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Abstract: We consider a population dynamics model in investigating data from controlled experiments
with aphids in broccoli patches surrounded by different margin types (bare or weedy ground) and three
levels of insecticide spray (no, light, or heavy spray). The experimental data is clearly aggregate in
nature. In previous efforts [1], the aggregate nature of the data was ignored. In this paper, we embrace
this aspect of the experiment and correctly model the data as aggregate data, comparing the results to
the previous approach. We discuss cases in which the approach may provide similar results as well as
cases in which there is a clear difference in the resulting fit to the data.
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1. Introduction

In the summer of 1999, Banks and Stark [2] conducted a full-factorial design field experiment to
explore the potentially combined effects of vegetation diversity and selective pesticide disturbance on
aphid populations in a broccoli agroecosystem. They applied three concentration levels of the
biorational pesticide imidacloprid to broccoli patches surrounded by either bare ground or weedy
vegetation. These efforts by necessity resulted in what is now referred to as aggregate
data [3, Chapter 14], [4, Chapter 5] wherein possibly (almost certainly) different subpopulations are
counted in a longitudinal manner over the life of the experiment.
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In earlier efforts [1], authors sought to fit several autonomous ordinary differential equation (ODE)
models to each of the six data sets (two margin types each with three pesticide spray levels),

1. Bare margin, no spray;
2. Bare margin, low spray (15 g ai/ha);
3. Bare margin, high spray (30 g ai/ha);
4. Weedy margin, no spray;
5. Weedy margin, low spray (15 g ai/ha); and
6. Weedy margin, high spray (30 g ai/ha),

in an attempt to understand the influence of natural enemies or other margin-based factors on pest
suppression separately from and in interaction with that of the insecticide. In these early attempts, the
authors ignored the aggregate aspects of the data and used ordinary least squares techniques to fit the
models. In addition, motivated by both varying environmental factors and changes in dynamics due to
pesticide application, the authors also investigated the same set of models with piecewise constant and
piecewise linear time-varying coefficients in the corresponding non-autonomous ODEs.
Parameterizing these time-varying coefficients introduced additional degrees of freedom, but in
general the non-autonomous systems provided substantially better fits to the data. Specifically,
chi-squared tests revealed that increasing degrees of freedom to move from constant to time-varying
coefficients yielded statistically significant improvement in model fit. Details of the data sets, the
methods used in data collection, and the model fit are given in [1, 2, 5, 6] and summarized in a readily
available technical report [7].

An obvious goal of that earlier paper was to contribute to the literature on plant–insect
herbivore–pesticide interactions which would help raise questions for future investigations supported
by experiments. Although this is still a secondary goal of this paper, our main objective in this paper
is to discuss the similarities and differences between previous efforts in which data was simply treated
as longitudinal data (i.e., the true aggregate nature of the data was ignored) to current, more accurate
efforts of treating the data correctly as aggregate data. Therefore, in this paper, we correctly
acknowledge the aggregate nature of the data and apply the more recently developed methodology for
treating such data sets in the context of the Prohorov Metric Framework (PMF) [3, 4, 8–14]. Hence,
we present a combined mathematical/statistical modelling methodology that has broad applicability to
other problems in biology as well as engineering and general sciences in which aggregate data has
been collected and must be treated accordingly. We compare the results of this methodology to the
standard, although erroneous, treatment of aggregate data as simply longitudinal data.

2. Mathematical model

While the authors of [1] considered 7 different ordinary differential equation models of population
dynamics, we focus on only one of these models to compare results when treating the data as truly
aggregate data versus ignoring the aggregate nature of the data. This model was called Model 3 in
the earlier reference [1]. The model involves a single state variable N(t), which denotes the aphid
population density: (mean aphids)/m3. The model has the general form

dN(t)
dt

= B(N(t), t) N(t) − D(N(t), t) N(t), (MM)
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where dN
dt (equivalently Ṅ) denotes the time derivative of the state variable N(t); B, a (potentially time-

and/or state-dependent and/or random variable) birth rate; and D, a (potentially time- and/or state-
dependent and/or random variable) death rate.

The model used in our current study (omitting the implicit time dependence of N and Ṅ) assumes
mortality due to pesticides and/or predation is the driving force behind aphid population dynamics
and is the standard exponential model for population dynamics, allowing for simultaneous exponential
birth and death. Here B > 0 and D > 0 in (MM) above for the deterministic time dependent coefficient
models. In the case of random differential equation (RDE) models we take B − D = A for a random
variable and we have an RDE model

Ṅ = BN − DN = AN. (2.1)

Note that we let A = B − D denote a combined birth/death rate in this model. Because aphids
reproduce by parthenogenesis (i.e., asexually) in the field, exponential growth is a reasonable
assumption for their population dynamics, especially when densities are below the carrying capacity.
Densities during the field study considered here were consistently below carrying capacity densities
observed in previous years.

For more information on models of the form (MM), see Boyce and DiPrima [15]. Note that in each
case, a solution to the ordinary differential equation is uniquely determined by imposing a single initial
condition, denoted N0 = N(t0), where t0 = 0 is the initial time considered in our studies.

3. Methodology

In [1], authors used an ordinary least squares cost functional to measure the fit to the data when
assuming a constant parameter A = a in Model (2.1) and then piecewise constant and piecewise linear
coefficients a(t). In all six data sets, except the weedy margin, low spray data set, the piecewise constant
coefficient provided a statistically better fit with a confidence level of over 0.77 (see [7] Figures 2–7,
Tables 1–6). Furthermore, authors in [1] found little perceptible difference in statistical significance
between adding piecewise constant versus piecewise linear coefficients. Although the time-varying
estimated rates were within an order of magnitude of the values derived in an (in vitro) laboratory
study (unpublished) by Stark, the authors in [1] failed to recognize the aggregate nature of the data to
which they were fitting the model.

The modeling problem which should have been considered given the nature of the data, and that
which is considered in this paper, is referred to as an individual dynamics / aggregate data problem or
a Type I problem in [4] in which we have a mathematical model for individual dynamics but only have
aggregate data, not individual data. In this case, we have data from randomly selected plants in multiple
plots which were averaged to reduce inter-block variability (aggregate data). Therefore, we should not
be interested in a single parameter value a for our model (or piecewise constant parameters); instead,
the underlying goal should be to determine a probability measure which describes the distribution of
the parameter across all members of the population.

In [1], the authors estimated the parameter a or a(t) in a deterministic, least squares setting. In other
words, it was assumed the experimental data {ẑi}, i = 1, ..., n corresponds to individual observations of
the state variable, i.e., zi, i = 1, ..., n are realizations of a random variable Zi satisfying the statistical
model
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Zi = N(ti; a0) + Ei, i = 1, ..., n

(when assuming constant variance) [1, 4]. Here N(t; a0) is the solution to (2.1) with some “truth”
parameter a0 and error Ei. However, in the collection of the data in this study, the experimental
observations were collected from multiple plants and averaged across different plots. Therefore, we
do not have longitudinal measurements of an independent state variable but expected values across
the population which we will refer to as {ûi}, i = 1, ..., n. If the parameters do not vary to a large extent
across the population, then these “mean” value approximations determined in [1] may suffice.
However, in many cases, these “mean” value approximations, in which the aggregate nature of the
data is ignored, may lead to inaccurate parameter estimates and an inaccurate description of the
dynamics within the population. Therefore, in this paper, we want to adequately consider the
aggregate nature of the data.

To incorporate the potential population-dependent variability in the model parameter, we now
assume the parameter A in Eq (2.1) is a random variable with probability distribution P which belongs
to a probability space P(Q) that may be infinite dimensional. As in [16], we define the set P(Q) of all
probability distributions on the admissible parameter space Q and seek to minimize the objective
function

J(P) =
n∑

i=1
|u(ti; P) − ûi|

2

=
n∑

i=1

(
(u(ti; P))2 − 2u(ti; P)ûi + (ûi)2

) (3.1)

over P ∈ P(Q) where the expected value is defined by

u(t; P) = E[N(t)|P] =

∫
Q

N(t; a)dP(a). (3.2)

If it is possible to predict the expected form of the probability distribution P a priori, then we
could use the parametric form of the distribution in (3.2) and estimate the parameters describing the
distribution by minimizing (3.1) using a least-squares methodology (see [17]). However, in general,
it is typically not plausible to predict the expected form of the distribution a priori. In this case, P(Q)
may be chosen as the space of all probability distributions. Thus we need non-parametric approaches
that do not require any assumptions with respect to the form of the probability distribution. In [19],
two approaches were compared in which P(Q) was approximated by finite dimensional sets PM(Q),
yielding computationally feasible schemes. Using the Prohorov metric [18, 23] and the theoretical
framework in [16], if Q is compact, then we can define a family of finite dimensional approximation
problems in which we are guaranteed convergence (in the Prohorov metric) of a minimizer of

J(PM) =
n∑

i=1

∣∣∣u(ti; PM) − ûi

∣∣∣2
=

n∑
i=1

(
(u(ti; PM))2 − 2u(ti; PM)ûi + (ûi)2

) (3.3)

over the set PM to a minimizer for the original problem, i.e., the minimization of (3.1).
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One approach is to assume a discrete collection of admissible parameter values QM = {qM
k }

M
k=0 and

approximate P(Q) with

PM(Q) =

P ∈ P(Q)|P′ =
∑

k

pM
k δqM

k
,
∑

k

pM
k = 1

 (3.4)

where δqM
k

is the delta function with an atom at qM
k . In this case, the population density is approximated

by

u(t; {pM
k }) =

M∑
k=0

N(t; aM
k )pM

k

where N(t; aM
k ) is the subpopulation density from (2.1) with birth/death rate aM

k . This is the delta
function approximation method, denoted DEL(M), where M is the number of nodes or elements used
in this approximation.

An alternative approach, and the one used in this paper, is to assume P is a continuous probability
distribution on the parameter and use piecewise linear splines to approximate the distribution. In this
methodology, we still assume a discrete collection of admissible parameter values QM = {qM

k }
M
k=0 but

now approximate P(Q) with

PM(Q) =

P ∈ P(Q)|P′ =
∑

k

bM
k lM

k (q),
∑

k

bM
k

∫
Q

lM
k (q)dq = 1

 (3.5)

where the piecewise linear splines are represented by lM
k . Using this approximation method, the

population density from (3.2) is approximated by

u(t; {bM
k }) =

M∑
k=0

bM
k

∫
Q

N(t; a)lM
k (a)da

where pM
k (a) = bM

k lM
k (a) is the probability density for individuals in subpopulation k. This spline based

method is denoted by SPL(M,N) where M is the number of basis elements used to approximate the
birth/death rate probability distribution and N is the number of quadrature nodes used to approximate
the integral.

In both approaches, the least squares problem in (3.3) reduces to a constrained quadratic
programming problem [21, 22] in which we minimize

F(p) = pT Hp + 2pT f + c (3.6)

over PM(Q), where p is the vector containing pM
k , 0 ≤ k ≤ M or bM

k , 0 ≤ k ≤ M when using DEL(M)
or SPL(M,N), respectively. We let H be the matrix with entries given by

Hkm =
∑

i

N(ti; aM
k )N(ti; aM

m );

f is the vector with entries
fk = −

∑
i

ûiN(ti; aM
k )
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and
c =

∑
i

(ûi)2.

When using DEL(M), the constraint
M∑

k=1

pM
k = 1

is imposed; whereas when using SPL(M,N), we include the constraint

M∑
k=1

bM
k

∫
Q

lM
k (q)dq = 1.

In [20], Banks and Davis provided a computational framework for the quantification of uncertainty
associated with estimating probability distributions or densities for a Type 1, individual
dynamics/aggregate data problem. In their trials, they computed confidence bands for both the
cumulative distribution and probability density functions for the estimated probability distribution for
a growth rate parameter in the Sinko-Streifer model. They were able to show that as the number of
nodes, M, increases, the confidence bands appear to converge nicely until M becomes too large, i.e.,
the problem becomes over-parameterized. They showed that the condition number for the matrix H in
the quadratic programming problem (3.6) increases as M increases and causes the inverse problem to
become ill-posed.

Prior to estimating a probability distribution for the growth/death rate A in (2.1) using the
experimental data, we performed trials using simulated data with a known probability distribution,
assuming a small number of data points (as given in this study). Even for small values of M, the
condition number was fairly large, providing poor fits to the true density. To improve the fit to the
simulated data, we first incorporated regularization with a small regularization parameter and then
determined that M=15 nodes provided a good fit to both the cumulative distribution and probability
density functions for the known probability distribution as well as a good fit to the solution.

4. Results

In this section, we use the techniques outlined in Section 3 to estimate a probability distribution for
random variable parameter A in Eq (2.1), accounting for the fact that we have aggregate data. We do
this in two ways; we first assumed that the distribution did not change with respect to time. This is
comparable to the case in which a was assumed to be constant in [1]; however, we do not estimate a
single parameter value, but assume potential population-dependent variability in the model parameter
since we have aggregate data and estimate a probability distribution for A. Therefore, in our initial
efforts, we assume there is variability across the population, but there is no change in variability with
respect to time. Hence, we estimate one probability distribution for A for the entire time frame for
each of the six data sets using the initial population N(0) estimated in [1] and equally spaced nodes
in the constrained quadratic programming problem given in Eq (3.6). The model fit to the data can
be found in Figure 1 for all six data sets with the respective probability distributions and cumulative
distribution functions given in Figure 2. Notice that in most cases, the fit is fairly poor and although
the distributions behave similar to a gaussian distribution, the interval of definition for this distribution
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is small. We refer the reader to [7] for full results and comparisons; however, in almost all cases,
the results when considering the aggregate nature of the data with no time dependence (this paper) is
almost identical to when the aggregate nature of the data is ignored [1].

Figure 1. Fit of model with one distribution for the parameter A to data from the bare
ground, no spray (top left), bare ground, low spray (top right), bare ground, high spray
(middle left), weedy ground, no spray (middle right), weedy ground, low spray (bottom
left), and weedy ground, high spray (bottom right).

We note that the estimated probability density function for A varies depending on the choice of QM,
i.e., it changes depending on the nodes which are chosen in the interval as well as the interval over
which the nodes are chosen. This makes sense as one could miss crucial variability in the probability
density function if nodes are not chosen for values in which there is a noticeable change. The choice
of QM and the placement of the nodes is a future research question to be addressed. We note that in our
initial trials, we choseQM as indicated by the standard error estimates for a given in [1]. However, using
this large interval with only M = 15 nodes, the estimates indicated point distributions at values close to
the estimated constant values estimated in [1]. This could explain the similarity in model fits and cost
estimates between the two methodologies. Therefore, in this case, when ignoring time-dependence,
the “mean” value approximation may suffice.
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Figure 2. Estimated distribution for parameter A in Eq (2.1) assuming one distribution for
the parameter A across the entire time period for data from the bare ground, no spray (first
row), bare ground, low spray (second row), bare ground, high spray (third row), weedy
ground, no spray (fourth row), weedy ground, low spray (fifth row), and weedy ground,
high spray (last row).
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Figure 3. Fit of model with a piecewise distribution for the parameter A to data from the
bare ground, no spray (top left), bare ground, low spray (top right), bare ground, high
spray (middle left), weedy ground, no spray (middle right), weedy ground, low spray
(bottom left), and weedy ground, high spray (bottom right).

In our next efforts, we assumed time-dependence variability. In this situation, we split the time
interval into three subintervals over which we estimated subinterval population distributions. In other
words, we assumed on each subinterval, there was potentially a different probability distribution for
Ai, i = 1, 2, 3. We considered three subintervals based on the previous efforts in [1] and due to the
collection of the data between sprays. This scenario is comparable to the piecewise constant estimates
considered in [1]. We assumed the solution was a piecewise continuous function in which the value
of the solution at the end of one subinterval was the initial value of the solution at the start of the
next subinterval. We want to emphasize the fact that these solutions are not unique. In future research
efforts, one might like to investigate how one “best” chooses the interval endpoints as well as the choice
of QM on each subinterval. In current efforts, the model fits can vary depending on these factors. The
continuous piecewise model solution fits are given in Figure 3. These can be compared to the case
when the aggregate nature of the data was ignored. We refer the reader to [7] for a full comparison,
but we highlight some main differences here. In almost all conditions (almost all data sets), when
the aggregate data was not ignored and treated correctly, the cost function values were smaller and
produced better fits to the data; see Table 1. The one case in which the cost function was slightly
higher was in the weedy ground, low spray case in which the data on all three intervals appears to
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behave very similarly; see graph in bottom left row of Figure 3.

Table 1. Comparison of cost function values when treating the data as simply longitudinal
data as in [1] versus correctly treating the data as aggregate data.

Data Set Cost Function - Ignore Aggregate Nature Cost Function - Incorporate Aggregate Nature

Bare Ground, No Spray 1.57e+04 1.04e+04
Bare Ground, Low Spray 2.51e+04 1.60e+04
Bare Ground, High Spray 1.34e+04 1.11e+04
Weedy Ground, No Spray 1.19e+04 1.16e+04
Weedy Ground, Low Spray 1.83e+03 1.87e+03
Weedy Ground, High Spray 1.57e+04 4.84e+03

Figure 4. The estimated probability density function and cumulative distribution function
for the probability distribution of the parameter A(t) on each of the intervals when
considering a piecewise function using 3 different intervals for data from the bare ground,
low spray situation.
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We refer the reader to [7] for the estimated distributions for all the data sets. However, we want to
highlight two cases in this paper, the bare ground, low spray case and the weedy ground, high spray
case in which the differences in cost functions were more remarkable. In the bare ground, low spray
case, the result when correctly considering the aggregate nature of the data resulted in a decrease in the
cost function by a factor of about 1.6 while in the weedy ground, high spray case, there was a decrease
in the cost function by a factor of about 3.2. The estimated piecewise distributions for these are given in
Figures 4 and 5, respectively. Notice that the distributions on each segment are slightly different in both
shape and spread of values. These are not nested models; therefore, we cannot statistically compare
the model fits as outline in [1]. Nonetheless, the differences in model fits illustrates the potential errors
which may occur when one naively treats aggregate longitudinal data as individual longitudinal data.

Figure 5. The estimated probability density function and cumulative distribution function
for the probability distribution of the parameter A(t) on each of the intervals when
considering a piecewise function using 3 different intervals for data from the weedy ground,
high spray situation.

5. Conclusions

One may on initial observation, perceive strong similarities in our findings above whether one
treats the data as individual longitudinal data or as the aggregate data which it is. However, in the 3
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subinterval approach shown above, the results were different with quite different cost functions.
Moreover, in other examples not given in this paper, we found vastly different or non-converging
estimates when treating the data correctly as aggregate data. Our results in this paper underscore the
potential pitfalls inherent in using field census data in modeling population dynamics in applied
ecology. Many sampling schemes in agroecosystems as well as natural systems rely on regular
population counts. These data are often regarded as individual longitudinal data, which is reflected in
assumptions underlying the statistical analyses. In many of these cases, however, because of
reproduction, mortality, and redistribution of individuals, repeated population sampling results in
counts of different individuals each time period. This necessitates treating the data as aggregate
individual data. In the current illustration, the difference in data interpretation differs little between
these two approaches; we offer here a strong cautionary tale nonetheless because in many cases the
two approaches may lead to markedly different conclusions.
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