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Abstract: High-density urban habitats provide a hotbed for the rapid spread of infectious diseases.
School children densely aggregate in classrooms. So schools are high incidence area of infectious
diseases. This paper aims at investigating the transmission of influenza-like-illness within households
with a school child using a survey study of fourth grade elementary school students in Shanghai,
China. We found that the pairwise transmission probability within a household is only 0.172, which
implies that the average number of infections caused by a single infectious individual in a household
in Shanghai is only 0.304. Thus, the majority of transmission must occur outside of a household for a
disease to cause an outbreak.

Keywords: household transmission; pairwise transmission probability; influenza-like-illness; Markov
Chain

1. Introduction

With the acceleration of global urbanization, high-density urban human habitats provided acceler-
ated spread of infectious diseases in these highly densely populated areas. This leads to new chal-
lenges for public health management. We all have the experience that children were infected with an
influenza-like-illness (ILI) in school, and then spread the disease to their parents, who then spread it
among their coworkers, demonstrating a clear hierarchy of transmission, and rendering the commonly
assumed randomly mixed population unrealistic.

In the study of infectious diseases of humans, the household was historically chosen as one of the
pivotal units not only because of intimate contacts within the household members but also because of
household members sharing living arrangements. In 1952, Simpson [1] took households as the unit to
study the infectiousness of chickenpox, mumps, measles. Epidemiological data on the infectiousness in
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relation to size of family was obtained. The role of household size is same as the role of community size
in determining whether an infectious disease can take off or can become endemic. It was confirmed that
the spread and establishment of infectious diseases in a community not only depends on connectivity
of the community but on its size as well. For instance, McGrath estimated that a social network of 180
to 440 persons is required to achieve the stable host pathogen relationship necessary for tuberculosis
infection to become endemic in a community [2].

To study household transmissions, we need to use a mathematical model that describes household
transmissions. Due to the small size of households, many household models are stochastic in nature [3–
12]. Deterministic models are used to study the transmission dynamics of tuberculosis on generalized
households [13,14]. Chao et al. [15] developed a random simulation platform FLU based on individual
behavior, which also considers the spread of population contact during the day and the spread of
household contact at night. Nichols et al. [16] found that large household size is important for the
varicella-zoster virus transmission in Guinea Bissau. Households are also incorporated into contact
network models [17, 18].

For household transmissions of influenza, Longini et al. [12] first provided a maximum likelihood
estimation for probability of being infected in a household using data from a study in Seattle, WA,
USA for the 1975/76, 1977/78 and 1978/79 seasons. They estimated that, for influenza A/H3N2 or
B seasonal epidemics, the probability that a household member is infected in a household is about
17% for families with children and 13% for families without children. Their study, however, assumed
that probability of being infected in a household is independent of the household size. Cauchemez et
al. [6] applied MCMC approach to a longitudinal study for the 1999/2000 season in France in order to
estimate the transmission rate and the mean infectious period within a household. They made the same
assumption that the transmission rate within the household is independent of its size. By assuming
that the transmission rate between any pair is constant, Cauchemez et al. [19] studied transmission
of influenza A/H1N1. It was found that the observed household transmissions are best explained by
a model assuming a transmission rate being proportional to family size. The review paper on the
household transmission studies by Tsang et al. [20] is very informative.

In this paper, we aim to study household transmissions in Shanghai, China, using a survey study
among fourth-grade elementary school children, and investigate whether household transmission is a
crucial factor of ILI transmissions in large cities like Shanghai. We use the findings of Cauchemez et
al. [19] and assume that the transmission probability from any susceptible individual to any susceptible
individual is the same and independent to any other pairs.

In Section 2, we derive the probabilities for a given number of individuals to escape a household
outbreak, and the average number of infections occur in a household with a single initially infectious
individual. In Section 3, we use the derived probabilities to estimate the pairwise transmission prob-
ability in a household. In Section 4, we estimate the average number of household transmissions in a
random household in Shanghai using Shanghai Census data. In Section 5, we give some concluding
remarks.

2. Model of within-household transmission

We consider a stochastic SIR epidemiological model for a household of n homogeneously mixed
individuals; and one individual is initially infected. We only keep track of the numbers of susceptible
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and infected individuals of the household.
The transmission rate between a pair of an infectious individual and a susceptible individual is β,

and the recovery rate of an infectious is γ. The states of the system are labeled as (s, i), where s is the
number of susceptible individuals of the household and i is the number of infectious individuals of the
household. The set of all possible states is {(s, i) : 0 ≤ s + i ≤ n}. Obviously, (s, 0) (s ≤ n − 1) are all
absorbing states. We systemically arrange states by the following order (i.e., in decreasing orders of
s + i and then s):

(n − 1, 1), (n − 2, 2), (n − 3, 3), . . . , (0, n), (n − 2, 1), (n − 3, 2), . . . , (0, n − 1), (n − 3, 1),
(n − 4, 2), . . . , (0, n − 2), . . . , (1, 1), (0, 2), (0, 1), (n − 1, 0), (n − 2, 0), . . . , (1, 0), (0, 0).

Markov chain From a transient state (s, i) (i.e., i > 0), the system can transfer either to (s − 1, i + 1)
because of an infection event occurring at the rate βsi, or to (s, i − 1) because of a recovery event
occurring at the rate γi. We consider the embedded discrete time Markov chain, i.e., each time step
corresponds to a state change. Then the system transfers from state (s, i) to (s, i−1) with the probability

T(s,i)→(s,i−1) =
γi

βsi + γi
=

γ

βs + γ
,

and to (s − 1, i + 1) with the probability

T(s,i)→(s−1,i+1) =
βsi

βsi + γi
=

βs
βs + γ

.

All transient states precede all the absorbing states, thus, the transition matrix of the embedded discrete
time Markov chain is

T =



Qn Un 0 Rn

Qn−1 Un−1 Rn−1
. . .

...

Q1 R1

I


, (2.1)

where I is the n × n identity matrix,

Q j =



0 ( j−1)β
( j−1)β+γ

0 ( j−2)β
( j−2)β+γ

. . .

0 β

β+γ

0


,U j =



0 0 0 0
γ

( j−2)β+γ
γ

( j−3)β+γ

. . .

1


,

and R j is a j × n ( j = 1, 2, . . . , n) matrix which u, v entry is

(R j)(u,v) =

{ γ

( j−1)β+γ
, u = 1, v = n − j + 1,

0, otherwise.
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Pairwise transmission probability Our model has two parameters, the transmission rate β and the
recovery rate γ. However, the transition matrix T is determined by a single parameter

q =
β

β + γ
, (2.2)

which is the pairwise transmission probability between an infectious individual and a susceptible one
(i.e., transmission between the pair occurs before the infectious individual recovers, ignoring other
infectious individuals in the family). This probability plays a fundamental role in this study.

Note that, for any k,

kβ
kβ + γ

=
kq

(k − 1)q + 1
,

γ

kβ + γ
=

1 − q
(k − 1)q + 1

.

Thus, Q j, U j and R j can be rewritten as

Q j =



0 ( j−1)q
( j−2)q+1

0 ( j−2)q
( j−3)q+1
. . .

0 q
0


, (2.3)

U j =



0 0 0 0
1−q

( j−3)q+1
1−q

( j−4)q+1
. . .

1


, (2.4)

(R j)(u,v) =

{ 1−q
( j−2)q+1 , u = 1, v = n − j + 1,
0, otherwise.

(2.5)

Number of individuals escaped the epidemic The states (s, 0) for s = 0, 1, . . . , n− 1, that s individ-
uals escaped all household infections, is absorbing. We want to compute the absorbing probability of
these states. For a finite state discrete time Markov chain, where the states can be divided into transient
states and absorbing states, let

T =

[
Q R
0 I

]
(2.6)

be its transition matrix, where Q is the transition probabilities within transient states, and R is the
transition probabilities from the transient states to the absorbing states. At time step k, the probability
that the system stays in state j starting from the state i, is the (i, j) entry of

T k =

[
Q R
0 I

]k
=

[
Qk ∑k−1

i=0 QiR
0 I

]
.
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Thus,

lim
k→∞

T k =

[
0 (I − Q)−1R
0 I

]
. (2.7)

Thus, starting from a transient state i, the system eventually is absorbed in a state j with a probability
which is the (i, j) entry of (I − Q)−1R.

To apply this formula to our model, we let D j = I j − Q j ( j = 1, 2, . . . , n). Then,

P = (I − Q)−1R =


Dn −Un 0

Dn−1 −Un−1 0
. . .

...

D1


−1 

Rn

Rn−1
...

R1

 .
Starting from a single initially infectious individual, the probability that s = 0, . . . , n − 1 individuals
escaped infection is the entry in the row corresponding to the initial state (n − 1, 1) (in our setup this is
row 1) and the column corresponding to the state (s, 0):

D−1
n

n∑
k=1

 n−1∏
j=n−k+1

U2n−k− j+1D−1
2n−k− j

Rn+1−k. (2.8)

Detailed calculations to obtain (2.8) can be found in Appendix A. Since the number of infected indi-
viduals is a random variable, we are interested in its expected value. Let Zn be the expected number of
people infected by a single infectious individual in a household of size n. Then

Zn =

n−1∑
s=0

(n − s − 1)P(n−1,1)→(s,0)(q), (2.9)

where the probability P(n−1,1)→(s,0)(q) (s = 0, 1, . . . , n − 1) is the corresponding entry in P, meaning
that the system stops at an absorbing state (s, 0) starting from a transient state (n − 1, 1). For various
household sizes, the dependence of Zn on the transmission probability q are shown in Figure 1. One
can observe that Zn is an increasing function of q for a given n; and it is an increasing function of n for
any given q.

3. Maximum likelihood estimation

In this section, we will estimate the transmission possibility q from a survey study of the ILI within
the households.

Data We conducted a survey among fourth graders of Shanghai Xuejia Elementary School in Shang-
hai, China, in April 2018. From this survey, we use the results of three questions that are related to ILI
among households of the students are

(a) How many people (including yourself) live in your household?
(b) Have you caught an influenza-like-illness since January 1, 2018?
(c) If you answered “Yes” in (b), how many other people (including yourself) have caught the same

illness?
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Figure 1. The average number of household infections as a function of the pairwise trans-
mission probability q, for various values of the household size n.

We distributed 100 questionnaires in two classes, and collected 78 answers, among which 74 contained
answers for Question (a). The household size distribution is plotted in Figure 2. Not all answers are
valid for our research. Specifically, some do not contain a valid answer (either an answer is blank
or the answer to Question (c) is great than the household size), and some answered “greater than or
equal to 7” for Question (c) but specific size is not available. There are 56 valid answers, which are
listed in Table 1. Among valid answers, 9 students answered “no” to Question (b) (who also subse-
quently answered 0 to Question (c)), and thus cannot be be used to study household-transmissions. The
distribution of the number of ILI infections (i.e., answer to Question (c)) is plotted in Figure 3.

Figure 2. The household size distribution.
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Table 1. Valid questionnaire responses, i.e., all questions are answered, and the answer to (c)
is less than or equal to that of to (b). Note that some answers indicate that no ILI occurred in
that family, and cannot be used in this study.

Student Household size (a) Infections (c) Student Household size (a) Infections (c)
1 3 1 29 4 4
2 6 3 30 3 2
3 6 1 31 4 3
4 3 3 32 5 3
5 4 1 33 4 1
6 3 2 34 4 1
7 6 2 35 4 0
8 4 1 36 3 1
9 6 2 37 4 1

10 3 1 38 3 2
11 4 1 39 5 1
12 2 1 40 3 2
13 5 2 41 3 1
14 4 1 42 5 1
15 4 4 43 6 0
16 6 5 44 5 2
17 3 2 45 6 0
18 5 1 46 4 0
19 2 1 47 4 1
20 4 0 48 4 2
21 5 2 49 4 1
22 5 1 50 4 1
23 6 1 51 4 3
24 6 0 52 6 1
25 3 2 53 6 3
26 3 0 54 4 0
27 3 0 55 4 3
28 3 1 56 4 1
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Figure 3. The distribution of infections within a household (including the index case) for
each household size n = 2, 3, · · · , 6.

Estimation We use the maximum likelihood estimation method to estimate q. For the ith observation
with a household size Ni and Ii infections in the household, the probability of this observation is
P(Ni−1,1)→(Ni−Ii,0)(q). Thus, we construct the following likelihood function

L(q) =

47∏
i=1

P(Ni−1,1)→(Ni−Ii,0)(q). (3.1)

We find q that maximizes L(q). Equivalently, it also maximizes

`(q) = ln L(q) =

47∑
i=1

ln P(Ni−1,1)→(Ni−Ii,0)(q). (3.2)

We then use the likelihood ratio test [21] to estimate the 95% confidence interval. The estimated
transmission probability is

q = 0.172, 95% confidence interval (0.120, 0.237). (3.3)

4. Estimating the household transmission of ILI in Shanghai, China

With the estimation of the pairwise transmission probability q, and the household size distribution
in Shanghai, China, we can then estimate the average number of household ILI infections Z caused by
a single infectious individual in Shanghai. We obtain the household size distribution in Shanghai from
the 2010 Shanghai Census data [22], which is summarized in Table 2 and Figure 4. Specifically,

Z =

∞∑
n=1

pnZn , (4.1)

where Zn is defined in (2.9), and pn is the fraction of size-n households in Shanghai. With the estimated
q in (3.3),

Z = 0.304, 95% confidence interval (0.205, 0.431). (4.2)
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Table 2. The household size distribution in Shanghai, China. Data was obtained from “Tab-
ulation on the 2010 Population Census of Shanghai Municipality” [22].

Household size (n) Number of households
1 1641920
2 2805535
3 2549205
4 732700
5 424518
6 72296
7 17988
8 6091
9 1739
≥10 1265
Total 8253257

5. Conclusion

We use a stochastic household transmission model to estimate the pairwise transmission probability
in a household in Shanghai, China. The estimated probability is q = 0.172 with a 95% confidence
interval (0.120, 0.237). This is not a large probability. Using the household distribution obtained from
the 2010 Shanghai Census data, we estimated that the average number of people infection in the same
household of a random infectious individual in Shanghai is 0.304 with a 95% confidence interval
(0.205, 0.431). This means that, if an ILI is able to cause an epidemic (with a basic reproduction
number at least 1) in a randomly mixed population with households (i.e., outside-household contacts
are random), each infectious individual must infected more than 0.696 individuals outside of his/her
household at the beginning of the epidemic. This means that the majority of infections occur outside
of the household. However, from our study, only 17/76 school children did not catch an ILI, meaning
that the majority of the children were infected. This suggests that ILI are driven by the infections in
school.

We assumed that all infections except the first one in the households are caused by the first infected
individual in the household. This is reasonable as household members have much closer contacts than
others. If this is not true, then our estimated pairwise transmission probability q is an over-estimate,
because we attributed external infections to household members. Thus, our conclusion that household
average transmission is small still holds.

We also assumed that the transmission probability is independent to age, and that the household
members are randomly mixed, so that the transmission probability between any pair of individuals is
the same. However, as suggested by Longini et al. [12], this may not be true, but the difference in
age-specific transmission probabilities may be small.

We used the survey data from Shanghai. However, we believe that the data is typical for household
transmission in all large Chinese cities. It would be interesting to conduct such surveys in other cities
world wide, and compare household transmissions in different cultures.
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Figure 4. The household size distribution in Shanghai, China.
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Appendix

A. Calculation of absorbing probabilities

P =


Dn −Un 0

Dn−1 −Un−1 0
. . .

...

D1


−1 

Rn

Rn−1
...

R1


=


In −D−1

n Un

In−1 −D−1
n−1Un−1
. . . −D−1

2 U2

I1


−1 

Dn

Dn−1
. . .

D1


−1 

Rn

Rn−1
...

R1


=


In D−1

n Un . . . D−1
n Un · . . . · D−1

2 U2

In−1 . . . D−1
n−1Un−1 · . . . · D−1

2 U2
. . .

...

I1




D−1
n Rn

D−1
n−1Rn−1
...

D−1
1 R1

 .
Thus, the first row of P is the first row of (2.8).
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