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Abstract: Markovian model is widely used to study cardiac electrophysiology and drug screening.
Due to the stiffness of Markov model for single-cell simulation, it is prone to induce instability by using
large time-steps. Hybrid operator splitting (HOS) and uniformization (UNI) methods were devised to
solve Markovian models with fixed time-step. Recently, it is shown that these two methods combined
with Chen-Chen-Luo’s quadratic adaptive algorithm (CCL) can save markedly computation cost with
adaptive time-step. However, CCL determines the time-step size solely based on the membrane
potential. The voltage changes slowly to increase the step size rapidly, while the values of state
variables of Markov sodium channel model still change dramatically. As a result, the system is
not stable and the errors of membrane potential and sodium current exceed 5%. To resolve this
problem, we propose a multi-variable CCL method (MCCL) in which state occupancies of Markov
model are included with membrane potential as the control quadratic parameters to determine the
time-step adaptively. Using fixed time-step RK4 as a reference, MCCL combined with HOS solver
has 17.2 times speedup performance with allowable errors 0.6% for Wild-Type Na+ channel with 9
states (WT-9) model, and it got 21.1 times speedup performance with allowable errors 3.2% for Wild-
Type Na+ channel with 8 states (WT-8) model. It is concluded that MCCL can improve the simulation
instability problem induced by a large time-step made with CCL especially for high stiff Markov model
under allowable speed tradeoff.
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1. Introduction

Since advanced computing technology makes the computational models of cardiac
electrophysiology getting mature, the computational models become an important basis for clinical
applications [1, 2]. Moreover, cardiac cells up to an order of one billion and the internal processes of
each cell are also quite complex in the human heart [3]. Therefore, the computational speed, accuracy,
and stability are key hotspots in whole heart simulation. Firstly, advanced computer parallelization
greatly reduces computing cost of tissue-scale cardiac simulations [4–8]. Secondly, the adaptive
algorithms of time-steps and space-steps are a powerful tool for improving the accuracy of
computation [6, 9, 10]. Thirdly, stiffness is ubiquitous in cardiac cell models, which easily leads to
unstable computation [11]. Aiming to solve the stiff model of a single cell, the advanced numerical
methods of ODEs system, Exponential Adams-Bashforth integrators [12] and Gating-enhanced
implicit-explicit linear multistep methods [13] were proposed. In addition, Sundials CVODE [14] is a
useful solver for ODEs system. The backward-differentiation-formula (BDF) method in CVODE with
low tolerances can obtain a highly converged solution for stiff problems. Due to linear multistep
methods consuming high computation cost for high precision solutions, using one-step methods to
study the tradeoff between speedup and stability has been a new hot-spot in recent years.

The stability of stiff Markov model for ion channels is our main concern. In recent years,
Markovian model for ion channels has been widely used in cardiac arrhythmia [15–17] and
pharmacologic screening for anti-arrhythmic drugs [18, 19]. The introduction of Markov model
makes the cell model become quite stiff, resulting in unstable simulation as large time-step is used to
accelerate the simulation. Therefore, the confrontation between the computational speed and stability
of a single cell is a noticeable problem. To ensure high simulation stability, Johnny Moreira et al. [20]
compared UNI with Forward Euler (FE), Rush-Larsen, First-Order Sundnes et al. (SAST1),
Second-Order Sundnes et al. (SAST2), and Second-Order Runge-Kutta (RK2) methods and found
that UNI could substantially increase the stability of simple first-order (fixed time-step) methods but
with very low speedup. Stary et al. [21] proposed the HOS method in comparison to FE and Matrix
Rush-Larsen (MRL) methods to show that HOS method could also increase stability with moderate
speedup. While, CCL algorithm [22] has been verified to be an efficient method for the stability of the
action potential simulation. And our previous work [23] confirmed that CCL algorithm combined
with HOS or UNI method could save markedly computation cost and increased the stability of
adaptive methods for time-step from 0.001 to 1 millisecond.

For the simulation of cardiac action potential, Marsh et al. [24] proposed that Mixed Root Mean
Square(MRMS) errors should be less than 5% to meet the requirement of clinical applications. The
simulation results by Chen et al. [23] even with high speed could not meet the accuracy requirement
of clinical applications (less than 5% errors). Due to CCL algorithm only adjusts time-steps according
to the first and second derivatives of membrane potential, during the period of slow voltage change
(from phase 3 to phase 4), the time-step increases rapidly, causing simulation instability of the state
variables for the WT-9 model as the state variables still rapidly change their values, resulting in
over 5% MRMS errors at simulations of membrane potential and sodium current. For instance, using
fixed time-step HOS method as a reference, CCL+HOS solver can get 295 times speedup, but
with 22% and 6.9% MRMS errors for potential and sodium current, respectively. The big errors come
from large time-step causing the state occupancies of WT-9 model to be simulated unstably at fast
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inactivation, closed-inactivation and the close states. To eliminate this problem, we propose a
multi-variable CCL method that takes the first and second derivatives of membrane potential and state
occupancies as input parameters, and then generates the appropriate time-step based on the quadratic
equation solution of time-step.

2. Materials and methods

2.1. Cardiac ventricular cell model

The Markov model of the Wild-Type (WT) sodium channel [18, 25] is integrated into the dynamic
Luo-Rudy (LRd) model [26]. To simulate the ventricular action potential, the formula is given by,

dV/dt = −(1/Cm)(Iion + Ist) (2.1)

Iion = INa + INa,b + ICa(L),Na + Ins,Na + 3INaK + 3INaCa + IK + IKi + IK p

+ ICa(L),K − 2INaK + Ins,K + ICa(L) + ICa,b + Ip(Ca) − 2INaCa
(2.2)

where Ist is an external stimulus current, with time-step 0.01 or 0.001 ms with duration 0.5 ms for
WT-9 or WT-8 model, respectively. INa, INa,b, ICa(L),Na, Ins,Na, 3INaK , 3INaCa are sodium channel currents.
IK , IKi, IK p, ICa(L),K , 2INaK , Ins,K are potassium channel currents. ICa(L), ICa,b, Ip(Ca), 2INaCa are calcium
channel currents. For the detailed descriptions, please see LRd model [26].

2.2. Sodium channel models

2.2.1. The Markov model with nine states (WT-9)

The WT-9 Markovian model of the sodium channel includes nine states [25]. Each state is
represented by the proportion of channels with respect to the total number of channels called state
occupancy. A Markovian model of the WT sodium channel (Figure 1) is composed of one conducting
open state (O), three closed states (C1,C2,C3), two closed-inactivation states (IC3, IC2), one fast
inactivation state(IF) and two intermediate inactivation states (IM1, IM2). According to the principle
of microscopic reversibility [27], the change in one state occupancy with continuous-time is equal to
the net flow for the transition state. This change can be represented by an ordinary differential
equation (ODE). The WT-9 Markovian sodium channel has nine equations that form a linear system
known as Kolmogorov equations.

d−→u /dt = Q(V)−→u (2.3)

where Q(V) is the 9 × 9 matrix of transition rates (af11, af12, af13, af2, af3, af4, af5, bt11, bt12,
bt13, bt2, bt3, bt4, bt5). Q(V) is a real matrix of nine rows by nine columns, and it contains
elements qi j. −→u is a vector with nine states [O,C1,C2,C3, IC3, IC2, IF, IM1, IM2]T .
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Figure 1. WT-9 sodium channel Markov chain model with nine states.

The formulation of the sodium channel is described by,

INa = gNa × O × (V − ENa) (2.4)

where gNa is the conductance constant of the sodium channel and ENa is the equilibrium potential.

2.2.2. The Markov model with eight states (WT-8)

A WT-8 Markovian model with eight states of the sodium channel [18] is composed of one
conducting open state (O), three closed states (C1,C2,C3), two closed-inactivation states (IC3, IC2),
one fast inactivation state(IF) and slow inactivation state (IS) shown in Figure 2.

Figure 2. WT-8 sodium channel Markov chain model with eight states.

Q(V) in Eq (2.3) is the 8 × 8 matrix of transition rates
(af11, af12, af13, af2, af3, afx, bt11, bt12, bt13, bt2, bt3, btx). Q(V) is a real matrix of eight rows by
eight columns, and it contains elements qi j. The vector −→u includes eight states
[O,C1,C2,C3, IC3, IC2, IF, IS]T .
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2.3. The numerical schemes

2.3.1. The CCL method

CCL method is applied to change time-step with membrane potential in simulations. The maximum
time-step ∆tmax = 1 ms and the minimum time-step ∆tmin = 0.001 ms. Time-step is changed in the
scope of ∆tmin ∼ ∆tmax. To create a fine adaptive time-step, the new approximated membrane potential
with second-order Taylor expansion is given by,V(tn+1) � V(tn) + dV/dt × ∆t + 1/2 × d2V/dt2 × ∆t2.
Which can be a quadratic ∆t equation used to update time-steps adaptively. For a detailed description,
please see Chen et al. [22]. The equation is given by,

1/2 × a × ∆t2 + b × ∆t − c � 0,where a = d2V/dt2, b = dV/dt, c = V(tn+1) − V(tn) = 0.1 mV (2.5)

Let D = b2 + 4 × a/2 × c, The solutions of Eq (2.5) are shown,

∆t = (−b +
√

D)/a, i f b ≥ 0,D ≥ 0, where ∆t ∈ (0.001 ∼ 1) ms, c = 0.1 mV (2.6)
∆t = (−b −

√
D)/a, i f b < 0,D ≥ 0, where ∆t ∈ (0.001 ∼ 1) ms, c = −0.1 mV (2.7)

∆t = −b/a, i f D < 0, where ∆t ∈ (0.001 ∼ 1) ms (2.8)
∆tnew = Minimum(∆t,∆tmax), where ∆tmax = Minimum(2 × ∆told,∆tmax) (2.9)

2.3.2. The multi-variable CCL method

In addition to membrane potential, the variables control in MCCL method is expanded to multiple
variables given by,

1/2 × a × ∆t2
i + b × ∆ti − c � 0, where a = d2Xi/dt2, b = dXi/dt (2.10)

c is the offset of variable Xi, Xi is one of the variables Vn,O,C1,C2,C3, IC3, IC2, IF, IS, IM1, IM2 at
ith time. Vn is the normalized membrane potential given by, Vn = (V − Vrest)/NV ,where NV = |Vrest −

Vreversal|. Vrest is the membrane potential of rest state, Vreversal is the reversal potential of sodium channel.
Vrest = −88.65 mV and Vreversal = 70.50 mV are set respectively. Let c = Xi(tn+1)−Xi(tn) = 0.1/NV and
D = b2 + 4 × a/2 × c, then The solutions of Eq (2.10) are shown ,

∆ti = (−b +
√

D)/a, i f b ≥ 0,D ≥ 0,
where ∆ti ∈ (∆tmin ∼ ∆tmax) ms, c = 0.1/NV

(2.11)

∆ti = (−b −
√

D)/a, i f b < 0,D ≥ 0,
where ∆ti ∈ (∆tmin ∼ ∆tmax) ms, c = −0.1/NV

(2.12)

∆ti = −b/a, i f D < 0,
where ∆ti ∈ (∆tmin ∼ ∆tmax) ms

(2.13)

∆ti = Minimum(∆ti,∆tmax),
where ∆tmax = Minimum(2 × ∆told,∆tmax)

(2.14)

For WT-9 model,
∆tnew = Minimum(∆tVn ,∆tO,∆tC1 ,∆tC2 ,∆tC3 ,∆tIC3 ,∆tIC2 ,∆tIF,∆tIM1 ,∆tIM2)

(2.15)

Or, for WT-8 model,
∆tnew = Minimum(∆tVn ,∆tO,∆tC1 ,∆tC2 ,∆tC3 ,∆tIC3 ,∆tIC2 ,∆tIF,∆tIS)

(2.16)
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2.3.3. The Markovian model solvers

Four methods [23] are mainly adopted to solve transient solutions of Eq (2.3) as shown below,
1) Forward Euler method (“FE”) and FE method is given by,

−→u (tn + ∆t) = −→u (tn) + ∆tQ(V(tn))−→u (tn) (2.17)

2) Taylor series expansion (“TAL”) and second-order Taylor series method is given by,

−→u (tn + ∆t) = −→u (tn) +
∆tQ(V(tn))

1!
−→u (tn) +

(∆tQ(V(tn)))2

2!
−→u (tn) (2.18)

3) Uniformization (“UNI”) and the uniformization method by Sidje et al. [28] is given by,

−→u (tn + ∆t) = exp(∆tQ(V(tn)))−→u (tn)

≈
−→u (tn) +

∆tQ(V(tn))
1!

−→u (tn) + · · · +
(∆tQ(V(tn)))l

l!
−→u (tn)

(2.19)

−→u (tn + ∆t) = exp(q∆tQ(V(tn))∗ − I)−→u (tn)

= exp(−q∆t) exp(q∆tQ(V(tn))∗)−→u (tn)
(2.20)

−̄→u (tn + ∆t) =

l∑
k=0

exp(−q∆t)
(q∆t)k

k!
(Q(V(tn))∗)k−→u (tn) (2.21)

l∑
k=0

exp(−q∆t)
(q∆t)k

k!
≥ 1 − εtol (2.22)

−̄→u (tn + ∆t) = (exp(−q∆t) exp(q∆tQ(V(tn))∗))m−→u (tn) (2.23)

where m = d
q∆t
θ
e, h = ∆t

m ,Q(V(tn))∗ = I +
Q(V(tn))

q , q = max |qii|. q is the maximum diagonal element,
in absolute value, of matrix Q. εtol denotes the prescribed error tolerance, θ and m are parameters to
partition the integral domain for overflow prevention. Two parameters are set in advance, the default
εtol is set 10−11 and θ = 1 unless otherwise specified. The truncation point l is determined by Eq (2.22).

4) Hybrid Operator Splitting (“HOS”) and HOS method is given by,

Q(V(tn)) = Q0(V(tn)) + Q1(V(tn)) + Q2(V(tn)) (2.24)
−→u n+1/3 = exp(∆tQ0(V(tn)))−→u n (2.25)
−→u n+2/3 = exp(∆tQ1(V(tn)))−→u n+1/3 (2.26)
−→u n+1 = exp(∆tQ2(V(tn)))−→u n+2/3 (2.27)

For a detailed description, please see Stary et al. [21].

2.4. Computational simulations

2.4.1. Numerical schemes

To compare the performance and accuracy between CCL and MCCL methods combined with
Markov solver, we have tested eight hybrid solvers, in which each of four methods (FE, TAL, UNI,
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Table 1. Numerical schemes.

Solver Time-steps Solver Time-steps
CCL+FE (0.001∼1 ms) MCCL+FE (0.001∼1 ms)

CCL+TAL (0.001∼1 ms) MCCL+TAL (0.001∼1 ms)
CCL+UNI (0.001∼1 ms) MCCL+UNI (0.001∼1 ms)
CCL+HOS (0.001∼1 ms) MCCL+HOS (0.001∼1 ms)

HOS) is combined with CCL or MCCL method as listed in Table 1. The reference solver is
fourth-order four-stage Runge-Kutta (RK4) method used to solve Markov model with fixed time-step
(∆t = 0.001 ms). For the very sharply stiff model, BDF (backward-differentiation formula) with tight
tolerance and fixed time-step 0.001 ms in Sundials CVODE as a benchmark is an alternative good
choice due to high stability even with high computation cost. RK4 with fixed step 0.001 ms has less
than 0.6% MRMSE deviation and 10 times smaller computation cost in comparison to BDF with tight
tolerance and fixed time-step 0.001 ms in Sundials CVODE.

2.4.2. Computing platform and evaluated errors

We implement the numerical experiments with Visual Studio 2013 C/C++ compiler. All the
numerical tests are performed on a desktop computer equipped with an Intel(R) Core (TM) i7-7700
CPU running 64-bit Windows10 × 64. The fixed time-step scheme with RK4 is used as reference
solution to evaluate the performance of adaptive time-step schemes with Markov solvers. The Mixed
Root Mean Square Error (MRMSE) [24] is used as a metric of quantitative error. It is given by,

MRMS E �

√√√√
N∑

i=1

(
Xi−X̂i

1+|X̂i |

)2

N
(2.28)

Where Xi is the numerical solution, X̂i is the reference solution, N is the number of temporal points.
All of the numerical schemes run 3000 basic cycle length (BCL) or beats with 1000 ms per BCL or
beat. The simulation data are taken from the 1st, 500th, 1000th, 1500th, 2500th, and 3000th beats.

3. Results

3.1. WT-9 Markov model

Table 2 shows the MRMSE and computational performance of the eight schemes for the WT-9
model.

To meet the requirement of clinical applications, Marsh et al. [24] suggested that MRMSE of
simulations should be less than 5%. Table 2 shows that all of CCL combined any Markov solver (FE,
TAL, UNI, HOS) do not satisfy the requirement, nor MCCL+FE or MCCL+TAL solver. Only
MCCL+UNI and MCCL+HOS solvers can meet the 5% requirement. Particularly, MCCL+HOS
solver has less than 1% MRMSEs in voltage and sodium current with 17.2 times (17.2X) speedup
which is greater than 14.8X for MCCL+UNI solver. It is suggested that the optimal solver is
MCCL+HOS solver among eight solvers in Table 2 for the WT-9 model.
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Table 2. MRMSE and computational performance for WT-9 model.

Solvers MRMSE-V MRMSE-I Speedup Cost(ms)
DT+RK4 0.0 0.0 1.0X 1.0 × 107 ± 9.8 × 104

CCL+FE 0.016 0.588 109.9X 9.5 × 104 ± 4.0 × 102

CCL+TAL 0.745 1.158 33.0X 3.2 × 105 ± 1.2 × 103

CCL+UNI 0.056 0.012 16.4X 6.4 × 105 ± 8.4 × 102

CCL+HOS 0.236 0.064 412.3X 2.6 × 104 ± 3.2 × 102

MCCL+FE 0.022 0.065 96.9X 1.1 × 105 ± 2.7 × 102

MCCL+TAL 0.015 0.124 29.8X 3.5 × 105 ± 1.4 × 103

MCCL+UNI 0.021 0.009 14.8X 7.0 × 105 ± 3.4 × 103

MCCL+HOS 0.006 0.002 17.2X 6.1 × 105 ± 3.7 × 103

Note: MRMSE-V: MRMSE of voltage in comparison to the reference. MRMSE-I: MRMSE of sodium current in comparison to the
reference. Speedup: The computation cost ratio of one of eight schemes to the reference solution DT+RK4. X, times speedup. Ten
simulations for each solver. Cost in Mean ± Standard deviation.

Figure 3. Vmax and APD over 3000 beats using eight solvers and reference solver for WT-9
model.

Figure 3 shows the long-term stability (3000 beats) of CCL method or MCCL method combined
Markov solvers for Vmax and APD. Figure 3a,e show that both Vmax and APD of MCCL+FE solver
have some unstable fine fluctuation, but they are closer to the reference solution than those of
CCL+FE solver. Figure 3b,f show that Vmax and APD of MCCL+TAL solver are close to the
reference solution with tiny unstable fluctuations, while Vmax and APD of CCL+TAL solver not only
have some tiny unstable oscillation but also deviates far from the reference solution. Importantly,
Figure 3c,g show that Vmax of CCL+UNI and that of MCCL+UNI solver have a slight error, but
remain stable. Figure 3d,h show that the Vmax and APD of MCCL+HOS solver are closer to the
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reference solution than that of CCL+HOS solver. It is indicated that MCCL method can guarantee
long-term stability and obtain more accurate solutions about Vmax and APD than CCL method.

Figure 4 shows the occupancy of nine states of Markov model for CCL or MCCL combined HOS
solver at first beat. Figure 4a,c,f–i show that all these state occupancies (O,C1,C3, IC3, IM1, IM2) are
close to the reference solution very well for CCL+HOS and MCCL+HOS solvers. While, in
Figure 4b shows that the state occupancy IF of MCCL+HOS solver has tiny unstable fluctuation
(inset in Figure 4b), but IF of CCL+HOS solver shows a small deviation near 200 ms. Similarly, in
Figure 4d,e state C2 and IC2 occupancies of MCCL+HOS solver only have very minor fluctuation
(insets in Figure 4d,e), while that of CCL+HOS solver presents a deviation error with rapidly
descending towards abscissa near 200 ms. It is suggested that MCCL+HOS solver enhances the
instability of CCL+HOS solver.

Figure 4. Occupancy of nine states of Markov model for HOS solver at 1st beat for WT-9
model. The insets in b,d,e are the enlarged view from 190 to 220 ms.

Table 3. MRMSE and computational performance for WT-8 model.

Solvers MRMSE-V MRMSE-I Speedup Cost(ms)
DT+RK4 0.0 0.0 1.0X 1.1 × 107 ± 6.0 × 104

CCL+FE - - - - - - failure
CCL+TAL - - - - - - failure
CCL+UNI 0.019 0.008 1.2X 8.9 × 106 ± 1.8 × 104

CCL+HOS 0.250 0.114 266.6X 3.3 × 104 ± 1.3 × 102

MCCL+FE 0.103 3.345 19.8X 5.3 × 105 ± 2.5 × 103

MCCL+TAL - - - - - - failure
MCCL+UNI 0.076 0.042 1.2X 8.9 × 106 ± 1.1 × 104

MCCL+HOS 0.032 0.013 21.1X 5.0 × 105 ± 1.8 × 103
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3.2. WT-8 Markov model

Table 3 shows the MRMSE and computational performance of the eight simulate schemes for the
WT-8 model.

CCL+FE, CCL+TAL and MCCL+TAL solvers are the failure, while MCCL+FE solver is success
but with MRMSE higher than 5%. Only CCL+UNI and MCCL+HOS solvers have MRMSE-V and
MRMSE-I less than 5%. CCL+UNI solver almost takes no speedup, while MCCL+HOS solver still
obtains 21.1 times speedup. For WT-8 model, MCCL+HOS solver is the best solver among eight
solvers in Table 3.

4. Conclusions

Due to an enormous maximum time-step size, ∆tmax, used by CCL and MCCL algorithms, the
simulation is prone to instability and even divergence to failure for CCL and MCCL combined with
FE or TAL, especially for WT-8 model. It is improper to use FE or TAL combined with adaptive
time-step methods unless a smaller maximum time-step size, ∆tmax, is used but then the adaptivity of
the method is limited.

In Tables 2 and 3, the speedup performance of MCCL+UNI and CCL+UNI solvers is similar since
the UNI algorithm consumes most of the computation time. The formula (2.23) is iterated 260 times
with q = 260 for the WT-8 model to reach the preset tolerant error even time-step is set as 1ms. As a
result, there is almost no speedup of MCCL or CCL combined with UNI for WT-8 model.

While, the speedup of MCCL+HOS and CCL+HOS solvers is significant due to HOS being
lightweight. CCL+HOS solver gets high over 250 times speedup for WT-8 and WT-9 models while
MCCL+HOS only gets about 20 times. However, CCL+HOS solver has large MRMSE for WT-9
model and even 25% MRMSE for WT-8 failing the clinical application requirement. While
MCCL+HOS solver has MRMSEs less than 5% clinical application requirement even with lower
speedup.

In our previous work [23], we find that CCL+UNI solver is the most stable but very
time-consuming while CCL+HOS solver is less stable but more efficient. It is suggested the optimal
solver should take tradeoff between stability and acceleration. In this work, the MCCL+HOS solver is
more stable, more accurate and faster than MCCL+UNI solver. For the WT-8 model, CCL+UNI
solver is the most accurate but has poor speedup performance (only 1.2X). It is concluded that
MCCL+HOS solver is a good solver, especially for high stiff Markov model such as WT-8 sodium
channel and MCCL instead of CCL can be a good speedup algorithm tradeoff for stability against
acceleration.

Both CCL and MCCL have their limitations in which the speedup of MCCL+HOS solver is far
less than CCL+HOS while the accuracy of CCL+HOS is far worse than MCCL+HOS. To achieve
better accuracy, MCCL+HOS is highly recommended but its speedup performance is only moderate
and, importantly, the speedup performance is about the same for moderate stiff WT-9 and high stiff
WT-8 models. It is highly recommended to use MCCL+HOS for a high stiff model, but for moderate
stiff model MCCL+HOS should be revised to gain higher speedup for the logic of lower stiff higher
speedup performance in the near future.
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