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Allee effects, whereas, DDE forms with a negative slope will enhance them. Also, DDE can have
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1. Introduction

1.1. Background and motivation

Allee effects, the positive effects of increasing density on fitness, were first described in the early
1930s for cooperatively breeding species [1, 2]. Scarcity of reproductive opportunities at low densities
are thought to be a common cause for Allee effects such that there is a population threshold below
which the population will go extinct [3, 4]. However, Allee effects can also arise when increasing
density facilitates feeding, habitat modification, defense against predators, or reduces the likelihood of
inbreeding depression [5–7]. Empirical support for Allee effects spans a wide diversity of taxa [6, 7],
although it can be difficult to detect (e.g., [8]). The potential for positive density dependence in small
populations to increase extinction risk has made Allee effects an important subject of study in
conservation biology [6], fisheries management [9], invasion biology [10, 11] and insect pest
management [12–14]. Allee effects have also been recognized as important in tumor growth and
epidemiology [15–19].

Allee effects are particularly important in the context of metapopulation or landscape ecology and
there is a growing list of studies that have examined the interplay between Allee effects and dispersal
(for recent review, [20]). Under some circumstances, dispersal can increase persistence times in
metapopulations with Allee effects [21]. More often, elevated dispersal rates exacerbate the negative
influences of Allee effects on local or regional persistence [22–25] or the spatial spread of
populations [12, 13, 26].

The relationship between conspecific density and the probability of emigrating from a patch can
play an essential role in determining the population-dynamic consequences of an Allee effect. In a
population subjected to Allee effects at the metapopulation-level, positive density-dependent
emigration (+DDE), whereby individuals remain in patches at low density (Figure 1), will allow for
Allee mechanisms to operate [22]. In contrast, negative density-dependent emigration (-DDE;
Figure 1) would allow for individuals to escape Allee effects [27, 28]. Although the most widely
accepted view of emigration behavior is that species should exhibit +DDE [29–31], other forms of
density-dependent emigration (DDE), including -DDE, exist (Figure 1). In a recent review of the
empirical literature in [32], the authors found that 35% of the cases exhibited +DDE, 30% were
density independent (DIE), 25% were -DDE, 6% were U-shaped (UDDE) and 4% were humped
shaped (hDDE). Importantly, recent mathematical models have revealed that DDE forms with a
negative slope (-DDE and UDDE) can also induce something similar to an Allee effect at the
patch-level (a version of bi-stable population dynamics such that the trivial steady state and a positive
steady state are both stable) [32–34]. Matrix hostility, which relates to the probability that individuals
die when exiting the patch and entering the matrix was found to have little effect on the generation of
Allee-like effects [32], but we do not know how it would affect stability in the presence of an Allee
effect. To date, no studies have examined how weak Allee effects (i.e., those that, on their own, do not
result in a critical population size below which persistence is not possible [35]; Figure 2), the form of
DDE and matrix hostility interact to affect population stability.

In this paper, we explore the effects of density dependent emigration on a population that exhibits a
demographic weak Allee effect. In particular, we analyze a reaction diffusion model for a population
with weak Allee effect per-capita growth inside a patch surrounded by a hostile matrix with boundary
conditions that correspond to the situation where the probability of an individual remaining in the patch
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Figure 1. Graph of density vs emigration probability for DIE, +DDE, -DDE, UDDE and
hDDE.
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Figure 2. Graphs of density vs per-capita growth rate for logistic, weak Allee effect and
strong Allee effect.

is a function of conspecific density at the point where the individual reaches the patch boundary. We
do not consider a strong Allee effect in our analysis since previous studies have shown that such a per-
capita growth rate will generate a patch-level Allee effect (i.e. bi-stable population dynamics) for all
patch sizes (see, for example, [36]). Figure 3 shows dynamical differences between a population with
a patch-level Allee effect generated from either a weak Allee effect per-capita growth rate with DIE or
a logistic per-capita growth rate with -DDE and one with no patch-level Allee effect. In the Allee effect
case, the population will exhibit a patch-level Allee effect for patch sizes with corresponding λ-values
(λ here is a composite parameter proportional to patch size squared) in what we will call the Allee
effect range, i.e. (λm, E1) ( Figure 3). The Allee effect range (AER) can be used to quantify the strength
of a patch-level Allee effect in the sense that a large AER will indicate that a population will exhibit a
patch-level Allee effect over a wide range of patch sizes. In contrast, a population with a small AER
may theoretically exhibit a patch-level Allee effect, but practically will not exhibit such an Allee effect
since the proportion of patches with a size in the AER will be almost zero.

We are interested in the interaction/interplay of a weak Allee effect per-capita growth rate (i.e. an
initial positive relationship between density and per-capita growth rate), form of the DDE relationship
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(e.g. +DDE, -DDE, UDDE and hDDE), and matrix hostility. Particularly, 1) will a certain form of DDE
enhance or even diminish the patch-level Allee effect, as measured by the AER, 2) will the interaction
between the weak Allee effect per-capita growth rate and a particular DDE form create other versions
of dynamical bi-stability besides a patch-level Allee effect, and 3) what effect will DDE have on the
structure of the steady state density profile?
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Figure 3. Prototypical bifurcation-stability curves of population persistence with λ

proportional to patch size squared. The population shows a patch-level Allee effect (left)
and no patch-level Allee effect (right). Solid curves correspond to stable steady states and
dashed curves correspond to unstable steady states. Note that the trivial steady state is stable
to the left of E1 and unstable to the right of E1.

1.2. Model formulation

We will present and study a model built upon the reaction diffusion framework which will
incorporate a weak Allee effect per capita growth rate and density dependent boundary conditions.
Reaction diffusion models have been extensively studied in the literature, see [37–43] and references
therein for a detailed history of the reaction diffusion framework. In this model, u(t, x) represents the
normalized density (i.e. carrying capacity is equal to one) of a population in the patch Ω = (0, `) with
patch size ` > 0, surrounded by a hostile matrix, denoted by ΩM = R \Ω ( Figure 4). The boundary of
Ω is denoted by ∂Ω. Here, the variable t represents time and x represents spatial location within the
patch. The model is then 

ut = Duxx + ru
(

u
a + 1

)
(1 − u) ; t > 0, x ∈ Ω

u(0, x) = u0(x); x ∈ Ω

Dα(u)∂u
∂η

+ S ∗ [1 − α(u)] u = 0; t > 0, x ∈ ∂Ω

(1.1)

where D > 0 is the patch diffusion rate, r > 0 is the patch intrinsic growth rate, a ∈ (0, 1) is a parameter
measuring the strength of the weak Allee effect (in the sense that per-capita growth rate is increasing
for u ∈ [0, 1−a

2 )), u0(x) is the initial population density distribution in the patch, and α(u) denotes the
probability of an individual remaining in the patch upon reaching the boundary. The term ∂u

∂η
denotes

the outward normal derivative of u. Here, the parameter S ∗ ≥ 0 is a measure of the hostility of the
matrix towards the organism, has units of length by time, and can assume different forms depending
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upon the patch/matrix interface assumptions [44]. If α(u) ≡ 0 then the boundary is absorbing, i.e. all
individuals that reach the boundary will emigrate, whereas if α(u) ≡ 1 then the boundary is reflecting,
i.e. the emigration rate is zero. Also, a given relationship between density and emigration can be
included in the model by selecting an appropriate α(u) (see, for example, [33, 34, 44–46]).

Figure 4. Illustration of the patch Ω and hostile matrix ΩM.

We now introduce a standard scaling,

x̃ =
x
`

& t̃ = rt. (1.2)

It is easy to see that after applying this scaling and dropping the tilde, (1.1) becomes
ut = 1

λ
uxx + f (u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0
∂u
∂η

+
√
λγg(u)u = 0; t > 0, x ∈ ∂Ω0

(1.3)

with corresponding steady state equation:
−u′′ = λ f (u); (0, 1)
−u′(0) +

√
λγg(u(0))u(0) = 0

u′(1) +
√
λγg(u(1))u(1) = 0

(1.4)

where λ = r`2

D and γ = S ∗
√

rD
are both unitless, f (u) = 1

au(u + a)(1 − u), g(u) =
1−α(u)
α(u) , and Ω0 = (0, 1).

Thus, for fixed r,D, the composite parameter λ is proportional to patch size squared and γ to matrix
hostility.

We next choose prototypical functions for the five most common DDE forms reported in the recent
literature review in [32]. In order to remain consistent in choosing these forms, we employ a single
α(u) template and it’s mirror image, namely

α1(u) =
M1

2M1 + m(u)

α2(u) = 1 − α1(u) =
M1 + m(u)

2M1 + m(u)
(1.5)

where M1 > 0 and m(u) ≥ 0 with m(0) = 0 are appropriately chosen to model a given DDE form. Note
that the emigration rate at zero will be the same across all forms, i.e. 1 − αi(0) = 0.5, i = 1, 2. Table 1
lists the exact m(u)’s that were chosen to model the five DDE forms (also, Figure 1).
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Table 1. Listing of the five DDE forms. The parameter combination M1M2 > 0 controls the
shape of the DDE form by affecting the concavity/convexity of the form, whereas, M3 ∈ (0, 1)
is the location of the minimal and maximal emigration probabilities for UDDE and hDDE,
respectively.

DDE Form m(u) α(u) g(u) Restrictions

DIE m(u) ≡ 0 α(u) ≡ 0.5 g(u) ≡ 1 none

+DDE m(u) = u2

M2
α(u) = M1 M2

2M1 M2+u2 g(u) = M1 M2+u2

M1 M2
none

−DDE m(u) = u2

M2
α(u) = M1 M2+u2

2M1 M2+u2 g(u) = M1 M2
M1 M2+u2 none

UDDE m(u) = u2−2M3u
M2

α(u) = M1 M2
2M1 M2+u2−2M3u g(u) = M1 M2+u2−2M3u

M1 M2
M1M2 > M2

3

hDDE m(u) = u2−2M3u
M2

α(u) = M1 M2+u2−2M3u
2M1 M2+u2−2M3u g(u) = M1 M2

M1 M2+u2−2M3u M1M2 > M2
3

1.3. Structure of the paper

We will present some preliminary mathematical results in section 2. An evolution of the structure
of positive steady states of (1.3) as γ is varied is given in section 3, followed by an analysis of the
AER in section 4. Section 5 covers the affect of DDE on density profile of the steady states of (1.3).
Finally, we discuss some consequences of our results in section 6.

2. Preliminaries

In this section, we state and prove several mathematical results that will aid in the study of the
model (1.3). First, we consider the stability of the trivial steady state, u(x) ≡ 0, of (1.3). Let E1(γ) be
the principal eigenvalue of the boundary value problem:

−φ′′ = Eφ; (0, 1)
−φ′(0) + γ

√
Eg(0)φ(0) = 0

φ′(1) + γ
√

Eg(0)φ(1) = 0.

(2.1)

We now obtain the following theorem which connects E1(γ) to the stability of u(x) ≡ 0.

Theorem 2.1. The trivial solution of (1.4) is asymptotically stable if λ < E1(γ), and it is unstable if
λ > E1(γ).

Before presenting a proof of Theorem 2.1, we recall the following results from [34, 47].

Lemma 2.1. [47] Let σ1 be the principal eigenvalue of the linearized equation associated with (1.4),
namely 

−φ′′ − λ fu(u)φ = σφ; (0, 1)
−φ′(0) + γ

√
λ[gu(u(0))u(0) + g(u(0))]φ(0) = σφ(0)

φ′(1) + γ
√
λ[gu(u(1))u(1) + g(u(1))]φ(1) = σφ(1)

(2.2)
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where u is any solution of (1.4). Then the following hold.
a) If σ1 > 0, then u is stable. Furthermore, if u is isolated then it is asymptotically stable.
b) If σ1 < 0, then u is unstable.

Lemma 2.2. [34] Let u be a solution of (1.4) and σ∗1 be the principal eigenvalue of the following
boundary value problem


−φ′′ − λ fu(u)φ = σφ; (0, 1)

−φ′(0) + γ
√
λ[gu(u(0))u(0) + g(u(0))]φ(0) = 0

φ′(1) + γ
√
λ[gu(u(1))u(1) + g(u(1))]φ(1) = 0.

(2.3)

Then, sign(σ∗1) = sign(σ1) for σ∗1, σ1 , 0.

In the light of Lemma 2.2, it suffices to study the relationship between σ∗1 and λ in order to prove
Theorem 2.1.
Proof of Theorem 2.1:
Let λ < E1(γ). By Lemma 2.2, we see that the zero solution is asymptotically stable if the principal
eigenvalue σ∗1 of (2.3) with u ≡ 0 is positive. Note that, for λ < E1(γ), the zero solution is isolated
since λ is not a bifurcation point on the solution curve (µ, 0). Let µ1 = µ1(β) be the principal eigenvalue
of: 

−φ′′ = µφ; (0, 1)
−φ′(0) = −βφ(0)
φ′(1) = −βφ(1)

where β ≥ 0. Then, µ1(β) is a strictly increasing concave function which passes through the origin,
bounded above by λD, the principal eigenvalue of the Dirichlet problem (see [44, 48]):{

−φ′′ = µφ; (0, 1)
φ(0) = φ(1) = 0

Let β = γ
√
λg(0). Since µ1(β) is a strictly increasing concave function of β and β2

γ2g(0)2 is a strictly
increasing convex function of β which passes through the origin they intersect at exactly two points,
namely at (0, 0), and say at (β∗, µ1(β∗)) for β∗ > 0 (Figure 5). From (2.1), we can easily see that
µ1(β∗) = E1(γ) and β∗ = γ

√
E1(γ)g(0). Further, λ + σ∗1 = µ1(γ

√
λg(0)), where σ∗1 is the principle

eigenvalue of (2.3). Thus, if λ < E1(γ) then γ
√
λg(0) < β∗ and µ1(γ

√
λg(0)) > λ, implying σ∗1 > 0.

By Lemma 2.2 the zero solution is asymptotically stable if λ < E1(γ).
Next, let λ > E1(γ). By Lemma 2.2, the zero solution is unstable if the principle eigenvalue σ∗1 of (2.3)
is negative. But when λ > E1(γ), γ

√
λg(0) > β∗ and µ1(γ

√
λg(0)) < λ implying σ∗1 < 0 (Figure 5).

Hence, Theorem 2.1 is proven.
The second result gives a sufficient condition for the model (1.3) to exhibit a patch-level Allee effect

which only requires knowledge of the existence of a positive steady state of (1.3) and not its stability
properties.

Lemma 2.3. Let γ > 0 and a ∈ (0, 1) be given. If (1.3) has at least one positive steady state for

λ < E1(γ) then the model (1.3) will exhibit a patch-level Allee effect if the patch size is ` =

√
λD
r .
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Figure 5. Graphs of β vs µ1(β) and β2

γ2(g(0))2 .

Proof of Lemma 2.3: Assume that γ > 0, a ∈ (0, 1), and λ < E1(γ), are given and u1(x) is a positive
solution of (1.4). By Theorem 2.1, the trivial steady state, u(x) ≡ 0, of (1.3) is asymptotically stable.
Since f (s) < 0 for all s > 1, any constant M ≥ 1 is a supersolution for (1.4) and a strict supersolution if
M > 1 (see Definition 4.1 of [49]). Thus, any positive solution, u(x), of (1.4) must satisfy 0 < u(x) < 1
for x ∈ [0, 1]. Now, since u1(x) is a positive solution of (1.4) then it is also a subsolution and satisfies
u1(x) ≤ 1. For any u0(x) such that u1(x) ≤ u0(x) ≤ 1 for x ∈ (0, 1), Theorem 6.6 of [49] guarantees
that the solution of (1.3), u(t, x), with u(0, x) = u0(x) for x ∈ (0, 1) must satisfy 0 < u1(x) < u(t, x) < 1
for all x ∈ [0, 1], t ≥ 0. It is now clear that the model (1.3) will predict extinction for initial population
densities, u0(x), with ‖u0‖∞ ≈ 0, whereas the model will predict persistence for u0(x) satisfying u1(x) ≤
u0(x) ≤ 1 for x ∈ (0, 1). This establishes a patch-level Allee effect proving the lemma.

The final result is referred to as a time map analysis and will allow study of the structure of positive
steady state solutions of (1.3) as the composite parameters λ and γ vary.

Theorem 2.2. A positive solution, u(x), of (1.4) with ρ = ||u||∞, n = u(0), and q = u(1) exists if and
only if λ > 0, ρ ∈ (0, 1), and n, q ∈ [0, ρ) satisfy:

λ = 1
2

( ∫ ρ

n
ds√

F(ρ)−F(s)
+

∫ ρ

q
ds√

F(ρ)−F(s)

)2

.
(2.4)

and

2[F(ρ) − F(n)] = γ2n2[g(n)]2

2[F(ρ) − F(q)] = γ2q2[g(q)]2 (2.5)

where F(s) =
∫ s

0
f (t)dt.

Remark 2.1. For ρ ∈ (0, 1), since f (ρ) > 0, it can be shown that the improper integral in (2.4) is
convergent.

Figure 6 illustrates a prototypical positive solution of (1.4). We now provide a proof of Theorem 2.2.

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1718–1742.
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Figure 6. Density profile of a positive steady state of (1.3) when n , q.

Proof of Theorem 2.2: Assume that u(x) is a positive solution to (1.4) with ρ := ||u||∞, n := u(0),
q = u(1). Since (1.4) is an autonomous differential equation, if there exists an x0 ∈ (0, 1) such that
u′(x0) = 0 then v(x) := u(x0 + x) and w(x) := u(x0 − x) will both satisfy the initial value problem,

− z′′ = λ f (z)
z(0) = u(x0)

z′(0) = 0 (2.6)

for all x ∈ [0, d) with d = min{x0, 1 − x0}. Picard’s Existence and Uniqueness Theorem asserts that
u(x0 + x) ≡ u(x0− x). Hence, u(x) must be symmetric about x0, u′(x) ≥ 0; [0, x0], and u′(x) ≤ 0; [x0, 1].

Multiplying both sides of (1.4) by u′ we obtain

− u′′u′ = λ f (u)u′ (2.7)

and integrating both sides gives

−
[u′(x)]2

2
= λF(u(x)) + C; x ∈ [0, 1]. (2.8)

Substituting x = x0, x = 0, and x = 1 into (2.8) gives

C = −λF(ρ) (2.9)

C = −λF(n) − λ
γ2g2(n)n2

2
(2.10)

C = −λF(q) − λ
γ2g2(q)q2

2
. (2.11)

Combining (2.9) with (2.10) and (2.11) we have,

F(ρ) = F(n) +
γ2g2(n)n2

2
(2.12)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1718–1742.
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F(ρ) = F(q) +
γ2g2(q)q2

2
. (2.13)

Now substitution of (2.9) into (2.8) yields

[u′(x)]2

2
= λ

[
F(ρ) − F(u(x))

]
; x ∈ [0, 1]. (2.14)

Solving for u′(x) in (2.14) and using the fact that u′(x) > 0; [0, x0) and u′(x) < 0; (x0, 1] we have

u′(x) =
√

2λ
√

F(ρ) − F(u(x)); x ∈ [0, x0] (2.15)
u′(x) = −

√
2λ

√
F(ρ) − F(u(x)); x ∈ [x0, 1]. (2.16)

Integration of (2.15) from 0 to x and (2.16) from x0 to x yields∫ x

0

u′(s)ds√
F(ρ) − F(u(s))

=
√

2λx; x ∈ [0, x0] (2.17)∫ x

x0

u′(s)ds√
F(ρ) − F(u(s))

= −
√

2λ(x − x0); x ∈ [x0, 1]. (2.18)

Through a change of variables and using the fact that u(0) = q and u(x0) = ρ we have∫ u(x)

n

dt√
F(ρ) − F(t)

=
√

2λx; x ∈ [0, x0] (2.19)∫ u(x)

ρ

dt√
F(ρ) − F(t)

= −
√

2λ(x − x0); x ∈ [x0, 1]. (2.20)

Substituting x = x0 into (2.19) and x = 1 into (2.20) gives∫ ρ

n

dt√
F(ρ) − F(t)

=
√

2λx0 (2.21)∫ q

ρ

dt√
F(ρ) − F(t)

= −
√

2λ(1 − x0). (2.22)

Now subtraction of (2.22) from (2.21) yields,

λ =
1
2

( ∫ ρ

n

ds√
F(ρ) − F(s)

+

∫ ρ

q

ds√
F(ρ) − F(s)

)2

.
(2.23)

Next, assume λ > 0, ρ ∈ (0, 1), and n, q ∈ [0, ρ) satisfy (2.4) and (2.5). Define u(x) : [0, 1]→ R by∫ u(x)

n

dt√
F(ρ) − F(t)

=
√

2λx; x ∈ [0, x0] (2.24)∫ u(x)

ρ

dt√
F(ρ) − F(t)

= −
√

2λ(x − x0); x ∈ [x0, 1]. (2.25)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1718–1742.



1728

We will now show that u(x) is a positive solution to (1.4). It is easy to see that the turning point given
by x0 = 1

√
2λ

∫ ρ

n
dt√

F(ρ)−F(t)
is unique for fixed λ-, n-, and ρ-values. The function,

1
√

2λ

∫ u

n

dt√
F(ρ) − F(t)

,

is a differentiable function of u which is strictly increasing from 0 to x0 as u increases from n to ρ.
Thus, for each x ∈ [0, x0], there is a unique u(x) such that∫ u(x)

n

dt√
F(ρ) − F(t)

=
√

2λx. (2.26)

Moreover, by the Implicit Function theorem, u(x) is differentiable with respect to x. Differentiating
(2.26) gives,

u′(x) =
√

2λ[F(ρ) − F(u(x))]; x ∈ (0, x0]. (2.27)

Through a similar argument, u(x) is a differentiable, decreasing function of x for x ∈ (x0, 1) with

u′(x) = −
√

2λ[F(ρ) − F(u(x))]; x ∈ [x0, 1). (2.28)

This implies that we have,

− [u′(x)]2

2
= λ

[
F(ρ) − F(u(x))

]
; x ∈ (0, 1).

Differentiating again, we have,

−u′′(x) = λ f (u(x)); x ∈ (0, 1).

Thus, u(x) satisfies the differential equation in (1.4). It only remains to be seen that u(x) satisfies the
boundary condition in (1.4). However, from (2.24) and (2.25) it is clear that u(0) = n and u(1) = q.
Since n is a solution of (2.12), we have

F(ρ) − F(n) =
γ2g2(n)n2

2
. (2.29)

Substituting x = 0 into (2.27) gives,

u′(0) =
√

2λ
√

F(ρ) − F(n). (2.30)

Combining (2.29) and (2.30) we have,

u′(0) =
√
λγg(n)n.

A similar argument shows that

u′(1) = −
√
λγg(q)q.

Hence, u(x) satisfies (1.4) and the proof is complete.
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3. Structure of positive steady states of (1.3) as γ varies

In this section, we will present numerically generated bifurcation curves of positive steady states
of the model (1.3) and some corresponding biological implications. We employ (2.4) and (2.5) from
Theorem 2.2 to numerically obtain bifurcation curves via Mathematica (Wolfram Inc., ver. 12.0). First,
we briefly discuss our methodology. Fixing a ∈ (0, 1) and γ > 0 we let xi = i

n+1 ; i = 1, ..., n for some
n ≥ 1. Setting ρ = x1, we solve the Eq (2.5) for n and q using the FindRoot command in Mathematica.
The values of n, q and ρ are then substituted into (2.4) to find the corresponding value of λ. Repeating
this procedure for ρ = xi, i = 2, ......, n, we obtain (λ, ρ) points generating a bifurcation diagram of λ
vs. ρ = ‖u‖∞ for positive solutions of (1.4).
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Figure 7. Bifurcation curves of positive solutions of (1.4) for all five DDE forms when
a = 0.5, M1M2 = 1.1, and M3 = 0.5 for various γ-values. This choice of M1,M2 and M3

yield DDE forms that are weakly related to density and somewhat similar in shape to DIE
and an M3-value of 0.5 causes the minimum emigration probability and maximum emigration
probability of UDDE and hDDE, respectively, to both occur at u = 0.5.

Recall from Lemma 2.3 that if there exists a range of λ < E1(γ) for which a positive solution
of (1.4) exists then the model will predict an Allee effect at the patch-level for patch sizes
corresponding to these λ−values. In this Allee effect case, the population density must surpass a
certain threshold in order for persistence to be predicted. Since our growth rate f (u) is taken to be of a
weak Allee effect form, we would expect model predictions of an Allee effect at the patch-level in the
case of a DIE. We are particularly interested in model predictions of bi-stability scenarios other than a
patch-level Allee effect in the case of density dependent emigration. We will present an evolution of
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the bifurcation curves for all five DDE forms as γ increases for the cases: 1) where the forms of DDE
are relatively weak and parameter values are a = 0.5, M1M2 = 1.1 and M3 = 0.5 (Figure 7), and 2)
where the forms of DDE are relatively strong and pronounced with parameter values a = 0.5,
M1M2 = 0.08 and M3 = 0.25 ( Figure 8). In both cases, an a-value of 0.5 gives a substantial weak
Allee effect, i.e. the per-capita growth rate will increase for u-values in [0, 0.25). Note that
presentation of an exploration of the entire parameter space would be quite challenging and is outside
of the scope of this work.
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Figure 8. Bifurcation curves of positive solutions of (1.4) for all five DDE forms when
a = 0.5, M1M2 = 0.08 n, and M3 = 0.25 for various γ-values. This choice of M1,M2 and
M3 yield DDE forms that are quite different in shape from the DIE form, and an M3-value
of 0.25 causes the minimum emigration probability and maximum emigration probability of
UDDE and hDDE, respectively, to both occur at u = 0.25.

As shown in both Figures 7 and 8, the bifurcation curves’ starting value, E1(γ), satisfies E1(0) = 0,
E1(γ) is strictly increasing in γ, and E1(γ) → π2 as γ → ∞ (see [48] or [50], for example). The
positive relationship between density and emigration probability in +DDE and initially in hDDE cause
the maximum steady state values of these two forms to be much less than the DIE case, whereas
the negative relationship in −DDE and initially in UDDE cause an increase in maximum steady state
values as compared with the DIE form. The difference in maximum steady state values appears to be
greatest for intermediate values of γ and the least when γ is large. Notice that as γ → ∞, i.e. when
the matrix is completely hostile, the +DDE, −DDE, UDDE, and hDDE curves all converge to the DIE
form as illustrated in Figures 7c and 8c. A patch-level Allee effect is present in all values of γ for
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Figure 7, but the initial positive relationship between density and emigration probability of hDDE is
able to completely counteract the patch-level Allee effect in Figure 8a, even though the +DDE case
does not. This discrepency is due to the positive relationship being much stronger (at least initially)
in the hDDE case versus the +DDE case, as shown in Figure 8d. In Figure 7, the only bi-stability
of steady states predicted by the model is the aforementioned patch-level Allee effect. In contrast,
Figure 8 shows examples of other types of bi-stability in the case of hDDE in (a) and -DDE in (b).
Though not shown here, a similar non-Allee effect bi-stability also appeared in the UDDE case for the
same parameter values in Figure 8. In fact, any S-shaped bifurcation curve (or even a more complicated
shape) occurring for λ > E1(γ) will not qualify as an Allee effect since by Theorem 2.1, the trivial
steady state, u(x) ≡ 0, is unstable. In both cases, model predictions of persistence vary over a wide
range as the matrix hostility, as measured in the composite parameter γ, varied.

4. Allee effect region length

In this section, we explore the relationship between DDE form and the strength of the patch-level
Allee effect predicted by the model (1.3). In order to accomplish this, we study the length of the
AER, defined as E1(γ) − λm(γ), for fixed values of M1,M2,M3, and a ( Figure 3). We calculate λm(γ)
by employing Theorem 2.2 and Mathematica (Wolfram Inc., ver. 12.0) to numerically generate the
bifurcation curve of positive solutions of (1.4) (see section 3) for a fixed set of parameters. The smallest
λ-value on the curve is then λm. Using the Mathematica command NDEigensystem, we numerically
estimate the value of E1(γ). If λm(γ) < E1(γ) then for λ ∈ (λm(γ), E1(γ)), there is at least one positive
solution, and by Lemma 2.3 the model predicts a patch-level Allee effect. However, if λm(γ) ≥ E1(γ)
then no such patch-level Allee effect can exist, since by Theorem 2.1, the trivial steady state is unstable
for λ ≥ E1(γ). In what follows, we will first compare the length of the AER for all the DDE forms
given in Table 1 and then explore the possibility of the +DDE form counteracting a patch-level Allee
effect.

4.1. Qualitative connection between AER length and DDE form

Choosing M3 = 0.25 and a = 0.5, we computed the AER length for different γ-values for each of the
five DDE forms. This choice of a will ensure a substantial weak Allee effect, i.e. the per-capita growth
rate will increase for u-values in [0, 0.25), whereas, M3 = 0.25 will cause the minimum and maximum
emigration probabilities to occur at u = 0.25 for UDDE and hDDE, respectively. We evaluated many
other parameter values for M3 and a but obtained similar results. Although a full exploration of the
entire parameter space is outside the scope of this work, we aim to provide a qualitative connection
between the form of DDE and length of AER as the matrix hostility is varied via γ. Figures 9–11
illustrate this connection for M1M2 = 0.1, 0.5, and 1. These M1M2-values produce DDE forms that are
somewhat different from DIE when M1M2 ≈ 0 to almost identical to DIE when M1M2 is large.

In all three cases of M1M2-values, the model always exhibited a patch-level Allee effect in the DIE,
+DDE, −DDE, and UDDE cases. Also, when γ is large, the length of the AER is virtually identical to
DIE across all DDE forms. The AER length approached zero in all DDE forms and in all parameter
choices as γ approached zero. The +DDE form partially counteracted the patch-level Allee effect
by slightly lowering the AER length for all γ-values, though for these parameter choices, the +DDE
relationship was not strong enough to fully counteract the Allee effect. In contrast, the hDDE form,
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Figure 9. Graph of γ vs AER Length (right) and u vs Emigration Probability (left) for
M1M2 = 0.1,M3 = 0.25, and a = 0.5.
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Figure 10. Graph of γ vs AER Length (right) and u vs Emigration Probability (left) for
M1M2 = 0.5,M3 = 0.25, and a = 0.5.
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Figure 11. Graph of γ vs AER Length (right) and u vs Emigration Probability (left) for
M1M2 = 1,M3 = 0.25, and a = 0.5.

which is initially a positive relationship between density and emigration rate, was able to completely
counteract the patch-level Allee effect for γ approximately in [1.5, 2.5] in Figure 9 and in (0, 0.5] in
Figure 10. This discrepancy between the +DDE and hDDE forms is due to the positive relationship
in the hDDE being clearly stronger than the one in +DDE in both Figures 9 and 10. Due to switching
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from a positive relationship to a strong negative one, a patch-level Allee effect reappeared for γ < 1.5
for hDDE in Figure 9. However, this switch in the relationship in hDDE was not sufficient to allow the
Allee effect to reappear in Figure 10.

In all three Figures, both −DDE and UDDE forms caused an increase in length of the AER as
compared to the DIE case. In fact, in Figures 9 and 10, the AER length initially increased as γ decreased
but then began to decrease as γ became small for both −DDE and UDDE, even boasting a peak value of
almost four-times the DIE AER length in Figure 9. In Figure 11, all DDE forms had strictly decreasing
AER length as γ decreased. Interestingly, in Figure 9, the AER length for −DDE exhibited a steep
increase from around one for γ ≈ 4 to around four for γ ≈ 2.5. A positive relationship between density
and emigration rate at least partially counteracted the patch-level Allee effect for +DDE and hDDE
forms, whereas the negative relationship enhanced the Allee effect for −DDE and UDDE forms. Also,
this counteraction and enhancement of the patch-level Allee effect is dependent upon the hostility of
the surrounding patch matrix, as measured by the parameter γ.

4.2. Counteracting a patch-level Allee effect with +DDE

Our analysis of the structure of positive steady states for the model indicates that DDE forms
containing a negative slope can increase the strength of the patch-level Allee effect as measured by the
AER length, whereas, a positive slope can counteract the Allee effect. Even though both +DDE and
hDDE have the potential to completely counteract a patch-level Allee effect for small patch sizes, the
hDDE form’s negative slope for u > M3 will allow the Allee effect to reappear as the patch size
approaches zero ( Figure 9). Thus, we chose to focus on +DDE in an attempt to quantify when a
patch-level Allee effect will be completely counteracted by a DDE relationship containing a positive
slope. To that end, we again employed Theorem 2.2 and Mathematica (Wolfram Inc., ver. 12.0) to
numerically generate bifurcation curves of positive solutions for (1.4) for fixed sets of parameter
values. To establish the existence of a patch-level Allee effect in the +DDE case, it suffices to show
that the slope of the bifurcation curve is negative for ρ ≈ 0, i.e. we consider λ = λ(ρ) (ρ denotes the
maximum steady state value) and numerically calculate λ′(0). Figure 12 illustrates the parts of the
parameter space for which a patch-level Allee effect is predicted by the model, i.e λ′(0) < 0,
(Region I) and parts where an Allee effect is not predicted, λ′(0) > 0, (Region II) for the case of a = 9.
Notice that the boundary between Regions I and II is comprised of the M1M2- and γ-values such that
λ′(0) = 0.

There is clearly a maximal M1M2-value, such that for M1M2 larger than this value the model will
predict a patch-level Allee effect for all γ > 0. In contrast, it appears that for any γ > 0, there is always
a small range of M1M2-values such that no patch-level Allee effect is present.

Figure 13 compares the boundary curve separating parameter space into Region I and II for
a = 0.5, 0.75 and 0.9. Recall that a ∈ (0, 1) measures the strength of the demographic weak Allee
effect in the model via the per-capita growth rate. Thus, the demographic Allee effect varies from
almost not present for a ≈ 1 to substantial for a ≈ 0 ( Figure 13 (left)). Figure 13 shows that for
smaller a-values, the +DDE response must become correspondingly stronger as indicated in the
smaller M1M2-values. Figure 14 illustrates this point for fixed γ = 0.59275 and a = 0.75, in which we
compare the +DDE forms from Regions I and II. Notice that for M1M2-values that are sufficiently
small (corresponding to solid curves in Figure 14) the positive relationship between density and
emigration probability is strong enough to completely counteract the demographic Allee effect in the
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+DDE Alone: Allee Effect Existence boundary region for a = 0.9 in Gamma vs M1
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Figure 12. The model predicts a patch-level Allee effect for parameters in Region I and no
patch-level Allee effect in Region II. Note that a = 0.9 indicating a mild weak Allee effect
in per-capita growth rate, whereas, small values of M1M2 cause a very rapid ascent for the
emigration probability from 0.5 to close to 1.
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+DDE Alone: Allee Effect Existence boundary in Gamma vs M1

Figure 13. Graph of u vs per-capita growth rate (left) and the boundary between a model
prediction of a patch-level Allee effect and no patch-level Allee effect for γ vs M1M2 (right).
Note that the area of parameter space lying above the curves in the (right) is a patch-level
Allee effect region, whereas the area below is not.

per-capita growth rate to produce no patch-level Allee effect. In contrast, the remaining dashed curves
in Figure 14 represent +DDE forms that only partially counteract the patch-level Allee effect.
Figure 15 further illustrates this point by comparing the actual bifurcation curves for +DDE forms
belonging to Region I (dashed) and Region II (solid). Notice that, initially, the Region I +DDE form
bifurcation curves all decrease in λ (i.e. λ′(0) < 0), while the Region II +DDE form bifurcation
curves increase in λ (i.e. λ′(0) > 0), both as the maximum steady state value increases.
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Figure 14. Comparison of +DDE forms (u vs emigration probability) that produce a patch-
level Allee effect (dashed curves) and forms that counteract a patch-level Allee effect (solid
curves) for a = 0.75 and γ = 0.59275.

Combined Comparison of Bif curves: Blue – No Allee, Red – Allee effect, a=0.75, 
Ga=0.59275; +DDE Only
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Figure 15. Comparison of bifurcation curves of positive solutions to (1.4) for the +DDE
forms shown in Figure 14 (right) and the same graph but with smaller graphing window.
Note that a = 0.75 and γ = 0.59275.

5. Steady state density profile

In this section, we explore the effects of DDE on the density profile of positive steady states of (1.3).
Figure 16 illustrates the two possible density profiles for a positive steady state of the model, namely
asymmetric (whenever n = u(0) , u(1) = q) and symmetric (whenever n = q). Typically in a model
with DIE, positive steady states would intuitively be symmetric since organisms would interact with
both boundary points in a similar way and experience emigration into the hostile matrix. However,
when DDE is present it is not clear when or even why asymmetric steady states could arise. To
help understand the connection between DDE form and density profile of the model steady states, we
state and prove sufficient conditions for all positive steady states of the model (1.3) to be symmetric,
begining with a useful lemma.
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Figure 16. Density profile of an asymmetric positive steady state of (1.3) (left) and
symmetric positive steady state of (1.3) (right).

Lemma 5.1. If h(s) := g(s)s is increasing for all s > 0 then every positive solution of (1.4) is symmetric
about x = 1

2 .

Proof: Let u(x) be a positive solution of (1.4) such that n = u(0) and q = u(1). From Theorem 2.2, n, q
must satisfy

2[F(ρ) − F(n)] = γ2g(n)2n2 and 2[F(ρ) − F(q)] = γ2g(q)2q2.

Hence,
g(n)2n2[F(ρ) − F(q)] = g(q)2q2[F(ρ) − F(n)].

or equivalently,
h(n)2

h(q)2 =
g(n)2n2

g(q)2q2 =
[F(ρ) − F(n)]
[F(ρ) − F(q)]

(5.1)

Since F(s) is increasing for s > 0, (5.1) can hold only if n = q, proving the lemma. We now state and
prove the main result of this subsection.

Theorem 5.1. Let m(s) ≥ 0 for s ≥ 0.

(a) If α(u) = α1(u) = M1
2M1+m(u) then

(i) If m(s) ≡ 0 (DIE) then all positive solutions of (1.4) are symmetric.
(ii) If m′(s) ≥ 0 (+DDE) then all positive solutions of (1.4) are symmetric.

(iii) If m(s) = s2−2M3 s
M2

(UDDE) and M1M2 >
4M2

3
3 then all positive solutions of (1.4) are symmetric.

(b) If α(u) = α2(u) =
M1+m(u)

2M1+m(u) then

(i) If m(s) = s2

M2
(−DDE) and M1M2 > 1 then all positive solutions of (1.4) are symmetric.

(ii) If m(s) = s2−2M3 s
M2

(hDDE) and M1M2 > 1 then all positive solutions of (1.4) are symmetric.

Proof: To prove (a), we first note that:

h′(s) = g(s) + sg′(s) =
M1+m(s)+sm′(s)

M1
. (5.2)

Thus, if m′(s) ≥ 0 then we must have h′(s) > 0 for all s > 0, and (i) and (ii) hold by Lemma 5.1. To
show (iii), we again calculate h′(s)

h′(s) = 3s2−4M3 s+M1 M2
M1 M2

. (5.3)
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It is easy to see that if 4M2
3 − 3M1M2 < 0, or equivalently, M1M2 >

4M2
3

3 then we must have that
h′(s) > 0 for s > 0 and hence (iii) holds by Lemma 5.1.

To show (b), we calculate h′(s) when m(s) = s2−2M3 s
M2

for M3 ≥ 0:

h′(s) =
M1 M2(M1 M2−s2)

(s2−2M3 s+M1 M2)2 . (5.4)

From the proof of Lemma 2.3, we have that s < 1. Hence, if M1M2 > 1 then h′(s) > 0 for s > 0 and
hence (b) holds by Lemma 5.1 and the result is proved.

Theorem 5.1 gives a fairly strong result for DIE and +DDE forms in that for any positive (or
independent) relationship between density and emigration probability, asymmetric positive steady
states of the model are not possible. Notice that the theorem gives results for the remaining DDE
forms (−DDE, UDDE, and hDDE) that are dependent on the actual shape of the form via m(s). Also,
in these three cases where the DDE forms contain a negative relationship between density and
emigration the result requires that M1M2 not be too small. Note that in each of these three forms,
placing a lower bound on M1M2 restricts the minimum emigration probability. Since the −DDE and
hDDE forms achieve their lowest emigration probability when u = 1, it is easy to see that M1M2 > 1
gives that both forms’ minimum emigration probability is bounded from below by 1

3 for −DDE and
1

3−2M3
for hDDE. The UDDE form achieves its lowest emigration probability at u = M3, and thus

requiring M1M2 >
4M2

3
3 will ensure that the minimum emigration probability is bounded below by 1

5 .
This analysis implies that asymmetric positive steady states for the model occur only when a negative
relationship between density and emigration probability is present and sufficiently strong.

6. Discussion

If at low densities a population exhibits a decline in its per-capita growth rate as density decreases
then the population is said to exhibit an Allee effect. [1, 6, 51] provided a definition for Allee effects
distinguishing between so-called component Allee effects, in which some component of individual
fitness is in a positive relationship with either numbers or density of conspecifics, and demographic
Allee effects, in which a positive relationship between total fitness and either numbers of density or
conspecifics exists. They also mentioned that causes for an Allee effect may be dependent on the spatial
scale of consideration for the population. In this article, we have been concerned with demographic
Allee effects at the scale of a patch. In the case of a sufficiently strong demographic Allee effect, small
populations can be expected to go extinct while larger populations expected to persist. In the context
of mathematical models, this phenomenon corresponds to a bi-stability situation where both a positive
population density and the zero population density are both stable (see [33], for example). We denote
the range of patch sizes for which this type of bi-stability is predicted by the model as the Allee effect
range and employ AER length as a metric to quantify overall strength of patch-level Allee effect.

In this article, we analyzed a model built on the reaction diffusion framework for a single species
in a patch of habitat with a nonlinear boundary condition designed to model density dependent
emigration which occurs in various forms in nature [32]. This boundary condition accounted for loss
due to hostility of the matrix surrounding the patch and an edge-mediated increase or decrease to
emigration probability in response to conspecific density. Inside the patch we assumed that population
growth was governed by a weak Allee effect with diffusion. Our analysis of the model showed that for
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the DIE case a patch-level Allee effect occurred for a certain range of patch sizes for any combination
of matrix hostility and strength of the weak Allee effect built into the per-capita growth rate. Using
this case for comparison, the overall strength of the patch-level Allee effect, measured by the length of
the AER, was enhanced by DDE forms with a negative slope (−DDE and UDDE). Interestingly,
−DDE and UDDE can generate a patch-level Allee effect on its own [32] and this may explain, in
part, why the AER for these two forms of DDE are enhanced. In contrast, when a sufficiently strong
positive relationship between density and emigration probability exists (+DDE and hDDE) the
patch-level Allee effect can be completely counteracted. For the +DDE case and for several different
parameter values, we numerically quantified the strength of positive relationship required to ensure
Allee effects were completely counteracted. The hDDE form’s negative slope for large population
densities prevented a complete counteraction to the patch-level Allee effect for any matrix hostility
values. The length of AER was also observed to be dependent on the hostility of the surrounding
matrix. For DIE and +DDE forms, the AER length was strictly decreasing as matrix hostility
decreased and approached zero when the matrix becomes non-hostile. However, −DDE, UDDE, and
hDDE showed a more complex relationship with matrix hostility, increasing for certain ranges of
matrix hostility and decreasing for others. In this case, AER length strictly decreased as matrix
hostility decreased and approached zero when the matrix became non-hostile.

Our analysis of the structure of positive steady states of the model indicated that DDE forms
sufficiently similar to DIE only exhibited an Allee effect type of bi-stability. However, if the
maximum or minimum emigration probability for a DDE form other than +DDE was sufficiently
close to one or zero, respectively, then the model predicted more complicated dynamics with multiple
positive steady states for the model in a range of patch sizes where a patch-level Allee effect is not
possible, i.e. in a range of patch sizes where the zero population density is unstable. The dynamics of
the model were noted to be dependent on the level of matrix hostility. In fact, for the DDE forms,
structure of positive steady states of the model was identical to the DIE case when matrix hostility
was high, whereas, population dynamics much more complicated than that of the DIE form were
exhibited for intermediate to low matrix hostility levels. Our analysis of steady state density profiles
of the model under DDE revealed that symmetry of the steady states about the center of the patch is
ensured for all parameter values in the case of DIE and +DDE. In this case, density levels at either
boundary point are equal. Notwithstanding, we provided sufficient conditions limiting the lower
bound of emigration probability of the forms −DDE, UDDE and hDDE under which positive steady
states of the model were guaranteed to be symmetric about the center of the patch. Our numerical
results indicated that violating these sufficient conditions could produce asymmetric positive steady
states in which the population density was higher at one boundary point than the other. We also note
that this asymmetric steady state phenomenon only occurred when the level of matrix hostility was
sufficiently large.

Our results have several consequences for studying populations with a demographic weak Allee
effect and DDE. First, seemingly contradictory results were observed when comparing Allee effects at
the patch-level versus the metapopulation-level. For example, +DDE will allow for Allee mechanisms
to operate when considered at the metapopulation-level [22], whereas, +DDE will counteract Allee
effects, even alleviate them, if the positive slope is sufficiently strong when considered at the patch-
level. This difference rather serves as theoretical evidence to support the caution suggested in [51]
that Allee effect mechanisms may operate differently depending on the spatial scale. Second, DDE
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can have profound effects on dynamics of a population by creating, enhancing, and counteracting
patch-level Allee effects, causing more complicated dynamics than a patch-level Allee effect via the
existence of multiple positive steady states of the model, and creating asymmetric density profiles for
steady states of the model. For example, with a moderately hostile matrix, UDDE can cause multiple
stable states for a relatively broad range of patch sizes. Bi-stability and multiple stable states, brought
about by demographic Allee effects, may contribute to the high variability observed in patch occupancy
and density in real metapopulations (e.g., [52]). Although a few theoretical studies have explored Allee
effects and multiple stable states [32–34], this subject has scarcely been considered by ecologists but
see [2]. Our results may also provide some explanation on why it is difficult to empirically verify an
Allee effect type of bi-stability at the patch-level. Determining that an organism exhibits a demographic
weak Allee effect may not be enough to guarantee existence of a patch-level Allee effect since the
presence of density dependent emigration that has a positive slope may alleviate or even completely
counteract the Allee effect. Even if the patch-level Allee effect is not completely counteracted by the
DDE form, the Allee effect range may become so small that practically finding patch sizes where an
Allee effect type of bi-stability occurs is near impossible.

Finally, we note that all of these phenomena are intricately dependent upon the hostility of the
matrix surrounding the patch. At low to moderate matrix hostilities, the form of DDE appears to be
critically important in determining population dynamics but at high hostility, all forms of DDE have
similar dynamic consequences. In human-altered landscapes, where the matrix may be completely
inhospitable (e.g., urban areas, clearcuts), the relationship between dispersal and density may matter
far less than the magnitude of the dispersal rate in determining metapopulation persistence. Future
theoretical and empirical studies on habitat fragmentation should consider, not only the size of
remnant patches, but also the deterioration of the patch matrix.
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