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Abstract: The incubation period for Hepatitis B virus (HBV) within the human is epidemiologically
significant because it is typically of long duration (1.5∼6 months) and the disease transmission possibil-
ity may be increased due to more contact from the patients in this period. In this paper, we investigate
an SEICRV epidemic model with time delay to research the transmission dynamics of Hepatitis B dis-
ease. The basic reproductive number R0 is derived and can determine the dynamics of the model. The
disease-free equilibrium is globally asymptotically stable if R0 < 1 and unstable if R0 > 1. As R0 > 1,
the model admits a unique endemic equilibrium which is locally asymptotically stable. The endemic
equilibrium is globally asymptotically stable when the vertical transmission is ignored. Numerically,
we study the Hepatitis B transmission case in Xinjiang, China. Using the Hepatitis B data from Xin-
jiang, the basic reproductive number is estimated as 1.47 (95% CI: 1.34–1.50). By the end of 2028,
the cumulative number of Hepatitis B cases in Xinjiang will be estimated about 700,000 if there is no
more effective preventive measures. The sensitivity analysis of R0 in terms of parameters indicates
prevention and treatment for chronic patients are key measures in controlling the spread of Hepatitis B
in Xinjiang.

Keywords: Hepatitis B virus; transmission dynamics; Lyapunov functional; model application;
sensitivity analysis

1. Introduction

Hepatitis B is an infectious disease which is caused by HBV. The virus is transmitted via contacting
the blood or body fluids of an infected person. HBV infection can cause acute, chronic illness and
cirrhosis or liver cancer eventually provided the effective treatments are not performed. According
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to World Health Organization(WHO), people living with hepatitis B virus was estimated 257 million,
nearly 900,000 deaths in 2015 [1]. Xinjiang locates the northwest of China, which is an autonomous
region and the largest Chinese administrative division. Xinjiang has been one of the high incidences
areas of hepatitis B for a long time. The incidence rate attained 16.431%, the highest region of China
in 2015 [2]. Till now, there is still not effectively available treatment for chronic carriers of the virus,
but an HBV vaccine is consider to be available to protect general people.In 1992, the the Ministry
of Health of China began to carry out the Expanded Program on Immunization (EPI). Hepatitis B
vaccination is integrated into the nationwide immunization program with vaccines provided entirely
by the government starting from 2002 [3]. The prevalence of HBV in China has declined, especially
among children 3 to 12 years old. The result of Sampling Survey for HBV Epidemiology in 2006
indicated that the HBsAg prevalence is less than 1% among children under the age of 5 [4].

Both horizontal transmission and vertical transmission for HBV are still the most common routes in
many people of China. The incubation period within the human is one of Hepatitis B virus propagation
characteristics. It is the time from infection to infectiousness. During this period, many patients do
not realize who are infected by the virus since the symptom is mild. They may probably contribute to
more infection for HBV because of less public awareness of prevention. Therefore, the influence of the
incubation period can not be omitted when we study the HBV transmission law. Mathematical models
play an important role for better understanding the HBV transmission rules. In generally, there are two
types of epidemic models: Mathematical models to investigate HBV dynamic behavior within human
(Micro-models), Mathematical Models to investigate Hepatitis B dynamic behavior among population
(Macro-models). Nowak et al. designed a mathematical model and quantitatively analyzed the replica-
tion dynamics of HBV in vivo and showed the impact on the optimal timing of drug treatment, as well
as the immunotherapy of chronic HBV infection[5]. In [6], a dynamic model was proposed to analyze
how Hepatitis B virus load changes within human body. The result shows that a cell-mediated immune
response is very important to control the virus. In [7], Xu and Ma proposed an HBV model with spa-
tial diffusion and saturation of the infection rate and time delay describing the intracellular incubation
period. The results show that the delay can postpone the time for virus to reach the infection steady
state. In [8], Tchinda et al. studied an HBV infection differential model with two concentrated delays
by some gamma distribution. It is shown that the model can appear the phenomenon of backward
bifurcation. This indicates that the Hepatitis B virus may not be controlled by simply reducing the
value of the basic reproduction number below one. Hattaf [9] formulated a virus dynamics model with
general incidence rate and two delays and obtained the global dynamics of the model. Based on the
fact of HBV infection, Wang et al. developed a diffusion model confined to a finite domain, induced
by the intracellular time delay between infection of a cell and production of new virus particles[10].
Considering the cytokine-mediated ‘cure’, Wang et al. discussed the global dynamics for an improved
HBV model with standard incidence[11]. The global dynamics of the model is obtained. For better
understanding Hepatitis B disease spatio-temporal spread tendency among population, mathematical
models have been used extensively in researching the transmission dynamics of HBV. Zhao et al. used
a partial differential equations model to describe the transmission of HBV infection[12]. The results
show that the most important control measure is vaccination coverage, especially full coverage of in-
fants immunity. In [13], Zou et al. established a six compartmental mathematical model to understand
the transmission dynamics and prevalence of HBV in mainland China. Zhang and Xu investigated
hepatitis B models with age structure. The stability and uniform persistence of the models are con-
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cluded [14, 15]. Pang et al. proposed a hepatitis B model to explore the effect of vaccination and other
controlling measures. Theoretical and numerical results indicate that the vaccination is a very effective
measure to control the HBV infection[16]. In [17], Zou et al. proposed a mathematical model includ-
ing under-aged children, male adults, and female adults to understand the effect of sexual transmission
on the spread and prevalence of HBV in China. In [18], an MSLIR model is constructed to describe
the role of vaccination and treatment on HBV transmission. In [19], an SEICRS epidemic model with
vaccination and treatment is formulated for describing the spread of HBV infection. In [20] Mann and
Roberts presented an SECIR epidemic model to study the dynamics involved in the transmission of
HBV in New Zealand. The results imply that the number of carriers will decrease after vaccination has
been introduced, but the carriers will continue to provide a route of infection to those still susceptible.
On the basis of the above statements, we will formulate and study a hepatitis B model with time delay
in this paper. At the same time, we will use the model to simulate the hepatitis B transmission of
Xinjiang.

The paper is organized as follows. The model structure is developed in next section. In Section 3, we
present the existence of the equilibria under the threshold conditions. Some of the dynamic behavior
of the model are analyzed in Section 4. Numerical simulations of the model including Hepatitis B
transmission trends in Xinjiang, sensitivity analysis of parameters, HBV infection control strategy etc.
are presented in Section 5. The main conclusions from this study are summarized in the last section.

2. Model formulation

In this section, we will formulate an epidemic model to describe Hepatitis B transmission. At time
t, the host population is composed of six compartments: susceptible S (t), exposed E(t), acute infection
I(t), chronic HBV carriers C(t), recovered R(t) and immunized V(t). Some assumptions are as follows.

1. A susceptible individual is infected by HBV mainly due to contacts with acute and chronic stage
patients.

2. For acute HBV infected individuals, the infection duration is about 2–3 months. Furthermore,
acute HBV infected patient have obvious symptoms, such as malaise, loss of appetite, nausea,
abdominal distension. Few newborn babies come from mothers with acute hepatitis. Therefore,
we only consider the vertical transmission from mothers with chronic hepatitis.

3. Incubation period τ is constant. In general, the incubation period of HBV infections lasts about
1.5∼6 months.

4. 80-90% of infants are infected during the first year of life develop chronic infections, and vertical
infected infants change directly into the chronic carriers.

5. We omit the rate of waning vaccine-induced immunity of vaccinated individuals, because there is
no evidence to support the need for a booster dose of hepatitis B vaccine. Protection lasts at least
20 years, and is possibly life-long [21].

Accordingly, we obtain the following HBV model with time delay:
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Figure 1. Schematic diagram of HBV. transmission



dS
dt

= µω(1 − εC) − (β1I + β2C)S − (µ + p)S ,

dE
dt

= (β1I + β2C)S − e−µτ(β1I(t − τ) + β2C(t − τ))S (t − τ) − µE,

dI
dt

= e−µτ(β1I(t − τ) + β2C(t − τ))S (t − τ) − (µ + γ1)I,

dC
dt

= µωεC + qγ1I − (µ + γ2)C,

dR
dt

= γ2C + (1 − q)γ1I − µR,

dV
dt

= µ(1 − ω) + pS − µV.

(1.1)

Table 1. Parameters biologic meanings in model (1.1).

Parameters Definition
µ Birth and death rate
ω Proportion of births with failure immunization
ε Proportion of newborns infected by their carrier mothers because of vertical transmission
β1 Transmission coefficient for acute infection individuals
β2 Transmission coefficient for chronic infection individuals
τ Incubation period of HBV
γ1 Rate leaving the acute infections
q Proportion of acute infection individuals who become chronic infections
γ2 Recovery rate of chronic infections
p Vaccination rate of susceptible individuals
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The initial conditions for system (1.1) have the form

S (θ) = ϕ1(θ) ≥ 0, I(θ) = ϕ2(θ) ≥ 0 C(θ) = ϕ3(θ) ≥ 0,
R(θ) = ϕ4(θ) ≥ 0, V(θ) = ϕ5(θ) ≥ 0, θ ∈ [−τ, 0],

E(0) =

∫ 0

−τ

eµθ(β1ϕ2(θ) + β2ϕ3(θ))ϕ1(θ)dθ.

Let N(t) = S (t) + E(t) + I(t) + C(t) + V(t) + R(t) be the total population number at time t. It is clear
that N′(t) = µ − µN. Therefore, the total number approaches 1 as t → ∞. From (1.1), it is obvious
that in order to determine the dynamics of each class, we only need to study the first, third and fourth
equations in model (1.1), thereby lowering the order of the system to be studied, i.e.,

dS
dt

= µω(1 − εC) − [β1I + β2C]S − (µ + p)S ,

dI
dt

= e−µτ[β1I(t − τ) + β2C(t − τ)]S (t − τ) − (µ + γ1)I,

dC
dt

= µωεC + qγ1I − (µ + γ2)C.

(1.2)

Let us denote by Γ the set {
(S , I,C) ∈ R3

+ : S ≤
µω

µ + p
, S + I + C ≤ 1

}
.

By the Comparison Principle and basic mathematical analysis, we may show that Γ is a positive invari-
ant set. Hence, we can focus the model (1.2) on the set Γ.

3. Basic reproductive number and equilibria

In order to obtain the basic reproductive number of our model, we first give all possible equilibria.
The model (1.2) always has a disease-free equilibrium P0(S 0, 0, 0), where S 0 =

µω

µ+p . The model may
have an endemic equilibrium P∗(S ∗, I∗,C∗), where

S ∗ =
(µ + γ1)(µ + γ2 − µωε)

e−µτ[β1(µ + γ2 − µωε) + β2qγ1]
,

I∗ =
µω(µ + γ2 − µωε)

µωεqγ1 + eµτ(µ + γ2 − µωε)

(
1 −

1
R 0

)
,

C∗ =
qγ1I∗

(µ + γ2 − µωε)
.

(3.1)

Within (3.1), the parameter R0 is given by

R0 =
e−µτµω[β1(µ + γ2 − µωε) + β2qγ1]

(µ + γ1)(µ + γ2 − µωε)(µ + p)
.

By Corollary 2.1 of [22], the parameter R0 may be obtained via next generation operator methods when
the progression to chronic stage (qγ1I) is not considered to be a new infections. In fact, we give the

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1757–1775.



1762

following system which comes from infectious classes I and C in the lineariation of the model (1.2) at
the disease-free equilibrium P0

d
dt

[
I(t)
C(t)

]
= F

[
I(t − τ)
C(t − τ)

]
− V

[
I(t)
C(t)

]
,

where

F =

[
e−µτβ1S 0 e−µτβ2S 0

0 0

]
, V =

[
µ + γ1 0
−qγ1 µ + γ2 − µωε

]
.

It then follows that the basic reproductive number r(FV−1) = R0. Moreover, if qγ1I is taken as a new
infection, we can get another basic reproductive number as follows

R̂0 =
1
2

e−µτβ1S 0

µ + γ1
+

√(
e−µτβ1S 0

µ + γ1

)2

+
4e−µτqγ1β2S 0

µ + γ2 − µωε

 . (3.2)

It is easy to check that R0 < 1(= 1, > 1) is equivalent to R̂0 < 1(= 1, > 1). In fact, when R0 = 1, one
has

e−µτqγ1β2S 0

µ + γ2 − µωε
= 1 −

e−µτβ1S 0

µ + γ1
.

Substituting it into (3.2) yields R̂0 = 1 and the converse is also true. The same conclusion can be drawn
for R0 < 1(> 1)⇔ R̂0 < 1(> 1).

In the following, we take R0 as the basic reproductive number of the model (1.2). Regarding the
existence of the equilibria P0 and P∗, we have the following result.

Theorem 1. For the model (1.2), there always exists a disease-free equilibrium P0(S 0, 0, 0) and a
unique endemic equilibrium P∗(S ∗, I∗,C∗) exists only when R0 > 1.

4. Stability of equilibria

In this section, we will discuss the stability of two equilibria. First, we give the following theorem
about the stability of the disease-free equilibrium P0(S 0, 0, 0).

Theorem 2. If R0 < 1, then the disease-free equilibrium P0(S 0, 0, 0) is globally asymptotically
stable on Γ; If R0 < 1, then P0 is unstable.

Proof. Linearizing the model (1.2) at the disease-free equilibrium P0, we obtain the system as
follows. 

dS
dt

= −(µ + p)S − β1S 0I(t) − (β2S 0 + µωε)C,

dI
dt

= e−µτβ1S 0I(t − τ) + e−µτβ2S 0C(t − τ) − (µ + γ1)I,

dC
dt

= µωεC + qγ1I − (µ + γ2)C.

(4.1)

The characteristic equation for disease-free equilibrium P0 is∣∣∣∣∣∣∣∣∣
λ + µ + p β1S 0 β2S 0 + µωε

0 λ + µ + γ1 − e−µτβ1S 0e−λτ −e−µτβ2S 0e−λτ

0 −qγ1 λ + µ + γ2 − µωε

∣∣∣∣∣∣∣∣∣ = 0. (4.2)
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Write
m1 = µ + γ1, m2 = µ + γ2 − µωε.

This gives
(λ + µ + p)[λ2 + a1λ + a2 − e−λτ(b1λ + b2)], (4.3)

where
a1 = m1 + m2,

a2 = m1m2,

b1 = e−µτβ1S 0,

b2 = e−µτβ1S 0m2 + qγ1e−µτβ2S 0.

Of course, equation (4.3) has a root −(µ+ p) < 0. For this reason, the stability of P0 is deteremined by
the following equation

λ2 + a1λ + a2 − e−λτ(b1λ + b2) = 0. (4.4)

Case 1: R0 < 1
When τ = 0, the equation (4.4) becomes

λ2 + c1λ + c2 = 0, (4.5)

where c1 = m1 + m2 − β1S 0 and c2 = m1m2 − (β1S 0m2 + qγ1β2S 0). The inequility R0 < 1 implies that
c1 > 0 and c2 > 0. Therefore, all roots of (4.5) have neagtive real parts.

Substituting λ = iσ into (4.4) and separating the real and imaginary parts, we have{
−σ2 + a2 = b2 cos(στ) + b1σ sin(στ),

a1σ = b1σ cos(στ) − b2 sin(στ).
(4.6)

From (4.6), it follows that
σ4 + (a2

1 − 2a2 − b2
1)σ2 + a2

2 − b2
2 = 0. (4.7)

Since
(a2

1 − 2a2 − b2
1) = (m1 + m2)2 − 2m1m2 − (e−µτβ1S 0)2

= m2
1 + m2

2 − (e−µτβ1S 0)2 > 0

and
a2

2 − b2
2 = (m1m2)2 − (e−µτβ1S 0)2 > 0,

we conclude that the equation (4.7) has no real roots. Hence, the equation (4.4) has no pure imaginary
roots for all time delays τ > 0. Then the disease-free equilibrium P0 is locally asymptotically stable as
R0 < 1.

Case 2: R0 > 1
Set

f (λ) = λ2 + a1λ + a2 − e−λτ(b1λ + b2).

It is evident that f (0) = a2 − b2 < 0 by R0 > 1 and f (λ) → ∞ as t → ∞. Then (4.4) has at least one
positive real root. Thus, the disease-free equilibrium P0 is unstable as R0 > 1.

Next, using Liapunov functional technique, we discuss the global stability of P0. From R0 < 1, it
may be concluded that there exist two positive number ρ1 and ρ2 such that

qγ1

µ + γ1 − e−µτβ1S 0
<
ρ1

ρ2
<
µ + γ2 − µωε

e−µτβ2S 0
. (4.8)
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Consider a Liapunov functional:

L(S t, It,Ct) = ρ1It(0) + ρ2Ct(0) +

∫ 0

−τ

e−µτ[β1It(u) + β2Ct(u)]S t(u)du.

The derivative of L along solutions of (1.2) is given by

dL
dt

∣∣∣∣∣
(1.2)

= ρ1I′(t) + ρ2C′(t) + ρ1e−µτ(β1I(t) + β2C(t))S (t)

−ρ1e−µτ(β1I(t − τ) + β2C(t − τ))S (t − τ)
= ρ1e−µτ(β1I(t) + β2C(t))S (t) − ρ1(µ + γ1)I(t)

+ρ2(qγ1I(t) − (µ + γ2 − µωε)C(t))
≤ [ρ2qγ1 − ρ1(µ + γ1 − e−µτβ1S 0)]I(t)

+[ρ1e−µτβ2S 0 − ρ2(µ + γ2 − µωε)]C(t)
≤ 0.

We define Ω = {(S (t), I(t),C(t)) ∈ Γ : L̇ = 0}. It is easily seen that P0(S 0, 0, 0) is the largest invari-
ant set. By the Liapunov-LaSalle type theorem [23], P0 is globally asyptotically stable on Γ. This
completes the proof of Theorem 2.

Theorem 3. If R0 > 1, then the endemic equilibrium P∗(S ∗, I∗,C∗) is locally asymptotically stable.
Proof. Linearizing the system (1.2) at the positive equilibrium P∗(S ∗, I∗,C∗), we obtain the fol-

lowing system 

dS
dt

= −(βI∗ + βC∗ + µ + p)S − β1S ∗I(t) − (β2S ∗ + µωε)C,

dI
dt

= e−µτ[β1I∗ + β2C∗]S (t − τ) + e−µτβ1S ∗I(t − τ)

+e−µτβ2S ∗C(t − τ) − (µ + γ1)I,

dC
dt

= qγ1I − (µ + γ2 − µωε)C.

(4.9)

The characteristic equation for the system (4.9) is∣∣∣∣∣∣∣∣∣
λ + β1I∗ + β2C∗ + µ + p β1S ∗ β2S ∗ + µωε

−e−µτ(β1I∗ + β2C∗)e−λτ λ + µ + γ1 − e−µτβ1S ∗e−λτ −e−µτβ2S ∗e−λτ

0 −qγ1 λ + µ + γ2 − µωε

∣∣∣∣∣∣∣∣∣ = 0. (4.10)

Let
m1 = µ + γ1, m2 = µ + γ2 − µωε, n1 = β1I∗ + β2C∗, n2 = µ + p.

With above-mentioned notations, the equation (4.10) becomes

λ3 + a1λ
2 + a2λ + a3 − e−λτ(b1λ

2 + b2λ + b3) = 0 (4.11)

where
a1 = m1 + m2 + n1 + n2, b1 = e−µτβ1S ∗,
a2 = (m1 + m2)(n1 + n2) + m1m2, b2 = e−µτn2β1S ∗ + m1m2,

a3 = m1m2(n1 + n2), b3 = m1m2n2.
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When τ = 0, now (4.11) becomes

λ3 + c1λ
2 + c2λ + c3 = 0, (4.12)

where
c1 = m1 + m2 − β1S ∗ + n1 + n2,

c2 = (m1 + m2)n1 + (m1 + m2 − β1S ∗)n2,

c3 = m1m2n1.

We claim that all roots of equation (4.11) admit negative real parts. In fact, we only need to show

c1 > 0, c1c2 − c3 > 0 and c3 > 0. (4.12)

A trivial verification shows that (4.12) is valid. By Routh-Huritz criterion, each root of equation (4.11)
has negative real part. Therefore, the endemic equilibrium P∗ is locally asymptotically stable as τ = 0.

Assuming that the characteristic equation (4.11) has a pure imaginary root iσ, one has

−iσ3 − a1σ
2 + ia2σ + a3 = [cos(στ) − i sin(στ)](−b1σ

2 + b3 + ib2σ). (4.13)

Separating the real and imaginary parts of (4.13) yields{
−a1σ

2 + a3 = (b3 − b1σ
2) cos(στ) + b2σ sin(στ),

a2σ − σ
3 = b2σ cos(στ) − (b3 − b1σ

2) sin(στ).
(4.14)

Set z = σ2, from the above it follows that

z3 + p1z2 + p2z + p3 = 0, (4.15)

where
p1 = a2

1 − 2a2 − b2
1,

p2 = a2
2 − 2a1a3 + 2b1b3 − b2

2,

p3 = a2
3 − b2

3.

Since
p1 = (m1 + m2 + n1 + n2)2 − 2m1m2 − 2(m1 + m2)(n1 + n2) − (e−µτβ1S ∗)2

= m2
1 + m2

2 + (n1 + n2)2 − (e−µτβ1S ∗)2

> 0,
p2 = [(m1 + m2)(n1 + n2) + m1m2]2 − 2m1m2n2e−µτβ1S ∗

−(m1m2 + n2e−µτβ1S ∗)2 − 2m1m2(m1 + m2 + n1 + n2)(n1 + n2)
= (m2

1 + m2
2)(n1 + n2)2 − (n2e−µτβ1S ∗)2

> 0,
p3 = [m1m2(n1 + n2)]2 − (m1m2n2)2 > 0,

we conclude that there is no nonnegative real root for the equation (4.15). Hence, the equation (4.11)
has no pure imaginary roots for all time delays τ > 0. Then the endemic equilibrium P∗ is locally
asymptotically stable as R0 > 1. This completes the proof of Theorem 3.

Our next concern will be the global stability of the endemic equilibrium. We will use Lyapunov
functionals methods to prove it. The technique of proofs is to use an extended Volterra-type functionals
developed in [24, 25].

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1757–1775.



1766

Theorem 4. If ε = 0, then the endemic equilibrium P∗(S ∗, I∗,C∗) is globally asymptotically stable
as R0 > 1.

Proof. Define a Lyapunov functional for endemic equilibrium P∗

L(t) = U1(t) + U2(t) + U3(t) + W(t),

where
U1(t) = S − S ∗ − S ∗ ln

S
S ∗
,

U2(t) = eµτ
(
I − I∗ − I∗ ln

I
I∗

)
,

U3(t) =
β2S ∗

µ + γ2

(
C −C∗ −C∗ ln

C
C∗

)
,

and

W(t) = (β1I∗ + β2C∗)S ∗
∫ t

t−τ

(
(β1I(θ) + β2C(θ))S (θ)

(β1I∗ + β2C∗)S ∗
− 1 − ln

(β1I(θ) + β2C(θ))S (θ)
(β1I∗ + β2C∗)S ∗

)
dθ.

The time derivative of U1 along solutions of (1.2) is given by

dU1

dt
=

(
1 −

S ∗

S

)
[µω − (β1I + β2C)S − (µ + p)S ]

=

(
1 −

S ∗

S

)
[(β1I∗ + β2C∗)S ∗ − (β1I + β2C)S − (µ + p)(S − S ∗)]

= (β1I∗ + β2C∗)S ∗
(
1 −

S ∗

S
+ ln

S ∗

S

)
− (β1I∗ + β2C∗)S ∗ ln

S ∗

S

−(β1I + β2C)S + (β1I + β2C)S ∗ − (µ + p)
1
S

(S − S ∗)2.

The time derivative of U2 along solutions of (1.2) is given by

dU2

dt
= eµτ

(
1 −

I∗

I

)
[e−µτ(β1I(t − τ) + β2C(t − τ))S (t − τ) − (µ + γ1)I]

=

(
1 −

I∗

I

) [
(β1I(t − τ) + β2C(t − τ))S (t − τ) − (β1I∗ + β2C∗)S ∗

I∗

I

]
= (β1I(t − τ) + β2C(t − τ))S (t − τ) − (β1I∗ + β2C∗)S ∗

I
I∗

−(β1I(t − τ) + β2C(t − τ))S (t − τ)
I∗

I
+ (β1I∗ + β2C∗)S ∗

= (β1I∗ + β2C∗)S ∗
[
1 −

(β1I(t − τ) + β2C(t − τ))S (t − τ)
(β1I∗ + β2C∗)S ∗

I∗

I

+ ln
(
(β1I(t − τ) + β2C(t − τ))S (t − τ)

(β1I∗ + β2C∗)S ∗
I∗

I

)]
−(β1I∗ + β2C∗)S ∗ ln

(
(β1I(t − τ) + β2C(t − τ))S (t − τ)

(β1I∗ + β2C∗)S ∗
I∗

I

)
+(β1I(t − τ) + β2C(t − τ))S (t − τ) − (β1I∗ + β2C∗)S ∗

I
I∗
.

Similarly, we have
dU3

dt
=
β2C∗S ∗

CI∗
(CI∗ −C∗I) −

β2S ∗

I∗
(CI∗ −C∗I)
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and
dW
dt

= (β1I + β2C)S − (β1I(t − τ) + β2C(t − τ))S (t − τ)

−(β1I∗ + β2C∗)S ∗ ln
(

(β1I + β2C)S
(β1I(t − τ) + β2C(t − τ))S (t − τ)

)
.

By above-mentioned calculation, we obtain the derivative of L(t) along solutions of model (1.2) as
follows

dL
dt

= −(µ + p)
1
S

(S − S ∗)2 + (β1I∗ + β2C∗)S ∗
(
1 −

S ∗

S
+ ln

S ∗

S

)
+(β1I∗ + β2C∗)S ∗

[
1 −

(β1I(t − τ) + β2C(t − τ))S (t − τ)
(β1I∗ + β2C∗)S ∗

I∗

I

+ ln
(
(β1I(t − τ) + β2C(t − τ))S (t − τ)

(β1I∗ + β2C∗)S ∗
I∗

I

)]
+(β1I∗ + β2C∗)S ∗ ln

(
(β1I∗ + β2C∗)I
(β1I + β2C)I∗

)
+
β2C∗S ∗

CI∗
(CI∗ −C∗I).

Notice that

(β1I∗ + β2C∗)S ∗ ln
(
(β1I∗ + β2C∗)I
(β1I + β2C)I∗

)
+
β2C∗S ∗

CI∗
(CI∗ −C∗I)

≤ (β1I∗ + β2C∗)S ∗
[
(β1I∗ + β2C∗)I
(β1I + β2C)I∗

− 1
]

+
β2C∗S ∗

CI∗
(CI∗ −C∗I).

= −
β1β2S ∗

(β1I + β2C)CI∗
(CI∗ −C∗I)2.

We are now in position to show dL
dt ≤ 0. We denote byM the set

M = {(S (t), I(t),C(t)) ∈ Γ : L̇ = 0}
= {(S (t), I(t),C(t)) ∈ Γ : S (t) ≡ S ∗,C∗I(t) ≡ I∗C(t)}.

We conclude from C∗I(t) ≡ I∗C(t) that dC
dt = 0, hence that C(t) ≡ const and I(t) ≡ const, and finally

that S (t) = S ∗ implies C(t) = C∗ and I(t) = I∗. Thus, it can be verified that the only invariant set in
M the singleton {P∗(S ∗, I∗,C∗)}. By LaSalle’s invariance principle [23], the endemic equilibrium is
globally asymptotically stable as R0 > 1. This completes the proof of Theorem 4.

Remark By the theory of internally chain transitive sets [26], we can obtain the permanence of
the model (1.2). We only get the global stability of the endemic equilibrium under an extra condition
ε = 0. This is because of the restriction of the Lyapunov functional form chosen by us. To obtain a
complete global dynamics for the model, we put forward an open problem: the endemic equilibrium is
globally asymptotically stable as R0 > 1.

5. Model applications

5.1. Model fitting

The monthly new reported HBV cases for 14 prefectures of Xinjiang from January 2008 to Decem-
ber 2018 are obtained from infectious disease report information management system of China (see
Figure 2.). The values of parameters are listed in Table 2. We explain the parameter values as follows.
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Figure 2. Monthly new reported HBV cases for 14 prefectures of Xinjiang from January
2008 to December 2018.

• The average life expectancy of people in Xinjiang Uygur Autonomous Region of China was 71.12
years in 2005 [27]. We take it as the current average life expectancy. Thus, µ = 1/71.12 = 0.0141.
• From [28], [29], [27] and [30] we can obtain the parameters ω, ε, τ, γ1, q and γ2 (see Table 2).
• In order to get a better fitting effect, we choose transmission coefficient for acute infection indi-

viduals β1 = 0 and vaccination rate of susceptible individuals p = 0. Actually, patients in acute
period have acute illness with symptoms that last several weeks, including yellowing of the skin
and eyes, dark urine, extreme fatigue, nausea, vomiting and abdominal pain. They usually don’t
have sexual and blood contact with susceptible person. On the contrary, susceptible person also
don’t have close contact with these patients due to obvious clinical symptoms for these patients.
So we think the spread of chronic carriers is the major cause for epidemic of hepatitis b. The
similar results were seen in [27]. Moreover, we find the formula of R̂0 does not contain p. It
means that parameter p may has no influence on the effect of HBV transmission.
• We define M(t) as the cumulative number of acute HBV case. Then, we have M′(t) = e−µτ(β1I(t−
τ) + β2C(t − τ))S (t − τ). The data from public health science data center showed that the new
infected HBV case is 49504 in 2008. Hence, we estimate that the initial condition of M(t) is
M(0) = 49504.
• The parameter β2 is obtained by fitting the model to data. By the least-square estimation the

transmission coefficient is estimated as β2 = 5.52 × 10−9. The results of bootstrap inference are
summarized in Figure 3, where we provide the histograms of the 2000 bootstrap replicates of
transmission coefficient β2. By taking 2.5th and 97.5th percentiles we also derive from those
replicates confidence intervals on β2 and the 95% bootstrap confidence interval of β2 is (4.77 ×
10−9, 6.21 × 10−9). We apply the least-square method to carry out parameter estimation, which is
implemented by the function fminsearch, a part of the optimization toolbox in MATLAB.

Based on the model and the parameter values in Table 2, the cumulative numbers of newly HBV
cases and fitted curve are presented in Figure 4. At the same time, by simulation model (1.1) with
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Figure 3. Frequency distribution histograms and probability density curves of β2.

Table 2. Parameters and their values.

Parameters Value Unit Source
µ 0.0141 year−1 [27]
ω 0.48 year−1 [28], [27]
ε 0.11 year−1 [28], [27]
β1 0 year−1 Assumption
β2 5.5 × 10−9[4.9 × 10−9, 6.2 × 10−9] year−1 Fitting
τ 0.5 year−1 [30]
γ1 4 year−1 [28], [27]
q 0.885 year−1 [28], [27]
γ2 0.025 year−1 [29]
p 0 year−1 Assumption

bootstrap replicates of transmission coefficient β2 with 2.5th and 97.5th percentiles interval we es-
timated the 95% confidence interval for fitted curves by the bootstrap sampling method with pink
areas which are also presented in Figure 4. We can predict the general tendency of the epidemic
according to the current situation, which is presented in Figure 5. We can obtain 2000 bootstrap repli-
cates for R0 by putting the 2000 bootstrap replicates β2 and the rest of parameters in Table 2 into the
formula of basic reproductive number R0. Thus, we can estimate basic reproductive number to be
R0 = 1.47(95%CI : 1.34, 1.50). According to the bootstrap estimate value for each parameter, we plot
the frequency distribution histogram and the probability density curve which are presented in Figure 6.
This indicates that the disease is uniform persistence. Therefore, if no further effective prevention and
control measures are taken, the disease will not vanish.

5.2. Sensitivity analysis and disease control

Sensitivity analysis is vital to identify key parameters and find effective control strategies for com-
batting the spread of the disease. It is well known that the basic reproduction number (R0) is a very
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Figure 4. The fitting between the cumulative number of acute HBV case from 2008 to 2018
and the simulation of our model.
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Figure 5. The tendency of the cumulative number of acute HBV cases from 2008 to 2028.
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Mathematical Biosciences and Engineering Volume 17, Issue 2, 1757–1775.



1771

important parameter in the infectious disease model, which determines whether the could spread. In
our model, we focus on the parameters γ1, γ2, ω, β2, ε, q in R0. In order to identify the impacts of theses
parameters on HBV transmission and prevalence, we used the Latin hypercube sampling method and
partial rank correlation coefcient (PRCC)(see [31]). Using model (1.1), 2000 samples are randomly
generated by assuming a uniform distribution for each parameter based on values from Table 2. We
choose parameters of interest as the input variables, and the value of R0 as the output variable. The
PRCC values of six parameters and corresponding p-values are computed. The results are illustrated in
Table 3 and shown in Figure 7. The larger PRCCs in absolute value, the more important the parameter
in responding to the change in R0. Plus sign or minus sign means the influence is positive or negative
respectively. Table 3 and Figure 7 show that β2, γ1 and q have positive impact upon R0, whilst γ2

has negative impact. We also know that R0 is not sensitive to parameters ω and ε. Further, Table 3
shows that the transmission coefficient from carriers to susceptible individuals β2 has greatest impact
on R0 followed by proportion of acute infection individuals who become chronic infections q, then rate
leaving the acute infections γ1. Hence, from sensitivity we conclude that the most effective approach
to reduce the HBV infection is to reduce the parameters β2 and q.

In the following, we focus on parameters β2 and q. The influence of parameters β2 and q on R0 is
shown in Figure 8. We can see from Figure 8(a) that when β2 is reduced to 2.8 × 10−9, which is about
1/2 of current level, the basic reproductive number will drop under 1. Figure 8(b) shows that when
q < 0.4, that is, the proportion of acute infection individuals who become chronic infections is below
0.4 through improving the therapy.

Table 3. Partial rank correlation coefficients (PRCCs) for R0 and each input parameter.

Input parameter PRCC 95% Confidence Interval p value
ω 0.0236 [-0.0115, 0.0583] 0.3019
ε 0.0343 [-0.0053, 0.0709] 0.1808
β2 0.9257 [0.9187, 0.9325] < 0.0001
γ1 0.8768 [0.8643, 0.8882] < 0.0001
γ2 −0.7270 [-0.7482, -0.7056] < 0.0001
q 0.8807 [0.8679, 0.8911] < 0.0001

6. Conclusion

Hepatitis B virus infection is a public health problem all over the world. The epidemic caused by
HBV affects mostly the WHO African Region and the Western Pacific Region. The Global Health
Sector Strategy calls for the elimination of viral hepatitis as a public health threat by 2030 [32]. Xin-
jiang is an autonomous region in the northwest of China. It is the largest province-level administrative
regions of China. There are 47 ethnic groups in Xinjiang mainly the Uygur, Han, Kazak, Hui Kirgiz,
Tatar, Russian and so on. About 60% of the population are ethnic minorities, especially Uyghurs are
the majority in southwestern Xinjiang. Economic underdevelopment, inconvenient transportation and
language obstacle etc. lead to high incidence rate for HBV infection. These bring a lot of difficulties
in medical treatment, publicity and education of HBV-related knowledge and information, high-risk
groups intervention, disease monitoring etc. Treatment access is still very low in Xinjiang. Moti-
vated by these reasons, we hope to reveal the propagation rule of the HBV epidemic in Xinjiang from
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Figure 7. The Partial rank correlation coefficient values for model (1.1).
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Figure 8. The influence of parameters on R0. (a) versus β2; (b) versus q.

the view point of epidemiological dynamics. In order to explore the HBV epidemic in Xinjiang, we
model and analyze a Hepatitis B Model in which the total population is divided into six subgroup.
The time delay is introduced into the model to stand for the incubation period. The basic reproductive
number is obtained by the standard next generation operator method [22]. By using Lyapunov func-
tional method and LaSalle invariance principle for delay differential equations [33, 23], we establish
the global asymptotic stability of the disease-free and endemic equilibria. The theoretical results show
that the HBV infection can be controlled and eliminated eventually provided reducing the value of the
basic reproduction number below unity.

Based on the monthly new reported HBV cases data in Xinjiang(see Figure 2), the parameters in the
model are estimated by the least-square methods. We can calculate the basic reproductive number of
HBV R0 = 1.47. It is shown that the HBV still need to be prevented and controlled in the long run. If
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there is no more effective measures, the cumulative HBV cases will arrive at about 700,000. Sensitivity
analysis results (see Figure 7) indicate that the control and treatment to the chronic HBV carriers are the
key prevention measures to decline the prevalence of HBV in Xinjiang. The government should further
enhance comprehensive campaign on HBV prevention and control such as HBV awareness campaigns,
interventions among most-at-risk populations, treatment, care and support to HBV patients, especially
HBV chronic patients. From the view of data analysis, Cui, Moriyama and Rahman also think that
education, health program and treatment are the key measures for prevention of HBV in Xinjiang [2].
Furthermore, from our analysis parameters β2 and q are sensitive to R0. This implies that reduce the
transmission coefficient for chronic infection individuals and proportion of acute infection individuals
who become chronic infections are also effective measures to decline the prevalence of HBV. In order
to reduce β2, we should reduce household and sexual contacts of people with chronic HBV infection
and improving the therapy can reduce proportion rate q.
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