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Abstract: Traditional single model based soft sensors may have poor performance on quality 
prediction for batch processes because of the strong nonlinearity, multiple-phase, and time-varying 
characteristics. Therefore, a phase partition based ensemble learning framework upon least squares 
support vector regression (LSSVR) is proposed for soft sensor modeling. Firstly, multiway principal 
component analysis (MPCA) is employed to handle high-dimensional datasets and extract essential 
correlation information. Then, different operation phases of the process can be identified by the 
phase partition strategy based on Gaussian mixture model (GMM) method. Meanwhile, the optimal 
Gaussian component number is determined by Bayesian information criterion (BIC) technique. 
Further, multiple localized LSSVR models are constructed to characterize the various dynamic 
relationships between quality and process variables for local regions, while the grid search (GS) and 
ten-fold cross-validation methods are introduced to parameter optimization for each local model. 
Finally, the posterior probability for each test sample with respect to different phases can be 
estimated by Bayesian inference strategy, and local outputs are integrated to produce the final quality 
prediction results. Feasibility and superiority of the proposed soft sensor are validated through a case 
study for penicillin fermentation process. It can achieve satisfactory prediction accuracy and 
effectively tackle nonlinear and multi-phase modeling problems in chemical and biological 
processes. 
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1. Introduction 

In chemical processes, accurate real-time predictions of product quality are highly desirable, 
which is critical to realize successful process control, monitoring and optimization [1,2]. However, 
due to the costs of online analyzer and offline laboratory analysis, the process often encounters the 
great challenge of lacking reliable quality estimation. Soft sensing technique, which aims to construct 
theoretical or statistical models that can describe the functional relationship between process 
variables (easy-to-measure variables) and quality variables (difficult-to-measure variables), is 
proposed to address this issue and attracts much attention in both academia and industry. Generally, 
soft sensors can be classified into three groups: Model-driven, data-driven and mixed models [3–6]. 
Compared with model-driven method, data-driven one does not require in-depth mechanical 
knowledge of processes and only relies on recorded process datasets, which shows great flexibility 
and low complexity. Many dynamical models, such as nonlinear autoregressive with exogenous 
inputs (NARX) [7], and data-driven models, such as partial least squares (PLS), artificial neural 
networks (ANN), support vector machine (SVM), and Gaussian process regression (GPR) [8–12], 
have been successfully applied to online quality prediction. 

Batch processes play an important role in the production of food, drugs, special chemicals and 
biological industrial products, which have high requirements for product quality and safe operation. 
In addition to the nonlinear and time-varying characteristics, other distinct characteristics, such as 
instability, finite duration, and batch-to-batch variations, are quite different from those of continuous 
processes [13–14]. It is difficult to construct accurate predictive models as the operating conditions 
vary. Furthermore, datasets obtained from batch processes are high-dimensional, including different 
batches, variables, and sampling time. Thus, they cannot be directly used for modeling and need to 
be preprocessed. Generally, multidimensional datasets contain abundant process information that can 
contribute to informative models, but it may also lead to information redundancy and complex model 
structure. Thus, dimension reduction and significant feature information extraction are crucial in 
satisfactory soft sensor development. Multiway principal component analysis (MPCA) [15–17] and 
multiway PLS (MPLS) [18,19] have been successfully applied in the fault diagnosis and soft sensing 
for batch processes. MPCA can be used to realize data analysis and preprocessing. Variable-wise 
unfolding method, which tends to keep the track of variables and retain the overall change 
information of process variables in batch and time, is introduced to obtain the two-dimensional 
datasets. Then, ordinary PCA is applied to dimensionality reduction and extract maximum amount of 
process information, making it more effective to soft sensor modeling. 

Traditional nonlinear soft sensors can achieve a universal generalization performance in quality 
prediction of chemical processes. However, many of them rely on a single global model under the 
assumption that the operating phases and conditions are constant in the whole process. With 
operating conditions or product demands changing, processes exhibit apparent multiphase behaviors 
while different phases present various process characteristics, thereby resulting in the poor regression 
accuracy of global models. 

Ensemble learning has been investigated and developed to be an effective tool to improve the 
generalization performance of soft sensors, especially for multiphase or multimode batch processes 
[20]. Under ensemble learning framework, the process dataset is partitioned into several local 
domains, then a series of local high-performance models are constructed and integrated to make a 
final quality prediction. Instead of global model construction, ensemble model based soft sensors can 
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greatly enhance estimation accuracy and maintain satisfactory performance for a long time even 
though process characteristics change. The first step of ensemble learning method is to generate 
subsets from process data samples. Several popular data partition approaches include bagging [21], 
boosting [22], clustering [23] and the subspace method [24]. Clustering based methods, such as 
K-means, fuzzy C-means (FCM) [25], and Gaussian mixture model (GMM) [26], have been widely 
used and have shown their effectiveness in data clustering for multiphase processes. For example, 
Wang et al. used GMM to create local partitions and verified the feasibility and reliability of the 
proposed soft sensor [26]. However, this method only considers one batch of process data and does 
not take multiphase characteristics into account. In addition, the dataset length of each batch may not 
be equal because of the complex operating conditions in actual processes. Prediction combination is 
another important step of ensemble learning method. Traditional approaches for this purpose are 
averaging, voting, Bayesian inference, and learning method [2,20,26]. Bayesian fusion method has 
been proven to be a natural fit for ensemble model combination due to its strong statistical learning 
and analytical abilities from datasets [27,28]. It can remarkably and effectively utilize the limited 
process information. 

Motivated to address the aforementioned issues, a novel ensemble learning based soft sensor, 
namely ensemble least squares support vector regression (LSSVR) [29,30] based on GMM method 
(GMM-LSSVR), is developed in this paper for the quality prediction of multiphase/multimode 
nonlinear batch processes. Firstly, MPCA is applied to data unfolding and information extraction for 
original 3-dimensional process datasets. In this method, the feature vectors corresponding to the large 
feature values are selected to form a subspace, where original datasets are mapped, then the 
preprocessed low-dimensional data matrix can be obtained for soft sensor modeling. Secondly, the 
Bayesian information criterion (BIC) [31] technique is introduced to determine the optimal number 
of Gaussian components for phase partition. And the newly obtained datasets are divided into several 
different subsets by GMM method to produce ensemble components. Thirdly, the grid search (GS) 
[32] method is used to generate all possible parameter pairs (σ, γ) due to its significant search effect 
and easy implementation. Meanwhile, ten-fold cross-validation [33] technique is employed to 
calculate the average relative error and evaluate the optimality of each pair. In such cases, an optimal 
parameter pair can be determined for each local LSSVR model, which greatly contributes to 
reliability enhancement. Finally, the Bayesian inference strategy is used to estimate the posterior 
probability of each test sample with respect to different operation dynamics and multiple models are 
combined with posterior probability based weightings for the final prediction. 

The remainder of this paper is organized as follows. Section 2 briefly reviews LSSVR model, 
MPCA and GMM methods. Section 3 presents some details of the proposed novel soft sensor, 
including its modeling method, parameters determination, and combination strategy. Section 4 
evaluates the effectiveness of the modeling method via simulation results in a batch process. Finally, 
Section 5 draws the conclusions of this paper. 

2. Preliminaries 

2.1. Least squares support vector regression (LSSVR) 

The LSSVR model is modified from support vector regression (SVR) [29]. Instead of inequality 
constraints applied, LSSVR uses equality constraints in the optimization problem in order to turn the 
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convex quadratic optimization procedure into the solution of linear equations, which has shown its 
great ability in dealing with significant nonlinearity in batch processes. Thus, LSSVR is applied to 
construct local models upon the several partitioned regions in this paper. 

Given ( ){ } 1
, y

N
i i i=

x , LSSVR algorithm aims to find the mapping between the input vector R d∈x  

and the output vector Ry∈ . Suppose ( )T
1 2, , , R N

Ny y y= ∈y  , the output regression is regarded as 

an objective function minimization problem with constraints [29]. 
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1 2, , , Nα α α=α  , the optimization problem of 

Lagrangian function can be formulated as 
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The following linear equations can be obtained by referring to the Karush-Kuhn-Tucker (KKT) 
condition for optimality. 
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Then, a linear system can be described by simplifying equations and eliminating ω  and ζ  as 
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where 1 R N N
Nγ − ×= + ∈H K I . In the positive definite matrix, T R N N×= ∈K Z Z  is a kernel matrix 
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composed of kernel functions that satisfy Mercer's theorem. 

( ) ( ) ( )T
, ,i j i j i jK kϕ ϕ= =x x x x , ( ), N NN Ni j∀ ∈ ×  (5) 

In this work, the Gaussian kernel function is adopted to be the kernel function of LSSVR:
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x x , where σ  is hyperparameter of the kernel function. Suppose the 

solutions of (4) are ( )1
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and *b , the output LSSVR can be described as 
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2.2. Multiway principal component analysis (MPCA) 

In batch processes, the collected datasets are related to batches, variables and sampling time. 
Excessive data information may lead to information redundancy and deteriorate the estimation 
performance of soft sensor models. MPCA method has been proven to be effective in dimensionality 
reduction and widely used in data preprocessing of batch processes. 

The dataset of a batch process can be given as a three-dimensional matrix ( )× ×X I J K , where I is 

the process batch, J is the measurement variable, and K is the sampling time. In variable-wise 
method, MPCA promotes the variable-wise unfolding of data matrix X to obtain a two-dimensional 

matrix ( )×X KI J  with dimension ×KI J  on which ordinary PCA is performed [16]. The schematic 

diagram of this method is illustrated in Figure 1. 
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Figure 1. The variable-wise unfolding method of batch process dataset. 

In this way, the original dataset can be rewritten into a new KI-dimensional variable space, then 



1906 

Mathematical Biosciences and Engineering  Volume 17, Issue 2, 1901-1921. 

the new data matrix is preprocessed by 
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where , ,i j kx  denotes the measurement of jth variable of ith batch in kth sampling time. Each variable 

can obtain the mean and variance of the measurement values in all batches at all sampling time after 
standardization. As shown in Figure 1, the dataset unfolding method can better reflect the trajectory 
information and process characteristics of process variables. 

For the standard dataset ( )×X KI J , PCA is performed as follows 

( ) T× = +X KI J TP E  (8) 

where ( )×ΘT KI  represents the score matrix, ( )×ΘP J  represents the load matrix, and ( )×ΘE KI  

represents the residual matrix. Θ  is the number of selected principal components according to the 
cumulative contribution rate of all components. 

2.3. Gaussian mixture model (GMM) 

As an effective probabilistic approach for data clustering, GMM is widely used for process 
monitoring and soft sensor application. The main purpose of GMM method is to identify and localize 
phase of data samples in batch processes. 

Consider a training dataset consisting of N  data samples R n m×∈x  and 1R n×∈y , the 

probability density function of the dataset can be expressed as 

1
( ) ( )

G
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where n  denotes the number of data samples, 1,2, ,n N=  , m  is the dimensionality of input 

vector, and { }1 1,  , ,  ,  , G Gµ µ= ∑ ∑Θ  

 is the parameters of GMM with G-component Gaussian 

mixture distribution. The distribution parameters include mean vector gµ , covariance matrix g∑ , 

and prior probability gπ  of the gth Gaussian component, while the mixing coefficients satisfy. 
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And ( )gp x |Θ  is probability density for Gaussian mixture distribution, which can be given by 
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Assume that data samples follow a mixture of a finite number of Gaussian distributions, it can 

be seen that each Gaussian component has three parameters ( gµ , Σg , gπ ), which can be determined 

by maximizing the logarithmic likelihood function as 
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Then, expectation maximization (EM) algorithm, is introduced to estimate the optimal 
parameters by iterative calculation, which consist of E step and M step: 

E step: Evaluate the posterior probability that ith training data samples, which belongs to the gth 
Gaussian component by using current parameter values. 
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M step: Obtain the corresponding likelihood function via the posterior probability calculated by 
E step. Re-estimate the parameters using the current value. 
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The parameter estimation process is not completed until the convergence is satisfied. For batch 
processes, the number of Gaussian components of GMM model corresponds to the number of stages 
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of the process. Moreover, the mixing coefficient of each Gaussian component for a data sample is 
determined by the average posterior probability of the sample with respect to the corresponding 
component. 

3. Modeling method based on ensemble learning 

3.1. Parameter determination 

Parameter determination is an important step of model construction, and it can directly affect 
the generalization behavior of regression models. The multi-model parameter optimization method 
shows its strong superiority in tackling parametric uncertainty problems when industrial processes 
are complex and time-varying [34]. 

LSSVR models need to determine regularization coefficients and kernel parameters. The 
commonly used methods for parameter determination include GS and swarm intelligence 
optimization [36–39]. In this study, the parameters of the LSSVR model are determined by ten-fold 
cross-validation and GS methods. First, for the parameter pair (σ, γ) that needs to be determined, GS 
method is used to form the grid in the given parameter selection interval. Second, the average 
relative error (Eq. (17)) of the corresponding model is calculated by ten-fold cross-validation method 
at the grid point. Finally, the parameter pair with the minimum error value is selected as an optimal 
pair. 

1

1 N i i

i i

y y

N y
δ

=

−
= ∑



 (17) 

where N  denotes the number of test samples, and iy  and  iy  represent the actual and predicted 

values of ith test sample, respectively. 
The steps of LSSVR parameter determination are presented as follows: 
Step 1: Assign an initial value to σ and γ. 
Step 2: Determine the search range of σ and γ. 
Step 3: Determine the grid point position of the first cross-validation calculation according to 

the initial value. 
Step 4: Select ten-fold cross-validation as the objective function of grid point calculation. Then 

calculate the errors of all grid points. 
Step 5: Compare the error results and determine an optimal parameter pair. 

3.2. Multiphase modeling strategy 

Some traditional soft sensors construct a global regression model for quality prediction; it 
ignores the multiphase and multistage characteristics of batch processes. Fortunately, ensemble 
learning based local modeling methods, which can better meet the requirements of prediction 
accuracy by combining multiple local models, have drawn increasing attention to improving the 
performance of soft sensors. Therefore, a novel soft sensor, referred to as ensemble LSSVR based on 
GMM (GMM-LSSVR), is proposed for quality prediction in multiphase batch processes. First, 
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MPCA is employed to data preprocessing, including three-dimensional data unfolding and 
dimensionality reduction. And GMM method is applied to divide the preprocessed dataset into 
multiple local domains. Then, several local LSSVR models are constructed for all identified subsets. 
Meanwhile, optimal hyperparameters are determined by combining ten-fold cross-validation with GS 
method. Finally, according to the posterior probability of the new sample to each operation period 
(Eq (18)), the high-performance predictions of local LSSVR models are integrated to produce the 
overall prediction results by using the Bayesian inference and finite mixture mechanism, as shown in 
Eq (19). 

1

( | )
( | )

( | )

g q g
g q G

g q g
g

p
p S
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=

∑
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y y p S
=

= ∑ x  (19) 

where qx  denotes a new test sample, { }, ,  1,2, ,g g
gS y g G= =x   denotes G operation periods, g

qy  

denotes the output value of qx  with respect to gth model. 

When GMM method is applied, the BIC technique is introduced to determine the number of 
Gaussian components in an intuitive and persuasive way, which can be formulated as 

BIC 2log ( ) log( )L d N= − +x Θ  (20) 

where N  is the number of training samples, d  is the parameter number of Gaussian components, 

log ( )L x |Θ  is the logarithmic likelihood function. It aims to balance model complexity and 

estimation accuracy. By calculating and comparing, the number of Gaussian components that 
corresponds to the minimum BIC value is selected as the optimal number for phase partition in the 
process. 

Figure 2 illustrates the online prediction steps of test samples based on GMM-LSSVR method. 
The proposed soft sensor modeling strategy is shown in Figure 3. 
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Figure 2. Flow chart of test sample online prediction based on GMM-LSSVR model. 
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Figure 3. Flow chart of GMM-LSSVR modeling method. 

4. Case study 

Penicillin fermentation process is a typical microbial fermentation reaction and is often used to 
be a benchmark process for monitoring, controlling, and quality prediction. This process is a 
complex multivariable coupled biochemical procedure and often contains significant nonlinearity 
and time-varying behavior, which can be generally divided into three stages: growth, penicillin 
synthesis and autolysis stages [20]. Figure 4 shows the flow diagram of penicillin fermentation 
process. During the whole cultivation process, bacterial growth and antibiotic synthesis process are 
completed under suitable fermentation conditions such as temperature, pH, and oxygen concentration 
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and so on. Considering the costs of offline chemical analysis and hardware sensors, designing a 
high-performance soft sensor plays an important role in real-time estimation of penicillin 
concentration. 

 

Figure 4. Schematic of the penicillin fermentation process. 

A simulation platform named PenSim has been widely used to simulate fed-batch penicillin 
fermentation process under different operating conditions [20]. In this study, all process data samples 
for experiments are collected via running the PenSim platform. There are total 16 process variables 
in the simulation plant, and 11 highly related variables are selected as input variables, which are 
listed in Table 1. The typical trend plots of input and quality variables are depicted in Figure 5. The 
entire duration of each batch is set as 400 hours, while the sampling interval is set as 1 hour. Under 
the normal operating condition, a total of 4 training batches (named as Batches 1 to 4) are obtained 
for soft sensor model construction, while the additional 2 test batches (named as Batches 5 and 6) are 
collected for model performance evaluation. 

Table 1 Input variables selected for penicillin fermentation process. 

NO. Variable description (Unit) NO. Variable description (Unit) 
1 Aeration rate (L/h) 7 Carbon dioxide concentration (g/L) 
2 Agitator power (W) 8 PH (-) 
3 Substrate feed rate (L/h) 9 Fermenter temperature (K) 
4 
5 
6 

Substrate feed temperature (K) 
Dissolved oxygen concentration (g/L) 

Culture volume (L) 

10 
11 
 

Generated heat (kcal) 
Cooling water flow rate (L/h) 
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Figure 5. Trend plots of process variables in a batch of penicillin fermentation process. 

For model construction, 100 data samples are collected evenly from Batches 1 to 4, respectively. 
As a result, training dataset is composed of 400 samples, while additional 200 samples that collected 
evenly from Batch 5 compose the test dataset 1, and other 200 samples from Batch 6 compose the 
test dataset 2. Here, two test datasets are used for model evaluation: test dataset 1 in Batch 5 and test 
dataset 2 in Batch 6 with noisy condition. Suppose that the measure noise is the zero-mean Gaussian 
noise with variance of 0.01, the dataset 2 is used to study the behavior of the proposed soft sensor 
model under noisy measure environment. In order to show the sampling strategy more intuitively, for 
examples, we collect the aeration rate (one of the input variables) values every 4 hours in the training 
Batch 1. The sampling time plots of aeration rate are illustrated in Figure 6, where the red points 
represent the data samples selected for modeling. Figure 6a–d and e–f gives the sampling time of 
aeration rate in the training batches and test batches, respectively. The sampling time plots of other 
input variables are like that of aeration rate. 
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Figure 6. Sampling time plots of aeration rate in training and test batches. 

Then, MPCA is applied to data preprocessing. Firstly, two-dimensional modeling datasets can 
be obtained from original multidimensional datasets by variable-wise data unfolding method. Then, 
PCA, as a well-known technique in statistics and machine learning, is used to compress the input 
variables, and extract the most important information of the process. The relationship between 
principal components number and cumulative contribution rate for input dataset is illustrated in 
Figure 7. In this study, the principal component number can be set as 7 because the corresponding 
cumulative contribution rate achieves 0.98. As a result, the dimensionally reduced data is obtained 
and imported into soft sensor models for training. 

 

Figure 7. Analysis results of input datasets by applying MPCA method. 
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The BIC value is calculated according to the obtained data matrix to determine the optimal 
number of Gaussian components. The relationship between the number of Gaussian components and 
BIC values is shown in Figure 8. When the number of Gaussian components is small, BIC values 
decrease dramatically. As the number increases, which changes from 3 to 6, BIC values change 
smoothly. In order to simplify model structure as much as possible and prevent the model from 
overfitting, the optimal number of Gaussian components is set as 3. 

 

Figure 8. Relationship between the number of Gaussian components and BIC value. 
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where iy  is the ith mean value, 2
trueσ  is the variance of the true value of test samples, 2

errorσ  is the 

variance of error between the true and predicted values of the test samples. The estimation accuracy 
of a soft sensor model can be reflected by the RMSE and TP indices, and R2 gives information about 
how much of the total variance in the output predictions can be explained by the model. In this study, 

the search ranges of γ and σ are set as { }7 5 15γ 2 ,2 , ,2− − −∈   and { }12 10 32 ,2 , ,2σ − −∈  , respectively. 

Table 2 shows the quantitative comparison of the performance indicators for different four soft 
sensors. The comparison of global modeling and local learning methods shows that ensemble GPR 
model and ensemble LSSVR model perform better than global GPR and global LSSVR, respectively, 
because the RMSE value of the former is smaller than that of the latter. Clearly, GMM based 
multiple models can accurately and effectively describe the multiphase characteristics of batch 
process and enhance the ability of model interpretation. Therefore, for penicillin fermentation 
process, multi-model modeling has higher estimation accuracy and smaller prediction error. Similarly, 
by comparing GMM-GPR model with GMM-LSSVR model, it can be found that the ensemble 
LSSVR model based soft sensor has higher prediction accuracy and better tracking effect for 
penicillin concentration, whereas the ensemble GPR model based soft sensor has bigger RMSE 
values and smaller TP values. This result shows that, although the prediction performance of GMM- 
ensemble GPR model is improved compared with the global GPR model, poor predictions for test 
samples are still observed. As presented, the prediction performance of GMM-GPR model is far 
inferior to that of GMM-LSSVR model. Despite the presence of noise, as studied for dataset 2 in 
Batch 6 with noise, GMM-LSSVR based soft sensor still outperforms other different soft sensors. 
Three performance indicators can demonstrate the feasibility and superiority of the proposed method. 

Table 2 Prediction performance indicators of different modeling methods. 

Method 
Batch 5 with no noise Batch 6 with noise 

RMSE TP R2 RMSE TP R2 
GPR 0.0101 0.9996 0.9995 0.0206 0.9982 0.9980 

LSSVR 0.0119 0.9994 0.9993 0.0224 0.9981 0.9977 
GMM-GPR 0.0094 0.9996 0.9996 0.0177 0.9986 0.9985 

GMM-LSSVR 0.0039 0.9999 0.9999 0.0125 0.9993 0.9993 

To present the regression performance of different soft sensors, the prediction results of 
penicillin concentration for global modeling and local learning methods is depicted in detail in 
Figures 9 and 10. As shown in Figure 9, the prediction curve of penicillin concentration by 
GMM-LSSVR model is more in line with the true value curve, thereby showing that the predicted 
value of penicillin concentration in this method is closer to the true value, and the prediction 
accuracy is also significantly higher than that of global LSSVR model. Furthermore, the prediction 
error of GMM-LSSVR model for test samples is reduced, and its generalization performance is better 
compared with that of GMM-GPR model. Similar analysis conclusions can be made according to the 
quality prediction results of Batch 6, which is given in Figure 10. This soft sensor modeling method 
can effectively improve the prediction capability and regression accuracy of global LSSVR model 
and can better complete the prediction of penicillin concentration. 
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Figure 9. Prediction results of test samples for four different soft sensors in Batch 5 with 
no noise. (a) GPR model; (b) LSSVR model; (c) GMM-GPR model; (d) GMM-LSSVR 
model. 

 

Figure 10. Prediction results of test samples for four different soft sensors in Batch 6 
with noise. (a) GPR model; (b) LSSVR model; (c) GMM-GPR model; (d) GMM-LSSVR 
model. 
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regression performance. In addition, the scatter plots of prediction results for penicillin concentration 
is presented in Figure 12. Compared with other scatters, the red asterisk scatters that correspond to 
GMM-LSSVR are more compactly distributed in the diagonal line, which shows that the proposed 
method can further improve the tracking performance and regression accuracy of the soft sensor. It 
can deliver reliable and accurate estimation of quality variable despite the presence of noise. 

 
(a) 

 
(b) 

Figure 11. Prediction errors of test samples for four different soft sensors. (a) Batch 5 
with no noise; (b) Batch 6 with noise. 
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(a) 

 
(b) 

Figure 12. Prediction scatter plots of test samples for four different soft sensors. (a) 
Batch 5 with no noise; (b) Batch 6 with noise. 
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by Bayesian fusion strategy and we can obtain the final prediction for test samples from ensemble 
LSSVR model online. Detailed analyses and comparative studies for penicillin fermentation process 
show that the proposed soft sensor is feasible and can deliver reliable and accurate quality prediction. 
In addition, we may be able to improve our future work for soft sensor development by applying 
cellular neural network approach. 
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