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Abstract: In this article, a delayed phytoplankton-zooplankton system with Allee effect and
linear harvesting is proposed, where phytoplankton species protects themselves from zooplankton by
producing toxin and taking shelter. First, the existence and stability of the possible equilibria of system
are explored. Next, the existence of Hopf bifurcation is investigated when the system has no time delay.
What’s more, the stability of limit cycle is demonstrated by calculating the first Lyapunov number.
Then, the condition that Hopf bifurcation occurs is obtained by taking the time delay describing the
maturation period of zooplankton species as a bifurcation parameter. Furthermore, based on the normal
form theory and the central manifold theorem, we derive the direction of Hopf bifurcation and the
stability of bifurcating periodic solutions. In addition, by regarding the harvesting effort as control
variable and employing the Pontryagin’s Maximum Principle, the optimal harvesting strategy of the
system is obtained. Finally, in order to verify the validity of the theoretical results, some numerical
simulations are carried out.
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1. Introduction

Blooms are considered to be a rapid and significant increase in marine phytoplankton populations.
It is generally believed that zooplankton is the primary predator of blooms. The zooplankton dissolves
phytoplankton blooms in the bud by feeding a large amount of phytoplankton, thereby achieving the
purpose of preventing and controlling algal blooms. It is clearly stated in an international research
plan that the dynamic changes of zooplankton in marine ecosystems control the change in the total
amount of primary productivity. This indicates that zooplankton plays a very important role in the
production of phytoplankton and the control of existing quantities. In addition, this is also one of the
significant reasons that the interaction between phytoplankton and zooplankton has been widely
concerned by many scholars [1–6] in recent years.
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Due to the importance of the interaction between phytoplankton and zooplankton in marine
biological systems, many scholars have proposed a large number of models to describe this
interaction. Moreover, they have continued to study this topic for the past few decades and have
achieved very significant results [7–13]. Chakraborty et al. [7] proposed a mathematical model
incorporating nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton
(NTP), and toxin concentration and explained that TPP species controls the outbreaks of other NTP
species when nutrient-deficient conditions are beneficial for the TPP species to release toxin. Saha
and Bandyopadhyay [8] analyzed a toxin producing phytoplankton-zooplankton model in which the
release of toxins from phytoplankton species follows a discrete time variation and discussed the basic
dynamics of the system. Banerjee and Venturino [9] proposed a phytoplankton-toxic
phytoplankton-zooplankton model and found that toxic phytoplankton population does not cause
zooplankton population to become extinct. Javidi and Ahmad [10] investigated the dynamics of a
time fractional order toxic-phytoplankton-phytoplankton-zooplankton system(TPPZS) and did some
numerical simulations to validate the theoretical results. Han and Dai [11] studied the spatiotemporal
pattern caused by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic
functional response and discussed the effect of toxin-producing rate of toxic-phytoplankton (TPP)
species and natural mortality rate of zooplankton species on pattern selection. In addition, Han and
Dai proposed a spatiotemporal pattern formation and selection driven by nonlinear cross-diffusion of
a toxic-phytoplankton-zooplankton model with Allee effect in [12]. Zheng and Sugie [13] studied a
three-dimensional system including phytoplankton, zooplankton and fish and gave a sufficient
condition to ensure that the equilibrium of this three-dimensional system is globally asymptotically
stable. Furthermore, they also proved that the equilibrium is asymptotically stable under relatively
weak conditions.

Because the seabed has a variety of sediments that can be used as a refuge for the prey, some
phytoplankton populations reduce the risk of being caught by zooplankton through refuge. Therefore,
some scholars [14–18] have considered the prey refuge in the predator-prey model in recent years.
Kar [14] proposed a prey-predator model incorporating a prey refuge and studied the influence of prey
refuge on the prey-predator model. Chen and Chen [15] investigated a predator-prey model with
Holling type II functional response incorporating a constant prey refuge and gave the basic dynamical
behaviors of the model. Tripathi et al. [16] studied a prey-predator model with reserved area and
found that the predator species would exist if the value of prey reserve does not exceed a threshold
value, beyond which the predator species would become extinct. Ghosh et al. [17] analyzed the effect
of additional food for predator on the dynamical behaviors of a prey-predator model with prey refuge,
they suggested that the possibility of extinction of predator species in high prey refuge ecosystems
can be eliminated by providing additional food to predator species. Samanta et al. [18] proposed a
fractional-order prey-predator model with prey refuge and derived some sufficient conditions to
guarantee the global asymptotic stability of predator-extinction equilibrium and co-existing
equilibrium.

Li et al. [19] considered the factors that phytoplankton protects themselves from being eaten by
zooplankton by releasing toxin and taking refuge, and proposed a toxic phytoplankton-zooplankton
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model with refuge 
.

P(t) = rP(1 −
P
K

) −
β1(P − m)

a1 + (P − m)
Z,

.

Z(t) =
β2(P − m)

a1 + (P − m)
Z − dZ −

θP
a2 + P

Z,
(1.1)

where P(t) and Z(t) denote population size of phytoplankton and zooplankton at time t, respectively;
r is the intrinsic growth rate; K is the environmental carrying capacity in the absence of zooplankton;
β1, β2 (0 < β2 < β1) and d describe the predation rate, the ratio of biomass conservation and the
natural death rate of zooplankton species, respectively; a1 and a2 are the half saturation constants;
θ represents the rates of toxin production per phytoplankton species; m is the constant refuge capacity
of phytoplankton population, then P−m denotes the number of unprotected phytoplankton is captured
by zooplankton species. Their results ultimately showed that phytoplankton refuge and toxin have
important effects on the occurrence and termination of algal blooms in freshwater lakes.

Actually, the choice of prey species growth function and predator species function response is
considered to be the most important element in the prey-predator model. Generally speaking, many
modelers choose Logistic growth form as prey species growth function without considering the
predator species. However, we all know that the resources in an ecosystem are limited, such as space,
food, basic nutrition and so on. Thus the average growth rate becomes a decreasing function of
population size as the population size increases gradually. When the number of population reaches the
environmental capacity K, the average growth rate decreases to zero; in addition, any population
number above the value K will have a negative growth rate. However, there are a lot of evidences that
the low population density is the opposite [20–25]. This phenomenon is the so-called Allee effect,
which is the positive density dependence of population growth at low density [22, 26]. The main
causes of the Allee effect are the lack of a spouse, the reduced vigilance against predators, the
adjustment of the environment, the reduction of defenses against predators, and many other
reasons [20, 22]. In general, the Allee effect is expressed by an equation of the following form [27]

dX(t)
dt

= rX(t)(1 −
X(t)
K

)(
X(t)
K0
− 1),

where X(t) represents population size at time t; r and K are the intrinsic growth rate and the
environmental carrying capacity, respectively; K0 is the critical level of phytoplankton population.
When the population density is below the critical level, the population growth rate will decline and
population will tend to become extinct.

In recent years, more and more people consider time delay into population biological model [28–35]
to study its influence on dynamical behavior of system. What’s more, it is well known that most
countries of the world achieve the economic benefits of natural resource management by restoring
and maintaining the ecosystem’s health, the productivity and biodiversity and the overall quality of
life in a manner that integrates social and economic objectives. Of course, it also satisfies the need
for humans to benefit from natural resources. The prey-predator systems with harvesting have been
widely studied by a large number of scholars [6, 34–40]. Meng et al. [40] studied a predator-prey
system with harvesting prey and disease in prey species and found that the optimal harvesting effort is
closely related to the incubation period of the infectious disease, and the maximum value of the optimal
harvesting decreases with the increase of the time delay. Furthermore, Meng et al. [34] investigated
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a nutrient-plankton model with Holling type IV, delay, and harvesting, their results indicated that the
nutrient increases first and then stabilizes as the harvesting time increases, the number of phytoplankton
and zooplankton decreases and even stabilizes as the harvesting time increases. Zhang and Zhao [36]
considered a diffusive predator-prey system with delays and interval biological parameters and believed
that the overfishing can lead to species extinction.

Motivated by the work mentioned-above, we propose a delayed phytoplankton-zooplank-ton model
with Allee effect and linear harvesting. The results of this paper can be seen as a complement to
system (1.1). As far as we know, although a large number of scholars have studied the interaction
between phytoplankton and zooplankton, system (1.1) including the Allee effect, time delay and linear
harvesting has not been studied yet.

The content of this paper is organized as follows. A delayed phytoplankton-zooplankton model with
Allee effect and linear harvesting is described in section 2. In this section, we give the boundedness
of the model. Section 3 demonstrates the existence and stability of the equilibria of system (2.1). A
detailed discussion of the Hopf bifurcation in section 4. We not only give the existence and property
of Hopf bifurcation when the system has no time delay, but also give the existence and property of
Hopf bifurcation when the system has time delay. In section 5, the optimal policy is derived by using
Pontryagin’s Maximum Principle. In section 6, some numerical simulations are given for illustrating
the theoretical results. The problem ends with a brief concluding remark.

2. Model and its basic properties

In this paper, based on the work of the reference [19], we propose a delayed
phytoplankton-zooplankton system with Allee effect and linear harvesting described by

.

P(t) = rP(1 −
P
K

)(
P
K0
− 1) −

β1(P − m)Z
a1 + (P − m)

− q1EP,

.

Z(t) =
β2(P(t − τ) − m)Z
a1 + (P(t − τ) − m)

− dZ −
θPZ

a2 + P
− q2EZ,

(2.1)

where K0 (0 < K0 << K) is the critical level of the growth of phytoplankton; q1 and q2 are catchability
coefficients of the two species; E represents the harvesting effort. The delay τ in system (2.1) can be
regarded as the maturation period of zooplankton species. For biological significance, system (2.1)
must satisfy the following initial conditions

P(θ) = ϑ1(θ) ≥ m, Z(θ) = ϑ2(θ) ≥ 0, ϑ1(0) > m, ϑ2(0) > 0, θ ∈ [−τ, 0],

where (ϑ1(θ), ϑ2(θ)) ∈ C([−τ, 0],R2
+) and C([−τ, 0],R2

+) represents the Banach space formed by all
continuous functions from [−τ, 0] to R2

+, here R2
+ = {(x1, x2) : x1 > m, x2 > 0}.

When τ = 0, system (2.1) becomes
.

P(t) = rP(1 −
P
K

)(
P
K0
− 1) −

β1(P − m)Z
a1 + (P − m)

− q1EP,

.

Z(t) =
β2(P − m)Z
a1 + (P − m)

− dZ −
θPZ

a2 + P
− q2EZ,

(2.2)

and system (2.2) must satisfy the following initial conditions

P(0) > m, Z(0) > 0.
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As we all know, the boundedness of the model can ensure that the model has good dynamical
behaviors. So we have the following result when τ = 0.

Lemma 2.1. All solutions of system (2.2) with initial conditions P(0) > m,Z(0) > 0 that start in
Θ = {(P,Z) | (m,+∞) × (0,+∞)} ⊂ R2

+ are uniformly bounded for all t > 0.

Proof. Let (P(t),Z(t)) be any solution of system (2.2) with positive initial conditions P(0) > m,
Z(0) > 0. Notice that there is Ω1 = {(P,Z) | K ≥ P(t) > m,Z(t) > 0 for all t > 0} for system (2.2). So
we have P(t) ≤ K for all t > 0.

We define W(P,Z) = cP(t) + Z(t), here c =
β2
β1

, thus

.

W(t) = c
.

P(t) +
.

Z(t)

= crP(
K + K0

KK0
P − 1 −

P2

KK0
) − cq1EP − dZ −

θP
a2 + P

Z − q2EZ

≤ −
[
dZ +

cr(K + K0)
KK0

P
]

+
2cr(K + K0)

KK0
P

≤ −αW +
2cr(K + K0)

K0
,

where α = min{r, r(K+K0)
KK0
}.

That is
.

W(t) + αW ≤
2cr(K + K0)

K0
.

So,

0 < W(P(t),Z(t)) ≤
2cr(K + K0)

αK0
+ e−αtW(P(0),Z(0)).

When t → ∞, we have

0 < W ≤
2cr(K + K0)

αK0
.

Therefore, all solutions of system (2.2) enter into the invariant set Ω =
{
(P,Z) ∈ Θ

∣∣∣∣0 < W ≤

2cr(K+K0)
αK0

}
. The Lemma 2.1 is proved. �

Next, we use the method in [41] to give the positiveness of solution of system (2.1) in the case of
τ > 0.

Lemma 2.2. All solutions of system (2.1) with initial conditions that start in Θ = {(P,Z) | (m,+∞) ×
(0,+∞)} ⊂ R2

+ are positive invariant.

Proof. We consider (P,Z) a noncontinuable solution of system (2.1), defined on [−τ,Γ), where
Γ ∈ (0,∞]. We have to prove that for all t ∈ [0,Γ), P(t) > m, and Z(t) > 0. Suppose that is not true.
Then, there exists 0 < T < Γ such that for all t ∈ [0,T ), P(t) > m, and Z(t) > 0 and either P(T ) = m or
Z(T ) = 0. For all t ∈ [0,T ), under initial conditions we have

P(t) = P(0)exp
{ ∫ t

0

[
r(1 −

P(s)
K

)(
P(s)
K0
− 1) −

β1(P(s) − m)Z(s)
P(s)(a1 + P(s) − m)

− q1E
]
ds

}
,
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Z(t) = Z(0)exp
{ ∫ t

0

[ β2(P(s) − m)
a1 + (P(s) − m)

− d −
θP(s)

a2 + P(s)
− q2E

]
ds

}
.

As (P,Z) is continuous on [−τ,T ], there exists a M ≥ 0 such that for all t ∈ [−τ,T ],

P(t) = P(0)exp
{ ∫ t

0

[
r(1 −

P(s)
K

)(
P(s)
K0
− 1) −

β1(P(s) − m)Z(s)
P(s)(a1 + P(s) − m)

− q1E
]
ds

}
≥ P(0)exp(−T M),

Z(t) = Z(0)exp
{ ∫ t

0

[ β2(P(s) − m)
a1 + (P(s) − m)

− d −
θP(s)

a2 + P(s)
− q2E

]
ds

}
≥ Z(0)exp(−T M).

Taking the limit, as t → T , we get

P(T ) ≥ P(0)exp(−T M) > m, Z(T ) ≥ Z(0)exp(−T M) > 0,

which contradicts the fact that either P(T ) = m, or Z(T ) = 0. Thus, for all t ∈ [0,Γ), P(t) > m and
Z(t) > 0. The Lemma 2.2 is proved. �

3. The existence and stability of equilibria

3.1. The existence of equilibria

In order to get the conditions for the existence of the equilibria of system (2.2), we analyze the
following Eq (3.1) which is given by

rP(1 −
P
K

)(
P
K0
− 1) −

β1(P − m)Z
a1 + (P − m)

− q1EP = 0,

β2(P − m)Z
a1 + (P − m)

− dZ −
θPZ

a2 + P
− q2EZ = 0.

(3.1)

Obviously, the equilibria of system (2.2) are the intersections of the two equations of (3.1). In the
absence of zooplankton, that is Z = 0, the first equation of (3.1) becomes

r
K0K

P2 −
r(K0 + K)

K0K
P + r + q1E = 0.

Let ∆1 =
r2(K0+K)2−4K0Kr(r+q1E)

K2
0 K2 , then there is the following conclusion.

Theorem 3.1. The boundary equilibria of system (2.2) are as follows.
(i) If ∆1 = 0, i.e., E =

r(K0−K)2

4K0Kq1
, then system (2.2) has a unique boundary equilibrium given by Ẽ1(P̃1, 0),

here P̃1 = K0+K
2 .

(ii) If ∆1 > 0, i.e., E < r(K0−K)2

4K0Kq1
, then system (2.2) has two distinct boundary equilibria Ẽ2,3(P̃2,3, 0),

here P̃2,3 = K0+K
2 ± 1

2

√
(K0 + K)2 −

4K0K(r+q1E)
r .
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For positive equilibria, from the second equation of (3.1), we have

A1P2 + A2P + A3 = 0, (3.2)

where A1 = β2 − θ − d − q2E, A2 = β2(a2 − m) + θ(m − a1) + (d + q2E)(m − a1 − a2),
A3 =a2(m − a1)(d + q2E) − β2ma2.

Let ∆2 = A2
2 − 4A1A3 and h(P) = A1P2 + A2P + A3. From the first equation of (3.1), we have

Z =
B1P4 + B2P3 + B3P2 + B4P

K0Kβ1(P − m)
,

where B1 = −r, B2 = r(m − a1 + K0 + K), B3 = −[r(K0 + K)(m − a1) + K0K(r + q1E)],
B4 = K0K(r + q1E)(m − a1).

Since the signs of A1, A2 and A3 are uncertain, there are many cases where h(P) = 0 has positive
root(s). For the sake of discussion, let A2 > 0, i.e., β2 <

θ(m−a1)+(d+q2E)(m−a1−a2)
m−a2

. Furthermore, as long
as
m − a1 − a2 > 0. Thus, when A2 > 0, h(P) = 0 will have possible positive root(s).

Through simple analyses, we obtain the following results about the existence of the positive
equilibria.

Theorem 3.2. Under the assumption that A2 > 0 holds, the possible positive equilibria of system (2.2)
are as follows.
(i) System (2.2) has one positive equilibrium when one of the following nine conditions is satisfied
(a) A3 > 0, A1 > 0,∆2 = 0, h(m) > 0, h(K) > 0;
(b) A3 > 0, A1 > 0,∆2 > 0, h(m) < 0, h(K) > 0;
(c) A3 > 0, A1 > 0,∆2 > 0, h(m) > 0, h(K) < 0;
(d) A3 > 0, A1 < 0,∆2 > 0, h(m) > 0, h(K) < 0;
(e) A3 < 0, A1 = 0;
(f) A3 < 0, A1 > 0,∆2 > 0, h(m) < 0, h(K) > 0;
(g) A3 < 0, A1 < 0,∆2 = 0, h(m) < 0, h(K) < 0;
(h) A3 < 0, A1 < 0,∆2 > 0, h(m) > 0, h(K) < 0;
(j) A3 < 0, A1 < 0,∆2 > 0, h(m) < 0, h(K) > 0.
(ii) System (2.2) has two distinct positive equilibria when one of the following two conditions is satisfied
(k) A3 > 0, A1 > 0,∆2 > 0, h(m) > 0, h(K) > 0;
(l) A3 < 0, A1 < 0,∆2 > 0, h(m) < 0, h(K) < 0.

In the case of (e) in Theorem 3.2, that is, when β2 = θ + d + q2E and
(m−a1)(d+q2E)

m < β2 <
θ(m−a1)+(d+q2E)(m−a1−a2)

m−a2
simultaneously hold, system (2.2) has a positive equilibrium

E∗(P∗,Z∗), where

P∗ = −
A3

A2
, Z∗ =

B1P∗4 + B2P∗3 + B3P∗2 + B4P∗

K0Kβ1(P∗ − m)
.

Remark 1. Due to the density of phytoplankton in system (2.2) is greater than the refuge constant m
at any time, so the existence of other possible positive equilibria of system (2.2) is complex, we will
not list them here. Therefore, we will focus our discussion about system (2.2) at positive equilibrium
E∗(P∗,Z∗).
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3.2. The local stability of equilibria

3.2.1. The local stability of boundary equilibria

When τ = 0, we only discuss the local stability of the boundary equilibrium Ẽ1(P̃1, 0) and can use
the similar methods to obtain the local stability of the other boundary equilibria.

Theorem 3.3. The boundary equilibrium Ẽ1(P̃1, 0) of system (2.2) is locally asymptotically stable if
and only if (H1) holds, where
(H1) : γ1 = K0 + K − 2m > 0, r(K0 + K)2 > 4K0K(r + q1E + d + q2E).

Proof. The Jacobian matrix of system (2.2) at the boundary equilibrium Ẽ1(P̃1, 0) is given by

JẼ1
=


−3rP̃2

1+2r(K0+K)P̃1

K0K − (r + q1E) −
β1(P̃1−m)
a1+P̃1−m

0 β2(P̃1−m)
a1+P̃1−m

−
θP̃1

a2+P̃1
− (d + q2E)

 .
Thus, we can get

det(JẼ1
) =

C1 + C2 + C3 + C4 + C5 + C6

4K0K(2a1 + γ1)(2a2 + K0 + K)
,

tr(JẼ1
) =

D1 + D2 + D3 + D4

4K0K(2a1 + γ1)(2a2 + K0 + K)
,

where

γ1 = K0 + K − 2m,C1 = −r(K0 + K)2(d + q2E)(2a1 + γ1)(2a2 + K0 + K),
C2 = β2rγ1(K0 + K)2(2a2 + K0 + K),C3 = −rθ(K0 + K)3(2a1 + γ1),
C4 = 4K0K(r + q1E)(d + q2E)(2a1 + γ1)(2a2 + K0 + K),
C5 = −4K0Kβ2γ1(r + q1E)(2a2 + K0 + K),C6 = 4K0Kθ(K0 + K)(r + q1E)(2a1 + γ1),
D1 = r(K0 + K)2(2a1 + γ1)(2a2 + K0 + K),D2 = 4K0Kβ2γ1(2a2 + K0 + K),
D3 = −4K0Kθ(K0 + K)(2a1 + γ1),
D4 = −4K0K(2a1 + γ1)(2a2 + K0 + K)(r + q1E + d + q2E).

From the above analysis, it is easy to know that if and only if (H1) holds, we have tr(JẼ1
) < 0

and det(JẼ1
) > 0. Hence, the boundary equilibrium Ẽ1(P̃1, 0) of system (2.2) is locally asymptotically

stable if and only if (H1) holds. This completes the proof. �

3.2.2. The local stability of the positive equilibrium

Here, we discuss the local stability of system (2.2) at the positive equilibrium E∗(P∗,Z∗) when τ = 0.

Theorem 3.4. If (H2) and (H3) simultaneously hold, then the positive equilibrium E∗(P∗,Z∗) of system
(2.2) is locally asymptotically stable, where
(H2) : N1+N2+N3+N4+N5+N6

L3
< q1 <

M1+M2+M3+M4+M5+M6+M7 M8
L1+L2

,

(H3) : γ2 = 3P∗ − 2(K0 + K) > 0.
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Proof. The Jacobian matrix of system (2.2) at the positive equilibrium E∗(P∗,Z∗) is given by

JE∗ =

 m110 m101

m210 m201

 ,
where

m110 =
−3rP∗2 + 2r(K0 + K)P∗

K0K
−

β1a1Z∗

(a1 + P∗ − m)2 − (r + q1E), m101 = −
β1(P∗ − m)
a1 + P∗ − m

,

m210 =
β2a1Z∗

(a1 + P∗ − m)2 −
θa2Z∗

(a2 + P∗)2 , m201 =
β2(P∗ − m)
a1 + P∗ − m

−
θP∗

a2 + P∗
− (d + q2E).

Then characteristic equation of system (2.2) around E∗(P∗,Z∗) is

λ2 − tr(JE∗)λ + det(JE∗) = 0, (3.3)

where

det(JE∗) =m110m201 − m101m210 =
M1 + M2 + M3 + M4 + M5 + M6 + M7M8 − q1(L1 + L2)

K0K(a2 + P∗)2(a1 + P∗ − m)2 ,

tr(JE∗) =m110 + m201 =
N1 + N2 + N3 + N4 + N5 + N6 − q1L3

K0K(P∗ − m)(a2 + P∗)(a1 + P∗ − m)2 ,

here

γ2 = 3P∗ − 2(K0 + K),
L1 = K0KE(P∗ − m)(a2 + P∗)(a1 + P∗ − m)[β2(P∗ − m)(a2 + P∗) − θP∗(a1 + P∗ − m)],
L2 = K0KE[M7P∗(P∗ + a1 − m) − (P∗ − m)(d + q2E)(a2 + P∗)2(a1 + P∗ − m)2],
L3 = K0KE(a2 + P∗)[(P∗ − m)(a1 + P∗ − m)2 + a1P∗(m − a1 − P∗)],

M1 = γ2rP∗(P∗ − m)(d + q2E)(a2 + P∗)2(a1 + P∗ − m)2,

M2 = γ2rθP∗2(P∗ − m)(a2 + P∗)(a1 + P∗ − m)2,

M3 = −γ2rβ2P∗(P∗ − m)2(a2 + P∗)2(a1 + P∗ − m),
M4 = −K0Krβ2(P∗ − m)2(a1 + P∗ − m)(a2 + P∗)2,

M5 = K0Kr(P∗ − m)(d + q2E)(a2 + P∗)2(a1 + P∗ − m)2,

M6 = K0KrθP∗(P∗ − m)(a2 + P∗)(a1 + P∗ − m)2,

M7 = a1θP∗(a2 + P∗) + a1(d + q2E)(a2 + P∗)2 − θa2(P∗ − m)(a1 + P∗ − m),
M8 = −rP∗4 + [r(m − a1 + K0 + K)]P∗3 − [r(K0 + K)(m − a1) + K0Kr]P∗2 + K0KrP∗(m − a1),
N1 = −γ2rP∗(P∗ − m)(a2 + P∗)(a1 + P∗ − m)2,

N2 = −K0K(P∗ − m)(a2 + P∗)(a1 + P∗ − m)2(r + d + q2E),
N3 = K0Kβ2(P∗ − m)2(a2 + P∗)(a1 + P∗ − m)
N4 = −K0KθP∗(P∗ − m)(a1 + P∗ − m)2,

N5 = a1r(a2 + P∗){P∗4 − (m − a1 + K0 + K)P∗3 + [(K0 + K)(m − a1) + K0K]P∗2},
N6 = −a1K0Kr(a2 + P∗)(m − a1)P∗.

Through analysis and calculation, we can obtain tr(JE∗) < 0 and det(JE∗) > 0 if and only if (H2)
and (H3) hold. Thus, we easily get that the positive equilibrium E∗(P∗,Z∗) of system (2.2) is locally
asymptotically stable when (H2) and (H3) hold. This completes the proof. �
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4. Hopf bifurcation of the positive equilibrium

4.1. Hopf bifurcation of system without time delay

In this section, we investigate the existence of Hopf bifurcation around E∗(P∗,Z∗) of system (2.2).
Taking prey refuge m as the bifurcation parameter, the critical value of Hopf bifurcation is a positive
root of tr(JE∗) = 0, thus m = mH which satisfies det(JE∗)m=mH > 0. As we know, when the value of m
exceeds its critical value m = mH, the stability of the positive equilibrium E∗(P∗,Z∗) will be changed
(Figure 1).
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Figure 1. Parameter diagram of the existence of Hopf bifurcation.

In addition, we verify the transversality condition under which Hopf bifurcation occurs. By some
simple calculations, we have that d

dm tr(JE∗)m=mH , 0, which implies that the stability of the positive
equilibrium E∗(P∗,Z∗) changes when the parametric restriction tr(JE∗) = 0 and the transversality
condition are satisfied simultaneously.

Therefore, we draw the following conclusion about the occurrence of Hopf bifurcation at the
positive equilibrium E∗(P∗,Z∗).

Theorem 4.1. Under the condition that the positive equilibrium E∗(P∗,Z∗) exists, the stability of
system (2.2) at the positive equilibrium E∗(P∗,Z∗) is changed through critical value m = mH.

In order to facilitate the discussion of the direction of Hopf bifurcation, we use the related theory
of [42] to calculate the first Lyapunov number l1 at the positive equilibrium E∗(P∗,Z∗) of system (2.2).

We transform the positive equilibrium E∗(P∗,Z∗) of system (2.2) to the origin by translation P̄ =

P − P∗ and Z̄ = Z − Z∗. Then, system (2.2) in a neighborhood of the origin can be obtained ˙̄P =m110P̄ + m101Z̄ + m120P̄2 + m111P̄Z̄ + m130P̄3 + m121P̄2Z̄ + R(P̄, Z̄),
˙̄Z =m210P̄ + m201Z̄ + m220P̄2 + m211P̄Z̄ + m230P̄3 + m221P̄2Z̄ + S (P̄, Z̄),

(4.1)

where m110, m101, m210 and m201 are the elements of the Jacobian matrix at the equilibrium E∗(P∗,Z∗).
So system (2.2) experiences the Hopf bifurcation at the equilibrium E∗(P∗,Z∗), we have m110+ m201 = 0
and ∆ = det(JE∗) = m110m201 − m101m210 > 0. The coefficients mki j(k = 1, 2) are given by

m120 =
(K0 + K)r − 3rP∗

K0K
+

β1a1Z∗

(a1 + P∗ − m)3 , m111 = −
β1a1

(a1 + P∗ − m)2 ,
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m130 = −[
r

K0K
+

β1a1Z∗

(a1 + P∗ − m)4 ], m121 =
β1a1

(a1 + P∗ − m)3 ,

m220 = −
β2a1Z∗

(a1 + P∗ − m)3 +
θa2Z∗

(a2 + P∗)3 , m211 =
β2a1

(a1 + P∗ − m)2 −
θa2

(a2 + P∗)2 ,

m230 =
β2a1Z∗

(a1 + P∗ − m)4 −
θa2Z∗

(a2 + P∗)4 , m221 = −
2β2a1

3(a1 + P∗ − m)3 +
2θa2

3(a2 + P∗)3 ,

and R(P̄, Z̄) and S (P̄, Z̄) are power series in (P̄, Z̄) with terms P̄i,Z̄ j satisfying i + j ≥ 4.
The calculation formula of the first Lyapunov number l1 [42] determining the stability of the limit

cycle in the planar system is described by

l1 =
−3Π

2m101∆
3
2

{[m110m210(m2
111 + m111m202 + m102m211) + m110m101(m2

211 + m120m211

+ m111m202) + m2
210(m111m102 + 2m102m202) − 2m110m210(m2

202 − m120m102)
− 2m110m101(m2

120 − m220m202) − m2
101(2m120m220 + m211m220) + (m101m210 − 2m2

110)
(m211m202 − m111m120)] − (m2

110 + m101m210)[3(m210m203 − m101m130)
+ 2m110(m121 + m212) + (m210m112 − m101m221)]}

=
−3Π

2m101∆
3
2

{[m110m210m2
111 + m110m101(m2

211 + m120m211) − 2m110m101m2
120 − m2

101

(2m120m220 + m211m220) − m111m120(m101m210 − 2m2
110)] − (m2

110 + m101m210)
[−3m101m130 + 2m110m121 − m101m221]}.

Based on the above analyses, we conclude the following conclusion about the direction of the limit
cycle.

Theorem 4.2. If l1 < 0, then Hopf bifurcation is supercritical. If l1 > 0, then Hopf bifurcation is
subcritical.

4.2. Hopf bifurcation of system with time delay

In this section, we will discuss the effect of maturation period of zooplankton τ on the dynamical
behavior of system (2.1).

4.2.1. Local stability and the existence of Hopf bifurcation

The local stability of the positive equilibrium E∗(P∗,Z∗) and the existence of Hopf bifurcation are
studied by considering the maturity delay τ as bifurcation parameter. First, system (2.1) is linearized
at positive equilibrium E∗(P∗,Z∗), we obtain P′ = a11P(t) + a12Z(t),

Z′ = a21P(t) + a22Z(t) + b21P(t − τ),
(4.2)

where

a11 =
−3rP∗2 + 2r(K0 + K)P∗

K0K
−

β1a1Z∗

(a1 + P∗ − m)2 − (r + q1E), a12 = −
β1(P∗ − m)
a1 + P∗ − m

,
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a21 = −
θa2Z∗

(a2 + P∗)2 , a22 =
β2(P∗ − m)
a1 + P∗ − m

−
θP∗

a2 + P∗
− (d + q2E), b21 =

β2a1Z∗

(a1 + P∗ − m)2 .

It is easy to see that corresponding characteristic equation of system (4.2) at positive equilibrium
E∗(P∗,Z∗) is

f (λ, τ) = λ2 + Aλ + B + Ce−λτ = 0, (4.3)

where A = −a11 − a22, B = a11a22 − a12a21,C = −a12b21.
When τ = 0, Eq (4.3) becomes

f (λ, 0) = λ2 + Aλ + B + C = 0, (4.4)

then Eq (4.4) is equivalent to Eq (3.3). Hence, the positive equilibrium E∗(P∗,Z∗) is locally
asymptotically stable when (H2) and (H3) hold.

When τ , 0, in order to get the existence of Hopf bifurcation, let λ = iω0(ω0 > 0) be a root of
Eq (4.3) and substitute it into Eq (4.3), then we have

−ω2
0 + B + C cosω0τ + i(Aω0 −C sinω0τ) = 0.

By separating the real and imaginary parts, we obtain − ω2
0 + B + C cosω0τ = 0,

Aω0 −C sinω0τ = 0.
(4.5)

From which, we have
ω4

0 − (2B − A2)ω2
0 + B2 −C2 = 0. (4.6)

Let u = ω2
0, then Eq (4.6) deduces to

u2 − (2B − A2)u + B2 −C2 = 0. (4.7)

Record Eq (4.7) as f (u) = u2 − (2B − A2)u + B2 −C2. From Eq (4.6), it follows that if
(H4) : 2B − A2 > 0, B2 −C2 > 0, and A4 − 2A2B + 4C2 = 0
holds, then Eq (4.6) has a unique positive root ω2

0. Substituting ω2
0 into Eq (4.5), we obtain

τ2n =
1
ω0

arccos[
ω2

0 − B
C

] +
2nπ
ω0

, n = 0, 1, 2 · · · .

If
(H5) : 2B − A2 > 0, B2 −C2 > 0, and (2B − A2)2 > 4(B2 −C2)
holds, then Eq (4.6) has two different positive roots ω2

+ and ω2
−. We substitute ω2

± into Eq (4.5), then

τ2k =
1
ω±

arccos[
ω2

0 − B
C

] +
2kπ
ω±

, k = 0, 1, 2 · · · .

Let λ be the root of Eq (4.3) satisfying Reλ(τ2n) = 0 (rep.Reλ(τ±2k) = 0) and Imλ(τ2n) = ω0

(rep.Imλ(τ±2k) = ω± ). Then, when τ0 = min{τ2n, τ2k}, n, k = 0, 1, 2···, we have the following conclusion.
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Theorem 4.3. If f
′

(u) > 0, since dRe(λ)
dτ

∣∣∣∣
τ=τ0

and f
′

(u) have the same sign, then dRe(λ)
dτ

∣∣∣∣
τ=τ0

> 0 holds.

Proof. From Eq (4.3), we can obtain

dλ
dτ

=
Cλe−λτ

2λ + A −Cτe−λτ
.

Notice that Ce−λτ = −(λ2 + Aλ + B). Thus, we obtain that

(
dλ
dτ

)−1 =
2λ + A

−λ(λ2 + Aλ + B)
−
τ

λ
. (4.8)

Substituting λ = iω0 into (4.8), we have

Re(
dλ
dτ

)−1
τ=τ0

=
2ω4

0 − (2B − A2)ω2
0

(Aω2
0)2 + (ω3

0 − Bω0)2
=

ω2
0 f
′

(ω2
0)

(Aω2
0)2 + (ω3

0 − Bω0)2
.

Therefore,

sign{
dRe(λ)

dτ

∣∣∣∣
τ=τ0
} = sign{Re(

dλ
dτ

)−1
τ=τ0
} = sign{ f ′(ω2

0)}.

If f ′(ω2
0) , 0, we have dRe(λ)

dτ

∣∣∣∣
τ=τ0
, 0, then dRe(λ)

dτ

∣∣∣∣
τ=τ0

> 0. If dRe(λ)
dτ

∣∣∣∣
τ=τ0

< 0, then Eq (4.3) has the
roots of the real part when τ < τ0. This contradicts that the positive equilibrium E∗(P∗,Z∗) is locally
asymptotically stable when τ ∈ (0, τ0). �

According to the Hopf bifurcation theorem given in [43], we can get the following result on stability
and bifurcation of system (2.1).

Theorem 4.4. For system (2.1), suppose (H4) and (H5) are satisfied. Then the positive equilibrium
E∗(P∗,Z∗) is locally asymptotically stable when τ ∈ (0, τ0), and system (2.1) undergoes a Hopf
bifurcation at E∗(P∗,Z∗) when τ passes through its critical value τ = τ0.

4.2.2. Direction and stability of Hopf bifurcation

In the previous section, we have already obtained sufficient conditions to guarantee that system (2.1)
has a periodic solution at positive equilibrium E∗(P∗,Z∗) when the critical value τ = τ0. In this section,
we will use the normal form theory and the center manifold theorem presented in Hassard et al. [43] to
obtain the properties of the bifurcating periodic solution.

Let τ = τ0 + µ, µ ∈ R. Then µ = 0 is a Hopf bifurcation value of system (2.1). Without loss of
generality, we can choose the phase space as C = C([−τ, 0],Θ). Let u(t) = (u1(t), u2(t))T ∈ Θ,ut(θ) =

u(t + θ) ∈ C, system (2.1) can be rewritten as

u̇(t) = Lµ(ut) + f (µ, ut), (4.9)

where Lµ : C → Θ and f : R ×C → Θ are defined by

Lµ(ϕ) = G1ϕ(0) + G2ϕ(−τ),
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G (1) =

 a11 a12

a21 a22

 ,G (2) =

 0 0

b21 0

 , f (µ, ϕ) =

 f1(µ, ϕ)

f2(µ, ϕ)

 ,
where

f1(µ, ϕ) = ρ1ϕ1(0)ϕ2(0) + ρ2ϕ
2
1(0),

f2(µ, ϕ) = σ1ϕ1(0)ϕ2(0) + σ2ϕ
2
1(0) + σ3ϕ

2
1(−1) + σ4ϕ1(−1)ϕ2(0),

here

ρ1 = −
β1a1

(a1 + P∗ − m)2 , ρ2 =
2r(K0 + K) − 6rP∗

K0K
+

2β1a1Z∗

(a1 + P∗ − m)3 ,

σ1 = −
θa2

(a2 + P∗)2 , σ2 =
2θa2Z∗

(a2 + P∗)3 , σ3 =
−2β2a1Z∗

(a1 + P∗ − m)3 , σ4 =
β2a1

(a1 + P∗ − m)2 .

Based to the Reisz representation theorem, there is a bounded variation function
η(•, µ) : [−τ, 0]→ Θ2×2 such that

Lµ(ϕ) =

∫ 0

−τ

dη(θ, µ)ϕ(θ), ϕ ∈ C.

Then, we have a choice that

dη(θ, µ) =

 a11 a12

a21 a22

 δ(θ)dθ +

 0 0

b21 0

 δ(θ + τ)dθ,

where δ is the Dirac function. For ϕ ∈ C1([−τ, 0],Θ2), we define the operator A(µ) as

A(µ)ϕ(θ) =


dϕ(θ)

dθ
, θ ∈ [−τ, 0),∫ 0

−τ

dη(ξ, µ)ϕ(ξ), θ = 0.
(4.10)

Further, we can define the operator R(µ) as

R(µ)ϕ(θ) =

 0, θ ∈ [−τ, 0),
f (ϕ, µ), θ = 0.

Then, we can rewrite Eq (4.9) as the following operator equation

.
u(t) = Aµut + Rµut. (4.11)

For ψ ∈ C1([−τ, 0],Θ2), the adjoint operator A∗0 of A0 can be defined as

A∗0ψ(s) =


−

dψ(s)
ds

, s ∈ (0, τ],∫ 0

−τ

dηT (t, 0)ψ(−t), s = 0,
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where ηT is the transpose of η, and the domains of A0 and A∗0 are C1([−τ, 0],Θ2) and C1([0, τ],Θ2),
respectively.

For ϕ ∈ C1([−τ, 0],Θ2) and ψ ∈ C1([0, τ],Θ2), a bilinear form is given by

〈ψ, ϕ〉 = ψ̄(0)ϕ(0) −
∫ 0

−τ

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (4.12)

where η(θ) = η(θ, 0). Then A0 and A∗0 are a pair of adjoint operators. By the results obtained in the last
section, we know that ±iω0 are the eigenvalues of A0. Thus, they are also eigenvalues of A∗0. What’s
more, we assume that q(θ) is the the eigenvalues of A0 corresponding to iω0, then

A0q(θ) = iω0q(θ). (4.13)

By Eq (4.10), Eq (4.13) becomes
dq(θ)

dθ
= iω0q(θ), θ ∈ [−τ, 0],

L0q(0) = iω0q(0), θ = 0.
(4.14)

From Eq (4.14) we can get
q(θ) = Veiω0θ, θ ∈ [−τ, 0], (4.15)

where V = (v1, v2)T ∈ Θ2 is a constant vector. By virtue of Eq (4.15), we may obtain

G1V + G2e−iω0τV − iω0IV = 0,

which yields

V =

 v1

v2

 =

(
1

iω0−a11
a12

)
.

On the other hand, if −iω0 is the eigenvalue of A∗0, then we have

A∗0q∗(ξ) = iω0q∗(ξ).

For the non-zero vector q∗(ξ), ξ ∈ [0, τ0], we can obtain

GT
1 V∗ + GT

2 eiω0τV∗ + iω0IV∗ = 0.

Let q∗(ξ) = DV∗eiω0ξ, where ξ ∈ [0, τ0], and V∗ = (v∗1, v
∗
2)T be a constant vector. Similarly, we get

V∗ =

 v∗1
v∗2

 =

 − iω0+a22
a12

1

 .
In fact, by Eq (4.12), we have

〈q∗, q〉 = q̄∗T (0)q(0) −
∫ 0

−τ0

∫ θ

ξ=0
q̄∗T (ξ − θ)dη(θ)q(ξ)dξ,

= D̄[V̄∗T V −
∫ 0

−τ0

∫ θ

ξ=0
V̄∗T e−iω0(ξ−θ)dη(θ)Veiω0ξdξ]

= D̄[V̄∗T V + τ0e−iω0τ0V̄∗TG2V]
= D̄[v2 + v̄∗1 + τ0b21e−iω0τ0].

(4.16)
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Actually, we can choose
D̄ = [v2 + v̄∗1 + τ0b21e−iω0τ0]−1.

From Eq (4.16) we obtain that 〈q∗, q〉 = 1. More importantly

−iω0〈q∗, q̄〉 = 〈q∗, A0q̄〉 = 〈A∗0q∗, q̄〉 = 〈−iω0q∗, q̄〉 = iω0〈q∗, q̄〉,

thus, 〈q∗, q̄〉 = 0 is easily verified.
Based on the above analysis, we can come to the following simple conclusion.

Theorem 4.5. Let q(θ) = Veiω0θ, where θ ∈ [−τ, 0], is the eigenvector of A0 corresponding to iω0, and
let q∗(s) = DV∗eiω0 s, where s ∈ [0, τ] is the eigenvector of A∗0 corresponding to −iω0. Then

〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, V = (1, v2)T , V∗ = (v∗1, 1)T ,

where
v2 =

iω0 − a11

a12
, v∗1 = −

iω0 + a22

a12
, D̄ = [v2 + v̄∗1 + τ0b21e−iω0τ0]−1.

Next, we use the same notations as the previous part to study the stability of bifurcating periodic
solution. We shall calculate the coordinates to express the center manifold C0 at µ = 0. Let ut be the
solution of

.
u(t) = Aµut + Rµut at µ = 0 and define

z(t) = 〈q∗, ut〉, (4.17)

W(t, θ) = ut(θ) − 2Re[z(t)q(θ)]. (4.18)

On the center manifold C0, we have

W(t, θ) = W[z(t), z̄(t), θ],

and

W[z, z̄, θ] = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ W30(θ)

z3

6
+ · · ·,

where z and z̄ are the local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. Notice
that W is real if ut is real. So here we only consider the real solutions.

For the solution ut ∈ C0 of Eq (4.11), we have

ż(t) = 〈q∗, u̇t〉 = 〈q∗, A0ut + R0ut〉 =
〈
A∗0q∗, ut

〉
+ q̄∗(0) f0(0, ut) = iω0z + q̄∗T (0) f (z, z̄). (4.19)

Then Eq (4.19) can be rewritten as
ż(t) = iω0z + g(z, z̄), (4.20)

where

g(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ g30(θ)

z3

6
+ · · ·. (4.21)

According to Eqs (4.11), (4.17) and (4.18), we may obtain

Ẇ = u̇t − żq − ˙̄zq̄

=

A0(W) − 2Re[q̄∗ f0q(θ)], θ ∈ [−τ, 0),
A0(W) − 2Re[q̄∗ f0q(0)] + f0, θ = 0.

(4.22)
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We can rewrite Eq (4.22) as
Ẇ = A0(W) + H(z, z̄, θ), (4.23)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ H30(θ)

z3

6
+ · · ·. (4.24)

Substituting the corresponding series into Eq (4.22) and comparing the coefficients, we have

(A0 − 2iω0I)W20(θ) = −H20(θ),
A0W11(θ) = −H11(θ),
(A0 + 2iω0I)W02(θ) = −H02(θ).

(4.25)

According to Eqs (4.19) and (4.20), we know

g(z, z̄) =q̄∗(0) f (0)(W(z, z̄, 0) + 2Re(z(t)q(θ)))

=D̄(v̄∗1, 1)

 ρ1ϕ1(0)ϕ2(0) + ρ2ϕ
2
1(0)

σ1ϕ1(0)ϕ2(0) + σ2ϕ
2
1(0) + σ3ϕ

2
1(−1) + σ4ϕ1(−1)ϕ2(0)


=D̄

(
(v̄∗1ρ1 + σ1)(W (1)

20 (0)
z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ v1z + v̄1z̄)

× (W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ z + z̄) + (v̄∗1ρ2 + σ2)

× (W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ v1z + v̄1z̄)2

+ σ3(W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ v1ze−iω0τ0 + v̄1z̄eiω0τ0)2

+ σ4(W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ v1ze−iω0τ0 + v̄1z̄eiω0τ0)

× (W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ z + z̄)

)
.

Comparing the coefficients with Eq (4.21), it follows that

g20 = 2D̄
[
v̄∗1K11 + K21

]
, g11 = D̄

[
v̄∗1K12 + K22

]
,

g02 = 2D̄
[
v̄∗1K13 + K23

]
, g21 = 2D̄

[
v̄∗1K14 + K24

]
,

where

K11 =ρ1v1 + ρ2v2
1, K12 = ρ1(v1 + v̄1) + 2ρ2v1v̄1,

K21 =σ1v1 + σ2v2
1 + σ3v2

1e−2iω0τ0 + σ4v1e−iω0τ0 ,

K22 =σ4(v1e−iω0τ0 + v̄1eiω0τ0) + σ1(v1 + v̄1) + 2σ2v1v̄1 + 2σ3v1v̄1,

K13 =ρ1v̄1 + ρ2v̄2
1, K23 = σ1v̄1 + σ2v̄2

1 + σ3v̄2
1e2iω0τ0 + σ4v1eiω0τ0 ,

K14 =ρ1(
1
2

W (1)
20 (0) + W (1)

11 (0) +
1
2

W (2)
20 (0)v̄1 + W (2)

11 (0)v1) + 2ρ2(
1
2

W (1)
20 (0)v̄1 + W (1)

11 (0)v1),

K24 =σ1(
1
2

W (1)
20 (0) + W (1)

11 (0) +
1
2

W (2)
20 (0)v̄1 + W (2)

11 (0)v1)

Mathematical Biosciences and Engineering Volume 17, Issue 3, 1973–2002.



1990

+ 2σ2(
1
2

W (1)
20 (0)v̄1 + W (1)

11 (0)v1) + 2σ3(
1
2

W (1)
20 (−1)v̄1eiω0τ0 + W (1)

11 (−1)v1e−iω0τ0)

+ σ4(
1
2

W (1)
20 (−1) + W (1)

11 (−1) +
1
2

W (2)
20 (0)v̄1eiω0τ0 + W (2)

11 (0)v1e−iω0τ0).

Since W20(θ) and W11(θ) appear in g21, we need to compute them further. From
Eqs (4.22) and (4.23), we have that for θ ∈ [−τ, 0),

H(z, z̄, θ) = − 2Re[q̄∗(0) f0(z, z̄)q(θ)] = −2Re[g(z, z̄)q(θ)] = −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ).

Comparing the coefficients with Eq (4.24) gives that

H20(θ) = −g20q(θ) − ḡ20q̄(θ), H11(θ) = −g11q(θ) − ḡ11q̄(θ).

From Eqs (4.10) and (4.25), we have

Ẇ20(θ) = 2iω0W20(θ) + g20q(θ) + ḡ02q̄(θ), (4.26)

and
Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (4.27)

Solving for W20(θ) and W11(θ), we obtain

W20(θ) =
ig20q(0)
ω0

eiω0θ +
iḡ02q̄(0)

3ω0
e−iω0θ + E1e2iω0θ, (4.28)

and
W11(θ) =

−ig11q(0)
ω0

eiω0θ +
iḡ11q̄(0)
ω0

e−iω0θ + E2, (4.29)

where E1 = (E(1)
1 , E(2)

1 ) and E2 = (E(1)
2 , E(2)

2 ) are the following two-dimensional constant vectors, and
can be determined by setting θ = 0 in H.

In fact, the following formula is true at θ = 0,

H(z, z̄, 0) = − 2Re[q̄∗(0) f0(z, z̄)q(0)] + f0,

we have

H20(0) = −g20q(0) − ḡ02q̄(0) +

 K11

K21

 , (4.30)

and

H11(0) = −g11q(0) − ḡ11q̄(0) +

 K12

K22

 . (4.31)

Substituting Eqs (4.28) and (4.29) into Eqs (4.26) and (4.27), respectively, we get a11 a12

a21 a22

 W20(0) +

 0 0

b21 0

 W20(−τ) = 2iω0W20(0) − H20(0), (4.32)
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and  a11 a12

a21 a22

 W11(0) +

 0 0

b21 0

 W11(−τ) = −H11(0). (4.33)

Substituting Eq (4.28) into Eq (4.32), we have a11 a12

a21 a22

 [ ig20

ω0

 1

v2

 +
iḡ02

3ω0

 1

v̄2

 + E1

]
+

 0 0

b21 0

 [ ig20

ω0

 1

v2

 e−iω0τ

+
iḡ02

3ω0

 1

v̄2

 eiω0τ + E1e−2iω0τ
]

= −2iω0

[ ig20

ω0

 1

v2

 +
iḡ02

3ω0

 1

v̄2

 + E1

]
− H20.

(4.34)

Since iω0 is the eigenvalue of A0 and q(0) is the corresponding eigenvector, we get

(
iω0I −

∫ 0

−τ0

eiω0θdη(θ)
)
q(0) = 0,

(
− iω0I −

∫ 0

−τ0

e−iω0θdη(θ)
)
q̄(0) = 0,

that is  a11 a12

a21 a22

  1

v2

 +

 0 0

b21 0

  1

v2

 e−iω0τ = iω0

 1

v2

 , (4.35)

and  a11 a12

a21 a22

  1

v̄2

 +

 0 0

b21 0

  1

v̄2

 eiω0τ = iω0

 1

v̄2

 . (4.36)

By Eqs (4.30) and (4.34)–(4.36), we obtain 2iω0 − a11 −a12

−a21 − b21e−2iω0τ 2iω0 − a22

 E1 =

 K11

K21

 ,
which leads to

E(1)
1 =

M(1)
1

M1
, E(2)

1 =
M(2)

1

M1
,

where

M1 = (2iω0 − a11)(2iω0 − a22) − a12(a21 + b21e−2iω0τ),

M(1)
1 = K11(2iω0 − a22) + K21a12, M(2)

1 = K21(2iω0 − a11) + K11(a21 + b21e−2iω0τ).

Similarly, substituting Eqs (4.29) and (4.31) into Eq (4.33), we have −a11 −a12

−a21 − b21 −a22

 E1 =

 K12

K22

 ,
which leads to

E(1)
2 =

M(1)
2

M2
, E(2)

2 =
M(2)

2

M2
,
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where

M2 = a11a22 − a12(a21 + b21), M(1)
2 = −K12a22 + K22a12, M(2)

2 = −K22a11 + K12(a21 + b21).

Through the above calculation and analysis, it is not difficult to see that each gi j depends on the
parameters and time delay of system (2.1). Thus, we can obtain the following expressions

C1(0) =
i

2ω0

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re {C1(0)}
Re {λ′(τ0)}

,

β = 2Re {C1(0)} ,

T2 = −
Im {C1(0)} + µ2Im {λ′(τ0)}

ω0
,

(4.37)

which determine the direction of Hopf bifurcation and stability of bifurcating periodic solutions of
system (2.1) on the center manifold at the critical values τ0. From the conclusion of Hassard et al. [43],
we summarize the following main findings.

Theorem 4.6. The values of the parameters µ2, β and T2 of (4.37) will determine the properties of
Hopf bifurcation of system (2.1).
(i) The sign of µ2 determines the direction of Hopf bifurcation: The Hopf bifurcation is supercritical if
µ2 > 0 and the Hopf bifurcation is subcritical if µ2 < 0.
(ii) The sign of β determines the stability of bifurcating periodic solutions: The periodic solutions are
stable if β < 0 and unstable if β > 0.
(iii) The sign of T2 determines the period of bifurcating periodic solutions: The period increases if
T2 > 0 and the period decreases if T2 < 0.

5. Optimal harvesting policy

When τ = 0, let ĉ be the constant harvesting cost per unit effort and p1, p2 are the constant price
per unit biomass of phytoplankton and zooplankton, respectively. Then the net economic revenue to
the society is given by

π(P,Z, E, t) = (p1q1P + p2q2Z − ĉ)E.

In order to study the optimal harvesting yield of system (2.2), we will consequently maximize the
full return from resource management. Hence we take the harvesting effort E as a control variable and
consider a objective function defined by the present value J of a continuous time-stream of revenues

J =

∫ ∞

0
L(X, E, t)dt, (5.1)

where
L(X, E, t) = e−δt(p1q1P + p2q2Z − ĉ)E,

where δ is the instantaneous annual discount rate. We consider that the present value of capital flow
over time depends on discount rate δ. Here X = [P,Z]T is the vector of state variables, it can be written
as Ẋ = f (X, E), X(0) = X0 by according to the state equations of (2.2).
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Our optimal control problem is to maximize Eq (5.1) subject to the state equations of (2.2) and to
the control constraint

0 ≤ E(t) ≤ Emax,

where Emax is the maximum harvesting effort.
Based on the Pontryagin’s Maximum Principle [44], we can obtain the optimal solution of this

problem. We know that the convexity of objective function with respect to E(t), the linearity of the
control differential equations and the compactness of the range values of the state variables to ensure
the existence of optimal control.

The present value Hamiltonian function of the optimal problem is formulated by

H(X, E, t) = L(X, E, t) + λT (t) f (X, E),

where λ(t) = [λ1(t), λ2(t)]T is the vector of constant or adjoint variables.
Next, we substitute λT (t) and f (X, E) into above Hamiltonian function. Then, the Hamiltonian

function becomes

H(P,Z, E, t) =e−δt(p1q1P + p2q2Z − ĉ)E

+ λ1(t)
[
rP(1 −

P
K

)(
P
K0
− 1) −

β1(P − m)
a1 + (P − m)

Z − q1EP
]

+ λ2(t)
[ β2(P − m)
a1 + (P − m)

Z − dZ −
θP

a2 + P
Z − q2EZ

]
.

To make H reach the maximum on the control set 0 ≤ E(t) ≤ Emax, the condition that the
Hamiltonian function H must satisfy is presented by

∂H
∂E

= e−δt(p1q1P + p2q2Z − ĉ) − λ1(t)q1P − λ2(t)q2Z = 0. (5.2)

Pontryagin’s Maximum Principle [44] states that the optimal state trajectory, optimal control, and
corresponding adjoint variable vector must satisfy the following adjoint equations

−λ̇(t) = HX.

Obviously, the adjoint equations are

−
dλ1

dt
=
∂H
∂P

=e−δt p1q1E + λ1(t)
[−3rP2 + 2(K0 + K)rP

K0K
−

β1a1Z
(a1 + P − m)2 − r − q1E

]
+ λ2(t)

[ β2a1Z
(a1 + P − m)2 −

θa2Z
(a2 + P)2

]
,

−
dλ2

dt
=
∂H
∂Z

=e−δt p2q2E − λ1(t)
β1(P − m)
a1 + P − m

+ λ2(t)
[ β2(P − m)
a1 + P − m

−
θP

a2 + P
− d − q2E

]
.
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For the positive optimal solutions, which satisfy Ṗ = Ż = 0 (in other words, P, Z are not dependent
on t ) and from two equations of system (2.2), we have

r(1 −
P
K

)(
P
K0
− 1) −

β1(P − m)Z
P(a1 + P − m)

Z − q1E = 0, (5.3)

β2(P − m)
a1 + P − m

− d −
θP

a2 + P
− q2E = 0. (5.4)

From the above analysis, it is obvious that E is also independent of t. Furthermore, we get

−
dλ1

dt
=λ1(t)

[−2rP2 + (K0 + K)rP
K0K

+
β1Z(P − m)2 − β1ma1Z

P(a1 + P − m)2

]
+ λ2(t)

[ β2a1Z
(a1 + P − m)2 −

θa2Z
(a2 + P)2

]
+ e−δt p1q1E,

and
−

dλ2

dt
= e−δt p2q2E − λ1(t)

β1(P − m)
a1 + P − m

. (5.5)

Differentiating Eq (5.2) and replacing value of λ̇1, λ̇2, we get

[−2rq1P3 + (K0 + K)rq1P2

K0K
+
β1PZ(q1 − q2)[(P − m)2 − a1m] − β1q2a1P2Z

P(a1 + P − m)2

]
× λ1eδt + λ2eδt

[ q1β2a1PZ
(a1 + P − m)2 −

q1θa2PZ
(a2 + P)2

]
= δF − p1q2

1EP − p2q2
2EZ.

(5.6)

By Eqs (5.2) and (5.6), we can get

λ1eδt =
P1 + P2

Q1 + Q2 + Q3
, (5.7)

λ2eδt =
P3 + P4 + P5

Q4 + Q5 + Q6
, (5.8)

where

P1 = K0Kq2PZ(a2 + P)2(a1 + P − m)2[δF − E(p1q2
1P + p2q2

2Z)],
P2 = −K0KFq1β2a1P2Z(a2 + P)2 + K0KFq1θa2P2Z(a1 + P − m)2,

P3 = K0Kq1P2(a2 + P)2(a1 + P − m)2[δF − E(p1q2
1P + p2q2

2Z)],
P4 = −rq1FP3(a2 + P)2(a1 + P − m)2(K0 + K − 2P),
P5 = −β1FK0KPZ(q1 − q2)(a2 + P)2[(P − m)2 − a1m] + FK0Kβ1q2P2Z(a2 + P)2,

Q1 = rq1q2P3Z(K0 + K − 2P)(a2 + P)2(a1 + P − m)2,

Q2 = K0Kq2β1PZ2(q1 − q2)(a2 + P)2[(P − m)2 − a1m] − K0Kβ1q2
2a1P2Z2(a2 + P)2,

Q3 = −K0Kq2
1β2a1P3Z(a2 + P)2 + K0Kq2

1θa2P2Z(a1 + P − m)2,

Q4 = K0Kq2
1P3Z[β2a1(a2 + P)2 − θa2(a1 + P − m)2],

Q5 = −rq1q2P3Z(a2 + P)2(a1 + P − m)2(K0 + K − 2P),

Mathematical Biosciences and Engineering Volume 17, Issue 3, 1973–2002.



1995

Q6 = −β1K0Kq1PZ2(q1 − q2)(a2 + P)2[(P − m)2 − a1m] + K0Kβ1q2
2a1P2Z2(a2 + P)2.

Now removing E from Eqs (5.3) and (5.4), we obtain

r(1 −
P
K

)(
P
K0
− 1) −

β1(P − m)
P(a1 + P − m)

Z =
q1

q2

[ β2(P − m)
a1 + P − m

− d −
θP

a2 + P

]
, (5.9)

which is the optimal trajectory of the steady state given by the optimal solutions P = Pδ, Z = Zδ. Then,
we substitute λ1 and λ2 into Eq (5.5) and obtain optimal equilibrium level of effort given by

Eδ =
δλ2(a1 + P − m) + λ1β1(P − m)

p2q2(a1 + P − m)
eδt. (5.10)

By solving Eqs (5.9) and (5.10) when assigning a certain value to δ, we can obtain the optimal
equilibrium level (Pδ,Zδ).

The optimal harvesting effort at any time is determined by

E(t) =



Emin,
∂H
∂E

< 0,

Eδ,
∂H
∂E

= 0,

Emax,
∂H
∂E

> 0,

where Emin is the minimum harvesting effort.

6. Numerical simulations

In this section, we will do some numerical simulations to verify the theoretical results. The values
of all parameters in system (2.2) are sourced from Table 1. And the initial values of the system (2.2)
are assumed to be P(0) = 400, Z(0) = 800.

Table 1. Parameter estimation of system (2.2).

Parameter Description Value
r The intrinsic growth rate of phytoplankton 0.8
K Environmental carrying capacity of phytoplankton 500
β1 Predation rate of zooplankton 1
β2 Growth efficiency of zooplankton 0.89
d Mortality rate of zooplankton 0.2
a1 Half saturation constant 0.5
a2 Half saturation constant 9.2
θ Toxin production rate 0.39
m Refuge capacity defaulted
K0 Critical level of the growth of phytoplankton 25
q1 Catchability cofficient of phytoplankton 0.03
q2 Catchability cofficient of zooplankton 0.03
E Combined harvesting effort 10
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First, according to the case (e) in Theorem 3.2, there is a positive equilibrium E∗ = (343.2, 1004.4)
of system (2.2). In addition, if assumptions (H2) and (H3) hold, the positive equilibrium E∗ is locally
asymptotically stable (Figure 2). We can clearly see that the solution curve starting from different
initial values eventually tends to the black point, that is, the positive equilibrium E∗ = (343.2, 1004.4)
(Figure 2b).
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Figure 2. When m = 300, local asymptotic stability of the positive equilibrium
E∗ = (343.2, 1004.4) of system (2.2). (a) Stable behavior P(t) and Z(t) with time, (b) phase
portrait.

Second, for the parameter values given above, we obtain mH = 286.6 and the first Lyapunov number
l1 = −0.0187 < 0 by simple calculation. This indicates that system (2.2) has a stable limit cycle around
the positive equilibrium E∗. This result is shown in Figure 3.
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Figure 3. When m = 200, system (2.2) undergoes a supercritical Hopf bifurcation around
positive equilibrium E∗. (a) Dynamical behavior of P(t) and Z(t), (b) phase portrait.

Next, for the given parameters, we get ω0 = 0.2354 and τ0 = 0.011 when τ , 0. According to
Theorem 4.4, we obtain that the positive equilibrium E∗ = (343.2, 1004.4) is locally asymptotically
stable when τ = 0.01 < τ0 = 0.011 (Figure 4). Then, we choose the value of τ as τ = 0.1 > τ0 = 0.011
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and obtain that C1(0) = −0.0019−0.0152i, µ2 = 6.4946×10−21 > 0, β = −0.0038 < 0, T2 = 0.0065 > 0
by using formula (4.37). On the basis of Theorem 4.6, we know that the system (2.1) experiences a
supercritical Hopf bifurcation when τ passes its critical value τ0. Other than this, system (2.1) has
stable bifurcating periodic solutions and the period of the bifurcating periodic solutions is increasing.
We clearly see from the Figure 5 that the positive equilibrium E∗ = (343.2, 1004.4) is destabilized
through a Hopf bifurcation.
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Figure 4. When τ = 0.01 < τ0 = 0.011, the positive equilibrium E∗ = (343.2, 1004.4) is
locally asymptotically stable. (a) Stable behavior of P(t) and Z(t), (b) phase portrait.
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Figure 5. When τ = 0.1 > τ0 = 0.011, the positive equilibrium E∗ = (343.2, 1004.4) is
destabilized through a Hopf bifurcation. (a) Dynamical behavior of P(t) and Z(t), (b) phase
portrait.
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Finally, we consider the following parameter values: p1 = 1, p2 = 5, ĉ = 0.1, δ = 0.2 and the
other parameters remain unchanged. Figure 6 shows the solution curve of the state variables with time.
Figure 7a,b show the variation curve of the adjoint variables λ1 and λ2, respectively. It is easy to see
from the Figure 7 that the adjoint variables λ1 and λ2 tend ultimately to 0 with the increase of time.
In addition, the effect of the constant refuge capacity of phytoplankton population m, the critical value
of the growth of phytoplankton K0, the half saturation constant a1 and the half saturation constant
a2 on the optimal harvesting effort in Figure 8. It is not difficult to see that the optimal harvesting
effort decreases as m increases (Figure 8a), but the optimal harvesting effort increases as K0, a1 and a2

increase (Figure 8b–d).
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Figure 6. The solution curve of state variables of the control system (2.2): (a) phytoplankton,
(b) zooplankton.
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Figure 7. The curve of the adjoint variables of system (2.2): (a) λ1, (b) λ2.
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Figure 8. The curve of the optimal harvesting of system (2.2) with respect to different
parameters: (a) constant refuge capacity of phytoplankton population m, (b) critical value of
the growth of phytoplankton K0, (c) half saturation constant a1, (d) half saturation constant a2.

7. Conclusions

In this paper, we studied the dynamics of the phytoplankton-zooplankton system in which the
growth of phytoplankton is affected by Allee effect and the growth of zooplankton is affected by
maturation delay. For the positive equilibrium E∗, due to the expression of the trace and determinant
of its Jacobian matrix are very complicated, so the stability of the positive equilibrium E∗ is verified
by the combination of theoretical derivation and numerical simulation. When the maturation delay of
zooplankton is not considered, the strict mathematical proof of the existence of Hopf bifurcation is
given by using the relevant bifurcation theory. In addition, we derive the expression of the first
Lyapunov number l1 that determines the direction of the Hopf bifurcation. Furthermore, when
considering the maturation period of phytoplankton, we obtain some properties of the Hopf
bifurcation through the normal form theory and the center manifold theorem. Because plankton has
certain economic significance, we also consider linear harvesting for both phytoplankton and
zooplankton and obtain the optimal harvesting policy by Pontryagin’s Maximum Principle in this
paper.

Comparing with the study on the phytoplankton-zooplankton system in [19], our model is more
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realistically by considering Allee effect and maturation delay into growth of phytoplankton and
zooplankton, respectively. What’s more, both populations are linearly harvested. For phytoplankton,
we can predict the stability of system (2.2) at the positive equilibrium E∗ by selecting the parameter
values to determine the critical value mH of the refuge capacity m. When we choose m > mH,
system (2.2) is stable at the positive equilibrium E∗, but when m < mH, system (2.2) experiences a
supercritical Hopf bifurcation and loses stability. This indicates that increasing the refuge capacity m
is important for balancing ecosystem. For zooplankton, we regard the maturation delay of
zooplankton as a parameter to predict the stability of system (2.1). The positive equilibrium E∗ of the
system (2.1) is stable, if the maturation delay of zooplankton τ < τ0, which implies that the densities
of phytoplankton and zooplankton will tend to be stable constants, indicating the ecosystem is
balanced. But system (2.1) undergoes a Hopf bifurcation at the positive equilibrium E∗ if the the
maturation delay of the zooplankton τ > τ0, which shows that the densities of phytoplankton and
zooplankton species will oscillate periodically.

Through the above analysis, we know that if the refuge capacity m < mH of phytoplankton or the
maturation delay τ > τ0 of zooplankton, the densities of phytoplankton and zooplankton will change
periodically, which indicates the system becomes unstable. If the refuge capacity m > mH of
phytoplankton or the maturation delay τ < τ0 of zooplankton, the densities of phytoplankton and
zooplankton will tend to be stable, which suggests a state of ecosystem balance. Thus, we can
maintain the ecological balance by adjusting the values of the refuge capacity m of phytoplankton and
the maturation delay τ of zooplankton determined by system parameters.
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