hundreds of pounds. 
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Table 4. Nominal freight rates of potential suppliers. 

Shipped weight range (lbs) Supplier 1 Supplier 2 Supplier 3 
1–499 $107.75/CWT $136.26/CWT $81.96/CWT 

500–999 $92.26/CWT $109.87/CWT $74.94/CWT 
1,000–1,999 $71.14/CWT $91.61/CWT $61.14/CWT 
2,000–4,999 $64.14/CWT $79.45/CWT $49.65/CWT 
5,000–9,999 $52.21/CWT $69.91/CWT $39.73/CWT 

10,000–19,999 $40.11/CWT $54.61/CWT $33.44/CWT 
20,000–29,999 $27.48/CWT $48.12/CWT $18.36/CWT 
30,000–40,000 $7,525 $13,200 $5,030 

5.1. Decision variables 

The optimization of the problem using the proposed model will provide the set of decision 
variables indicated in Table 5. These are the solutions to the problem. 

Table 5. Decision variables. 

Variables Data 

ji  Number of orders assigned to supplier i per order cycle 

Qi  Ordered quantity assigned to supplier  i (in units) 

From these results, the remaining variables shown in Table 6 can be determined. 

Table 6. Additional variables. 

Variables Data 

Tc  Order cycle period (in months) 
M Total number of orders per cycle 
Ri  Total number of items ordered to supplier i during the full order cycle period 

6. Experiments and results 

The proposed model is tested by solving the numerical problem described in section 5. Particle 
swarm optimization, genetic algorithm, and differential evolution are used for optimizing the model. 
These methods are selected because they represent some of the most popular artificial 
Intelligence-based optimization techniques in supply chain management. The performance of the 
algorithms is statistical evaluated by comparing their results with each other. Then, the effectiveness 
of the model is assessed by comparing the solution of the problem against the solutions of models P1 
and P2. Experiments and results are informed in the following sections. 
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6.1. Setting parameters of metaheuristic algorithms 

First, parameters of metaheuristic algorithms must be set for the optimization process. Initial 
parameters of PSO, GA, and DE are configured with the following values: The total population 𝑚𝑚 
has been set to 200 individuals and the maximum number of iterations 𝑘𝑘𝑚𝑚𝑎𝑎𝑥𝑥  has been set to 300. 
The number of dimensions, 𝑛𝑛, is 6, according to the decision variables of the problem: 𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, 
𝑄𝑄1, 𝑄𝑄2, and 𝑄𝑄3. 

The parameters used for each metaheuristic algorithm have been configured according to the 
reported values in the literature, where their best performances were achieved [28,29,45]. Table 7 
shows the configuration of these parameters. 

Table 7. Parameters of PSO, GA and DE. 

Algorithm Parameter values 

PSO c1 = 2 and c2 = 2 
GA CP = 3, MP = 0.2, and CR = 0.9 
DE 

 
CO = 0.5 and F=0.2 

6.2. Experimental results applying metaheuristic algorithms 

After setting the parameters of the algorithms, they are used for solving the numerical instance. 
Since metaheuristic algorithms are stochastic methods, the optimization process is repeated in 30 
independent executions for every metaheuristic algorithm, to verify the consistency of the results. 
From the 30 independent executions, thirty results are obtained, which represent the best-found 
solutions. With this information, the performance of the three algorithms are statistically compared 
considering different indicators: the lower cost 𝑍𝑍𝑙𝑙 , higher cost 𝑍𝑍ℎ , average cost 𝑍𝑍𝑎𝑎 , standard 
deviation 𝑒𝑒𝑑𝑑, computational time 𝑐𝑐𝑜𝑜, and average computational time 𝑐𝑐𝑜𝑜𝑎𝑎 . Indicators 𝑍𝑍𝑙𝑙 , 𝑍𝑍ℎ , and 
𝑍𝑍𝑎𝑎  evaluate the accuracy of the algorithms, 𝑒𝑒𝑑𝑑 evaluates the consistency of the solutions and, 
therefore, the robustness of the metaheuristic algorithms. Finally, 𝑐𝑐𝑜𝑜 and 𝑐𝑐𝑜𝑜𝑎𝑎  evaluates the speed of 
the methods. 

The experiments are implemented using MATLAB R2017a, in a computer with a processor 
intel(R)core(TM)i5-4200ucpu@1.60GHz2.30GHz. The experimental results considering the 30 
independent executions are listed in Table 8. The best outcomes are highlighted in boldface. 

Table 8. Results of PSO, GA, and DE considering 30 independent executions. 

Algorithm Lower cost 
(per month) 

Higher Cost 
(per month) 

Average Cost 
(per month) 

Standard 
deviation 

Computational 
time (seconds) 

Average 
computational 
time (seconds) 

 Zl Zh  Za  sd ct cta  

PSO $32,786.39 $33,049.33 $32,897.22 5.04 3.11 3.77 

GA $32,778.12 $32,817.21 $32,796.74 4.67 2.30 2.27 

DE $32,778.12 $32,800.36 $32,788.58 4.04 3.01 3.06 

From Table 8, it can be observed that GA and DE achieve the lowest cost solutions, PSO shows 
the worst performance, and GA is the fastest method. However, DE has the best 𝑍𝑍ℎ , 𝑍𝑍𝑎𝑎 , and 𝑒𝑒𝑑𝑑 
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indicators, demonstrating the consistency and accuracy of the algorithm. From these results, it can be 
concluded that DE outperforms the rest of the techniques. 

Additionally, the convergence of the algorithms for the best-found solutions is illustrated in 
Figure 5. From this figure, it can be observed that GA converges faster than PSO and DE. GA 
reaches the best solution in iteration 145, while PSO in 255 and DE in 234. Under such scenario, GA 
is also a suitable algorithm for optimizing the proposed model. 

 
(a)                                    (b) 

 
(c) 

Figure 5. Convergence of (a) GA, (b) PSO, and (c) DE considering the best-found 
solution. 

6.3. Comparisons against related models 

P1, P2, and the proposed model are tested by solving the numerical problem described in 
section 5. The effectiveness of the proposed model is evaluated by comparing its best-found 
solutions against the solutions obtained whit P1 and P2 models. P1and P2 are optimized with the 
commercial software LINGO, while the proposed model is optimized using PSO, GA, and DE in 
MATLAB. However, it took a long time to find a solution for P1 and P2, even running the model 
in a high-performance computer. The best-found solutions by each model are reported in Table 9. 
The best results are highlighted in boldface. 
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Table 9. Best solutions obtained with P1, P2, and our model using LINGO, PSO, GA, and 
DE solvers. 

Model Solver 
Order allocation Order quantities Best total cost per 

month 
Order cycle period 

(months) 
j1 j2 j2 Q2 Q2 Q2 ZT  Tc  

P1 LINGO 3 0 4 625 0 313 $33,680 3.13 
P2 LINGO 2 1 0 625 625 0 $32,912 1.85 

proposed 
PSO 9 4 0 626 635 0 $32,786.39 8.05 
GA 9 4 0 625 633 0 $32,778.12 8.03 
DE 9 4 0 625 633 0 $32,778.12 8.03 

From Table 9, it can be seen that the proposed model had better performance than the others. P1 
and P2 found worse solutions. 

6.4. Statistical analysis 

Statistical analysis has been applied with growing interest to the study of evolutionary 
algorithms. Non-parametric statistical techniques have been used because they are suitable for the 
comparison between algorithms [47]. A Kruskal-Wallis test was carried out with the purpose of 
determining whether the medians of the proposed algorithms differ for total cost and computational 
time. 

Table 10. Kruskal-Wallis test statistics. 

 Comparison for total cost Comparison for computational time 

Method Degrees of freedom H-value p-value Degrees of freedom H-value p-value 

Adjusted for 
ties 

2 62.99 0.000 – – – 

No ties – – – 2 79.12 0.000 

Table 11. Medians and confidence intervals for total cost and computational time. 

Algorithm 
Median for total 

cost 
Median for 

computational time 

Confidence interval for 
the median  

95%, total cost 
($/month)  

Confidence interval for the 
median  

95%, computational time 
(seconds) 

PSO $32,901 3.82 $32,885–$32,925 3.82–3.84 

GA $32,796 2.25 $32,795–$32,797 2.23–2.27 

DE $32,789 2.99 $32,782–$32,797 2.98–3.01 

Table 10 shows the Kruskal-Wallis statistics for the comparison of the total cost and the 
computational time. The evidence of the p-values demonstrates a significant difference between the 
medians of the three algorithms. Table 11 shows the medians and their confidence intervals for both 
total cost and computational time. For total cost, it is observed that the intervals of the DE and GA 



2033 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2016–2036. 

are overlapped, but the DE algorithm expands to lower costs, and the interval of PSO is above the 
other two algorithms. In terms of computational time, the intervals are not overlapped, and the 
differences are more evident, with GA being the fastest algorithm. 

7. Conclusions 

In this work, a novel model is proposed for solving the supplier selection and order quantity 
allocation problem. The model considers ordering, purchasing, holding, and transportation costs. 
Freight rate discounts, quality, and capacity constraints are also included. The model is tested by 
solving an existing numerical instance, using PSO, GA, and DE. These algorithms are implemented 
instead of analytical methods. The performance of the algorithms is statistical evaluated by 
comparing their results with each other. Then, the effectiveness of the model is assessed by 
comparing the solution of the problem against the solutions obtained with P1 and P2. These are 
related models reported in the literature that solved the same problem using the mathematical 
programming solver LINGO. Experimental results prove the effectiveness of the proposed model, 
and demonstrate that metaheuristic algorithms are able to find lower-cost solutions in less 
computational time than P1 and P2 models, using LINGO. Future research may incorporate quantity 
discounts schemes on the purchasing cost in order to analyze the impact on the order quantity. 
Additionally, a multi-objective formulation can be modeled, where the transportation costs can be 
treated separately from the other logistic costs to produce a Pareto front. Evolutionary algorithms 
could be used to find solutions in a very efficient manner. Finally, more specialized heuristics can be 
developed in order to solve larger instances efficiently by exploiting some of the mathematical 
properties of the model. 
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