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Abstract: In the analysis of survival data, the problems of competing risks arise frequently in 

medical applications where individuals fail from multiple causes. Semiparametric mixture regression 

models have become a prominent approach in competing risks analysis due to their flexibility and 

easy interpretation of resultant estimates. The literature presents several semiparametric methods on 

the estimations for mixture Cox proportional hazards models, but fewer works appear on the 

determination of the number of model components and the estimation of baseline hazard functions 

using kernel approaches. These two issues are important because both incorrect number of 

components and inappropriate baseline functions can lead to insufficient estimates of mixture Cox 

hazard models. This research thus proposes four validity indices to select the optimal number of 

model components based on the posterior probabilities and residuals resulting from the application of 

an EM-based algorithm on a mixture Cox regression model. We also introduce a kernel approach to 

produce a smooth estimate of the baseline hazard function in a mixture model. The effectiveness and 

the preference of the proposed cluster indices are demonstrated through a simulation study. An 

analysis on a prostate cancer dataset illustrates the practical use of the proposed method.    

Keywords: mixture regression model; Cox proportional hazards model; EM-algorithm; kernel 

estimator; validity indices 

 

1. Introduction  

Survival analysis is a branch of statistics for analyzing time-to-event data. When looking into 

survival data, one frequently encounters the problem of competing risks in which samples are subject 

to multiple kinds of failure. The Cox proportional hazards model, introduced by Cox [1], is popular 
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in survival analysis for describing the relationship between the distributions of survival times and 

covariates and is commonly employed to analyze cause-specific survival data. The traditional 

approach is to separately fit a Cox proportional hazards model to the data for each failure type, after 

considering the data with other kinds of failure censored. However, this conventional method 

encounters problems like the estimates are hard to interpret and the confidence bands of estimated 

hazards are wide, because the method does not cover all failure types [2,3].  

An alternative approach is to fit competing risks data by using a mixture model that incorporates 

the distinct types of failure to partition the population into groups, and it assumes an individual will 

fail from each risk with the probabilities being attributed to the proportions of each group, 

respectively. Moreover, the mixture approach is helpful for estimating the effects of covariates in 

each group through parametric proportional hazard regressions such as Cox’s model. McLachlan and 

Peel [4] noted that a mixture model is allowed for both dependent and independent competing risks 

and it can improve a model’s fit to the data than the traditional approach in which the causes of 

failure are assumed to be independent. Mixture models are popular in competing risks analysis, 

because their resultant estimates are easy to interpret [2], although complex.  

Semi-parametric mixture models are a generalization of parametric mixture models and have 

become a prominent approach for modelling data with competing risks. Semiparametric approaches 

to mixture models are preferable for their ability to adjust for the associated variables and allow for 

assessing the effects of these variables on both the probabilities of eventual causes of failure through 

a logistic model and the relevant conditional hazard functions by applying the Cox proportional 

hazards model (cf. [2]). Below, we review the existing semiparametric methods of mixture models 

for competing risks data. 

Ng and McLachlan [5] proposed an ECM-based semi-parametric mixture method without 

specifying the baseline hazard function to analyze competing risks data. They noted that when the 

component-baseline hazard is not monotonic increasing their semi-parametric approach can 

consistently produce less biased estimates than those done by fully parametric approaches. Moreover, 

when the component-baseline hazard is monotonic increasing, the two approaches demonstrate 

comparable efficiency in the estimation of parameters for mildly and moderately censoring. Chang et 

al. [6] studied non-parametric maximum-likelihood estimators through a semiparametric mixture 

model for competing risks data. Their model is feasible for right censored data and can provide 

estimates of quantities like a covariate-specific fatality rate or a covariate-specific expected time 

length. Moreover, Lu and Peng [7] set up a semiparametric mixture regression model to analyze 

competing risks data under the ordinary mechanism of conditional independent censoring. Choi and 

Huang [8] offered a maximum likelihood scheme for semiparametric mixture models to make 

efficient and reliable estimations for the cumulative hazard function. One advantage with their 

approach is that the joint estimations for model parameters connect all considered competing risks 

under the constraint that all the probabilities of failing from respective causes sum to 1 given any 

covariates. Other research studies for competing risks data are based on semiparametric mixture 

models, e.g. [5–8].  

Although the mixture hazard model is preferable to direct approaches, two important but 

challenging issues frequently encountered in the applications are the determination of the number of 

risk types and the identification of the failure type of each individual.  

It is understandable that the results of a mixture model analysis highly depend on the number of 

components. It is also conceivably hard to cover all types of competing risks in a mixture model. 
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Validity indices are a vital technique in model selection. The cluster validity index is a kind of 

criterion function to determine the optimal number of clusters. Some cluster validity indices 

presented by [9–11] are designed to find an optimal cluster number for fuzzy clustering algorithms; 

some are only related to the membership, while some take into account the distance between the data 

sets and cluster centers. Wu et al. [12] proposed median-type validity indices, which are robust to 

noises and outliers. Zhou et al. [13] introduced a weighted summation type of validity indices for 

fuzzy clustering, but they are unfeasible for mixture regression models. Conversely, Henson et al. [14] 

evaluated the ability of several statistical criteria such as the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) to produce a proper number of components for latent variable 

mixture modeling. However, AIC and BIC may present the problem of over- and under-estimation on 

the number of components [15], respectively.  

As to the identification of failure types, many studies on the problems of competing risks 

like [5–8] assumed that the failure type of an individual is known if the subject’s failure time is 

observed, but if an individual is censored and only the censored time is known, then which failure 

type the subject fails from is unknown. In fact, even if one observes the failure time, then the true 

cause of failure might not be clear and needs further investigations. Thus, deciding the number of 

competing risks and recognizing the failure type of each individual are critical in competing risks 

analysis, but scant work has been done on them.  

Besides the above problems, another critical issue existing in mixture Cox hazard models 

particularly is the estimation of the baseline hazard function. The Cox proportional hazards model 

consists of two parts: the baseline hazard function and the proportional regression model. Bender et 

al. [16] assumed that the baseline hazard function follows a specific lifetime distribution, but this 

assumption is obviously restrictive. A single lifetime distribution may not adequately explain all data 

—for example, the failure rate is not monotonic increasing or decreasing. Alternatively, some 

scholars adopted nonparametric approaches to estimate the baseline hazard function that are more 

flexible. Ng and McLachlan [5] assumed the baseline hazard function to be piecewise constant by 

treating each observed survival time as a cut-off point, but the piecewise constant assumption has the 

disadvantage that the estimated curve is not smooth, while smoothing is required in several 

applications [17]. In fact, our simulation results also show that the derived estimates based on a 

piecewise constant hazard function are not sufficient in some cases (e.g. model 4 in Figure 4). 

Understandably, an inadequate estimation of the baseline function affects the selection of the number 

of model components; and hence leads to insufficient estimates of the model parameters.  

In order to solve the above mentioned problems with the Cox mixture hazard modelling for 

competing risks data, we propose four indices and the kernel estimation for the base line function in 

this paper. Validity indices are a vital technique in model selection, but they have been less utilized 

for deciding the number of components of a mixture regression model. By using posterior 

probabilities and residual functions, we propose four validity indices that are applicable to regression 

models in this study. Under the EM-based mixture model, the posterior probabilities play an 

important role in classifying data, which take role of data memberships in fuzzy clustering. Unlike 

the traditional regression model, the survival model does not meet the assumption that survival time 

variation is constant for each covariate. Therefore, we incorporate the functions of posterior 

probabilities and the sum of standard residuals to constitute the new validity indices and verify the 

effectiveness of the proposed new indices through extensive simulations. Moreover, we extend the 

kernel method of Guilloux et al. [18] to estimate the baseline hazard function smoothly and hence 
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more accurately.    

The remainder of this paper is organized as follows. Section 2 introduces the mixture Cox 

proportional hazards regression model, develops an EM-based algorithm to estimate the model 

parameters, and also discusses kernel estimations for the baseline hazard function. Section 3 

constructs four validity indices for selecting the number of model components in a mixture Cox 

proportional hazards regression model. Section 4 carries out several simulations and assesses the 

effectiveness of our validity indices. Section 5 analyzes a practical data set of prostate cancer patients 

treated with different dosages of the drug diethylstilbestrol. Finally, Section 6 states conclusions and 

a discussion. 

2. Mixture Cox proportional hazards model with kernel estimation 

2.1. Mixture Cox proportional hazards model 

For mixture model analysis, suppose each member of a population can be categorized into g 

mutually exclusive clusters according to its failure type. Let  ( , , ) : 1, ,T

j j jD t j n  LX , be a 

sample drawn from this population where T denotes the transpose of a vector, jt  is the failure or 

right censoring time, 1 2( , ,..., )T

j j j j dx x xX  is a d-dimensional vector of covariates, and:  

1, if the  -th individaul is uncensored,

0, if the  -th individaul is censored.    
j

j

j



 


 

The mixture probability density function (pdf) of t is defined by: 

1

( ) ( )
g

i i

i

f t p f t


  , subject to 
1

1
g

i

i

p


 ,                      (1) 

where ip  is the mixing probability of failure due to the i
th

 type of risk and g is the number of model 

components. 

In the i
th

 component, the hazard function ( , )i j ih t X  given covariate 
jX  follows a Cox 

proportional hazards model defined by 

0( , ) ( )exp( )T

i j i i j ih t h tX X  ,                             (2) 

where 
1 2( , ,..., )T

i i i id    is the vector of regression coefficients, and 0 ( )ih t  is the baseline 

hazard function of the i
th

 component. We define the i
th

 component-survival function and pdf by: 

0( , ) exp ( )exp( )T

i j i i j iS t H t   X X   

and 
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           0 0( , ) ( )exp ( )exp( )T T

i j i i j i i j if t h t H t   X X X   , 

where 0 0
0

( ) ( ) d
t

i iH t h s s   is the i
th

 component-cumulative baseline hazard function. 

The unknown parameters are the mixing probabilities 1 2 1( , ,..., )T

gp p p p  and regression 

coefficients 1 2( , ,..., )T T T T

g    , where 
1 2( , ,..., )T

i i i id   . Based on (1) and Zhou [19], the 

log-likelihood function under the mixture hazards model with right censored data is given by 

 
1 1

( , ) log ( , ) (1 ) log ( , )
gn

j i i j j i j i i j j i

j i

l p f t p S t 
 

       
   p X X   , 
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1

( , ) ( , )
g

j j i i j j i
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f t p f t


 X X   and 
1

( , ) ( , )
g

j j i i j j i

i

S t p S t


 X X  . 

 Assume that the true causes of failure for an individual are unobserved, and hence the data are 

incomplete. We introduce the latent variable ijz  as: 
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0 ,  otherwise .     
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The complete-data log-likelihood function is given by: 

 
1 1

( , ) log ( , ) (1 ) log ( , )
gn

c ij j i i j j i j i i j j i

j i

l z p f t p S t 
 

       
   p X X   .      (3) 

Subsequently, the parameters are estimated through the expectation and maximization (EM) 

algorithm.  

E-step: On the (k+1)
th

 iteration of E-step, we calculate the conditional expectation of the 

complete-data log-likelihood (3) given the current estimates of the parameters, i.e.: 
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Here, ( )k
p  and ( )k  are the estimates of p

 
and  , respectively, in the k

th
 iteration. By Baye’s 
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Theorem, we have: 
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              (5) 

which is the posterior probability that the j
th

 individual with survival time
jt fails due to the i

th
 type 

of risk. 

M-step: The (k+1)
th

 iteration of M-step provides the updated estimates ( 1)k
p  and ( 1)k  that 

maximizes (4) with respect to p
 
and  . 

Under the constraints
1

1
g

i

i

p


 , to maximize 
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0

1 1

log
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Q z p
 

  from (4), we obtain the 

estimation of mixing probability with 

( )

1( 1)

n
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jk

i

z
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.                               (6) 

The equation iQ  from (4) for 1,...,i g  can be written as: 

 ( )

0 0

1

log ( ) exp( ) ( ) .
n

k T T

i ij j i j j i j i i j

j

Q z h t H t


     X X             (7) 

Define the score vector ( )iU   for 1,...,i g  as the first derivate of (7) with respect to the vector 

i  given 0 ( )iH t  fixed at ( 1)

0 ( )k

iH t , and the estimation ( +1)k

i  satisfies the equation: 

( 1)
0 0

( ) ( 1)

0

1( )= ( )

( ) exp( ) ( ) = 0
k

i j i j

n
k T ki

i ij j j i i j j

ji H t H t

Q
U z H t








    

 


X X .        (8) 

2.2. Kernel estimation for the baseline hazard function 

To estimate the baseline hazard function under the mixture hazards model, we propose the 

kernel estimator. Define ( ) ( 1)j j jN t I t t      as an event counting process and 

( ) ( )j jY t I t t   as risk process. The updated kernel estimator of i
th

 component-baseline hazard 

function 0 ( )ih t  on the (k+1)
th

 iteration is defined by:  
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( 1) ( ) ( ) ( ) ( +1) ( ) ( )

0 0( ) ( )0

1
( , , , ) ( , , )k k k k k k k

i i i i i ik k

t u
h t b K dH u

b b


  

  
 

X Z X Z  , 0  ,       (9) 

where :K 　 is a kernel function, and 
( )kb  is a positive parameter called the bandwidth. There 

are several types of kernel functions commonly used, appearing in Table 1 and Figure 1. We try 

these kernel functions in the simulated examples and find no significant differences. In this paper, we 

choose biweight as the kernel function to estimate the baseline hazard function. 

Table 1. Different types of kernel function. 

Kernel function ( )K u  

Gaussian 
21

2
1

( ) ,
2

u

K u e u




      

Epanechnikov 
23

( ) (1 ) , 1
4

K u u u    

Biweight 
2 215

( ) (1 ) , 1
16

K u u u    

Triweight 
2 335

( ) (1 ) , 1
32

K u u u    

 

Figure 1. Plot of different types of kernel function. 

Derived by smoothing the increments of the Breslow estimator, the kernel estimator (9) can be 

written as: 

( )

( 1) ( ) ( ) ( )

0 ( ) ( ) ( ) ( )0
1

( ( ) 0)1
( , , , ) ( )

( , , )

kn
ijk k k k

i i i jk k k k
j ni i i

z I Y ut u
h t b K dN u

b b S u






 
  

 
X Z

X Z



,        (10) 

where 
1

1 n

j

j

Y Y
n 

   and 
1

( , , ) exp( ) ( )
n

T

ni i i ij j i j

j

S u z Y u


X Z X  . 

Horova et al. [20] and Patil [21] introduced the cross-validation method to select the bandwidth of 
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the kernel estimator. We define the cross-validation function for bandwidth b written as CV(b) under 

our model as:  

( )( )
2

( ) ( 1) ( ) ( ) ( )

0 ( ) ( )
1 1 1

1
( ) ( , , , ) 2

( ) ( )

kkg gn
l j ij jk k k k k il l

ij i j i i k k
i j i l j l j

t t zz
CV b z h t b K

b b Y t Y t



   

 
      

 
 X Z  . 

The selection of bandwidth on the (k+1)
th

 iteration is given by: 

( +1) arg min ( )
n

k

b B

b CV b


 ,                             (11) 

where 
nB  cover the set of acceptable bandwidths. 

The algorithm is shown as follows, where we fix n and g and set up initial values for mixing 

probabilities (0)
p , which are usually 1 g , regression coefficients (0) , baseline hazard rates (0)

0h , 

bandwidth 
(0)b  is 0.5, and a termination value, >0 . 

Set the initial counter 1l  . 

Step 1: Compute ( 1)l
Z  with ( 1)l

p , ( 1)

0

l
h  and ( 1)l  by (5); 

Step 2: Update ( )l
p  with ( 1)l

Z  by (6); 

Step 3: Update ( )

0

l
h  with ( 1)l

Z , ( 1)l  and ( 1)lb   by (10); 

Step 4: Update bandwidth ( )lb  with ( 1)l
Z , ( )

0

l
h  and ( 1)l  by (11); 

Step 5: Update ( )l  with ( 1)l
Z , ( )

0

l
h  and ( 1)l  by (8); 

Step 6: IF
( ) ( 1) ( ) ( 1) ( ) ( 1)

0 02 2 2

l l l l l l         p p h h , THEN stop; 

 ELSE let +1l l and GOTO Step 1. 

Note that the superscript (.) represents the number of iterations, 
(0) (0) (0) (0)

0 01 02 0( , ,..., ) T

gh h h h  is a g n  

matrix, where (0) (0) (0) (0)

0 0 1 0 2 0( ( ), ( ),..., ( ))T

i i i i nh t h t h th , and each row is initialized by a constant vector. 

3. Validity indices 

In traditional regression analysis, we select the best model by picking the one that minimizes the 

sum of squared residuals, but unlike the traditional regression model, the survival model does not 

meet the assumption that the standard deviation of the survival time is a constant at each covariate. 

From Figure 2(a), we see that the survival time with higher expectation has higher standard deviation. 

Therefore, to select the best model we need to adjust the standard deviation to avoid being greatly 

affected by data that have large standard deviations. Moreover, if the model fits the data well, then 
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each observed survival time will be close to the expectation of the component model, which has the 

largest posterior probability corresponding to one’s risk type.  

Figure 2(b) illustrate that observation A is closer to the mean line (red line) of the component 

model corresponding to risk type 1, say model 1, than to the mean line (blue line) of model 2. From 

(5), we see that the posterior probabilities of the observation A corresponding to the first type of risk 

(red line) will be much larger than that of the second type of risk (blue line). Hence, to build up 

validity indices for mixture models, we consider the posterior probabilities as the role of weights and 

define the mixture sum of standard absolute residuals (MsSAE) and mixture sum of standard squared 

residuals (MsSSE) as follows: 

1 1

ˆˆ ( )

ˆ ( )

g n
ij j i j

i j
i j

z t E t
MsSAE

Var t 


 ; 

2

1 1

ˆˆ ( )

ˆ ( )

g n
ij j i j

i j i j

z t E t
MsSSE

Var t 

 
  , 

where 
 ˆexp

0

0

ˆ ˆ( ) exp ( )
T

j ix

i j iE t H t dt




  
   and 

 ˆexp
2

0

0

ˆ ˆ ˆ( ) 2 exp ( ) ( )
T

j ix

i j i i jVar t t H t dt E t




    
  . The 

squared distance is considered, because it is easier to catch an abnormal model. 

 

Figure 2. The scatter plot of the observed data and the expectation of the survival time E(T) 

from non-mixture model (a), mixture models with two types of risk (b), and three types of risk 

(c). Note that ER represents the type of risk for estimation. 

From Figure 2(c) we can see that the expectation (green line) of the survival time according to 

the third type of risk (ER3) is close to that (blue line) corresponding to the second type of risk (ER2). 

In order to penalize the overfitting model, which is the model with too many model components, we 

consider the distance between the expectations of each survival time according to any two types of 

risk as the penalty. Define the average absolute separation ASep , the average squared 

separation SSep , the minimum absolute separation min ASep  and the minimum squared 

A 

(a)                            (b)                           (c) 
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separation min SSep  as:  

1 1

2 ˆ ˆ( ) ( )
( 1)   

 



g g n

i j l j

i l i j

ASep E t E t
g g

; 
2

1 1

2 ˆ ˆ( ) ( )
( 1)   

  
 


g g n

i j l j

i l i j

SSep E t E t
g g

; 

1

ˆ ˆmin min ( ) ( )




 
n

i j l j
i l

j

ASep E t E t ; 
2

1

ˆ ˆmin min ( ) ( )




  
 

n

i j l j
i l

j

SSep E t E t . 

 A good model will possess small mixture standard residuals and large separation of expectations. 

Hence, based on the above-mentioned functions of residuals and separation of means, we propose 

four validity indices V1 ~ V4 for selecting the number of model components under the mixture 

hazards regression model. 

(V1).  Absolute standard residuals and average separation aRaSV  

1 1

1 > 1

ˆ ˆˆ ( ) ( )

2 ˆ ˆ( ) ( )
( 1)

g n

ij j i j i ji j

aRaS g g n

i j l j

i l i j

z t E t Var tMsSAE
V

ASep
E t E t

g g

 

 


 




 


 

We find an optimal number g of types of risk by solving 
2 1min g n aRaSV  

. 

(V2).  Squared standard residuals and average separation 
sRaSV  

2

1 1

2

1 > 1

ˆ ˆˆ ( ) ( )

2 ˆ ˆ( ) ( )
( 1)

g n

ij j i j i ji j

sRaS g g n

i j l j

i l i j

z t E t Var tMsSSE
V
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E t E t

g g

 

 

 
 

 

 
 

 


 

We find an optimal number g of types of risk by solving 
2 1min g n sRaSV  

. 

(V3).  Absolute standard residuals and minimum separation aRmSV  

1 1

1

ˆ ˆˆ ( ) ( )

ˆ ˆmin min ( ) ( )

g n

ij j i j i ji j

aRmS n

i j l jji l

z t E t Var tMsSAE
V

ASep E t E t

 




 



 


 

We find an optimal number g of types of risk by solving 
2 1min g n aRmSV  

. 

(V4).  Squared standard residuals and minimum separation sRmSV  

2

1 1

2

1

ˆ ˆˆ ( ) ( )

min ˆ ˆmin ( ) ( )

g n

ij j i j i ji j

sRmS n

i j l jji l

z t E t Var tMsSSE
V
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We find an optimal number g of types of risk by solving 
2 1min g n sRmSV  

. 

4. Simulation 

For the simulated data we consider four different models M1~M4. Under the mixture Cox 

proportional hazards model (2), the i
th

 component hazard function is: 

0 ,1,1 ,1, , ,1 , ,( , ) ( )exp( ... ... ... )k k

i j i i j i j i k j i d j i d kh t h t x x x x         X  , 

where d is the number of covariates, k is the degree of models, ,1,1 ,1, , , , ,( , ,..., , )T

i i i k i d k i d k     is 

the vector of regression coefficients and 0 ( )ih t  is the i
th

 component-baseline hazard function.  

Consider two common distributions for the baseline hazard functions, Weibull and Gompertz; 

the i
th

 component Weibull baseline and Gompertz baseline are defined by 1

0 ( ) i

i i ih t t
  

  and 

0 ( ) exp( )i i i jh t t  , respectively, where i  and i  are the scale and shape parameters. Let 

1( ,..., )T

g λ , 1( ,..., )T

g ρ , and 1 2( , ,..., )T T T T

g    . The covariates 
1 2( , ,..., )T

nx x xX  in 

all cases are generated independently from a uniform distribution ( 4,4)U  . The information for 

four models is shown in Table 2, and the scatter plots of a sample dataset are presented in Figure 3. 

Table 2. The information for models M1~M4 respectively. 

Model n
1
 g

2
 d

3
 k

4
 

1

g

p

p

 
 
 
 
 

Mp =  BH
5
 

1

g





 
 

  
 
 

λ M  

1

g





 
 

  
 
 

ρ M  

1

T

T

g

 
 

  
 
 

β

β

β

M  
iU 6

 

M1 200 2 1 1 
0.7

0.3

 
 
 

 Weibull 
0.005

1.5

 
 
 

 
3.0

2.0

 
 
 

 
0.3

0.5

 
 
 

 1

2

(5,9)

(2,6)

U

U
 

M2 200 2 1 2 
0.5

0.5

 
 
 

 Gompertz 
0.2

0.7

 
 
 

 
1.5

2.0

 
 
 

 0.8 0.1

0.6 0.1

 
 
 

 1

2

(4,9)

(4,9)

U

U
 

M3 400 2 2 1 
0.5

0.5

 
 
 

 Weibull 
0.003

0.002

 
 
 

 
0.5

0.7

 
 
 

 
0.8 0.5

0.6 0.5

 
 
 

 1

2

(12,15)

(10,13)

U

U
 

M4 400 3 1 1 

0.35

0.30

0.35

 
 
 
  

 
Gompertz 

0.0002

0.002

0.0003

 
 
 
  

 
0.7

2.0

0.8

 
 
 
  

 
0.8

0.2

1.0

 
 
 
  

 
1

2

3

(10,15)

(4,6)

(15,20)

U

U

U

 

1: sample size; 2: number of risk types; 3: number of covariates; 4: degree of models; 5: baseline hazard function; 6: 

censored times are generated from a uniform distribution ( , )iU a b  for i=1,…,g. 
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Figure 3. The scatter plot of a sample data set for models M1~M4 respectively. 

4.1. Compare two methods of estimating the baseline hazard function 

We consider an EM-based semi-parametric mixture hazards model to analyze simulated data, 

and compare the two methods of estimating the baseline hazard function. For the first method 

proposed by Ng and McLachlan [5], they assume the baseline hazard function is piecewise constant 

and calculate this function using maximum likelihood estimation (MLE). For the second method 

introduced in this paper, we use a kernel estimator to estimate the baseline hazard rates and choose 

biweight as the kernel function.  

In order to graphically demonstrate the results, we first show the results for a single run of 

simulation in Table 3 and Figure 4. The correct rate (CR) in Table 3 is the percentage of individuals 

matched into the true attributable type of risk. According to the results of the estimation, we match 

the individuals into one type of risk with largest posterior probability. Thus, this correct rate is 

defined as: 

 
1 1

1 ˆˆ( ) max( )
gn

ij j
i

j i

CR I j risk i z
n  

    Z  where 1 2
ˆ ˆ ˆ ˆ( , ,..., )T

j j j gjz z zZ . 

When using a piecewise constant estimator under M1, from the estimated mixing probabilities, CR in 

Table 3 and the expectation line in Figure 4(M1-1), it can be seen that we will misclassify some data 

into the 2
nd

 type of risk where their true risk type is the 1
st
 one. As a result, the estimates of 

regression coefficients in Table 3 and the cumulative baseline hazard rate in Figure 4(M1-2) are not 

close to the true model. Furthermore, under M4, from the expectation line according to the 1
st
 and 2

nd
 

types of risk in Figure 4(M4-1), it can be seen that we will misclassify some data between the 1
st
 and 

2
nd

 types of risk when using piecewise constant estimator. The estimates of regression coefficients in 

Table 3 and the cumulative baseline hazard rate in Figure 4(M4-2) are mismatched with the real 

model. It is obvious that using the kernel procedure for the baseline hazard estimation will increase 

CR compared to using the piecewise constant procedure. 

We next show the results for 1000 simulations in Table 4. The absolute relative bias (ARB) for 

parameter θ is defined by: 

ˆ( )
( )

ˆ( )

E
ARB

E

 





 . 



1628 

Mathematical Biosciences and Engineering  Volume 17, Issue 2, 1616–1636. 

In Table 4 the mean absolute relative bias ( ARB ) of the model with k parameters is defined 

by
1

( )
k

ii
ARB ARB k


 . Moreover, CR  and MsSSE  are the mean of CR and MsSSE/n for each 

simulation. Table 4 presents that the ARB  and MsSSE  of the kernel estimate are smaller than 

those of the piecewise constant estimate. Moreover, the CR  of the kernel estimate is larger than that of 

the piecewise constant estimate in all cases considered. Thus, the model with the baseline hazard 

functions estimated by the kernel method fits the data better than that with piecewise constant baseline. 

Table 3. The estimation of a simulated series by models M1~M4 respectively. 

   p  β  CR MsSSE/n 

M1 True
1
  

0.7

0.3

 
 
 

 
0.3

0.5

 
 
 

   

 Piecewise
2
  

0.561

0.439

 
 
 

 
0.528

0.851

 
 
 

 0.860 0.810 

 Kernel
3 
,bw

4
=1.0  

0.672

0.328

 
 
 

 
0.336

0.586

 
 
 

 0.945 0.659 

M2 True  
0.5

0.5

 
 
 

 
0.8 0.1

0.6 0.1

 
 
 

   

 Piecewise  
0.641

0.958

 
 
 

 
0.674 0.136

1.136 0.298

 
 
 

 0.705 0.963 

 Kernel, bw=0.5  
0.523

0.476

 
 
 

 
0.738 0.078

0.762 0.146

 
 
 

 0.855 0.910 

M3 True  
0.5

0.5

 
 
 

 
0.8 0.5

0.6 0.5

 
 
 

   

 Piecewise  
0.508

0.491

 
 
 

 
0.993 0.562

0.562 0.608

 
 
 

 0.838 1.240 

 Kernel, bw = 0.4  
0.478

0.522

 
 
 

 
0.885 0.534

0.628 0.521

 
 
 

 0.843 1.142 

M4 True  

0.35

0.30

0.35

 
 
 
  

 
0.8

0.2

1.0

 
 
 
  

 
  

 Piecewise  

0.399

0.265

0.335

 
 
 
  

 
0.938

0.920

1.137

 
 
 
  

 
0.693 1.211 

 Kernel, bw=0.9  

0.368

0.306

0.325

 
 
 
  

 
0.806

0.192

0.927

 
 
 
  

 
0.873 0.828 

1: true parameters; 2: piecewise constant estimates; 3: kernel estimates; 4: bandwidth. 
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Figure 4. Plots of a single run simulated series by models M1~M4 respectively; E(T)Ri: the i
th

 

type of risk for estimation; CBH: cumulative baseline hazard rate; RRi: real cumulative baseline 

hazard function for the i
th

 type of risk; (Mi-j): model Mi is fitted and j = 1, 3: the scatter plots of 

the observed data and the estimated expectation curves; j = 2, 4: plots of the estimated 

cumulative baseline hazard functions; j = 1, 2: estimated by piecewise constant assumption; j = 

3,4: estimated by kernel method. 
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Table 4. The estimation of 1000 simulated series by models M1~M4 respectively. 

  bias_ p
3
 MSE_ p

4
 bias_β

5
 MSE_β

6
 ARB  CR  MsSSE  

M1 Piecewise
1
 

0.160

0.160

 
 
 

 
0.026

0.026

 
 
 

 
0.088

0.275

 
 
 

 
0.020

0.076

 
 
 

 0.401 0.699 0.796 

 Kernel
2 

 
0.035

0.035

 
 
 

 
0.002

0.002

 
 
 

 
0.073

0.007

 
 
 

 
0.007

0.000

 
 
 

 0.107 0.856 0.653 

M2 Piecewise 
0.132

0.132

 
 
 

 
0.017

0.017

 
 
 

 
0.097 0.041

0.652 0.172

 
 
 

 
0.010 0.001

0.429 0.029

 
 
 

 0.646 0.680 1.329 

 Kernel 
0.089

0.089

 
 
 

 
0.008

0.008

 
 
 

 
0.123 0.054

0.311 0.017

 
 
 

 
0.018 0.006

0.124 0.000

 
 
 

 0.292 0.774 1.009 

M3 Piecewise 
0.028

0.028

 
 
 

 
0.000

0.000

 
 
 

 
0.167 0.091

0.079 0.046

 
 
 

 
0.028 0.008

0.006 0.002

 
 
 

 0.122 0.847 1.271 

 Kernel 
0.006

0.006

 
 
 

 
0.000

0.000

 
 
 

 
0.033 0.020

0.069 0.051

 
 

 

 
0.001 0.000

0.004 0.002

 
 
 

 0.054 0.849 1.097 

M4 Piecewise 

0.043

0.055

0.012

 
 

 
  

 
0.001

0.003

0.000

 
 
 
  

 
0.003

0.791

0.251

 
 
 
  

 
0.002

0.627

0.063

 
 
 
  

 
0.766 0.646 0.737 

 Kernel 

0.018

0.042

0.023

 
 

 
  

 
0.000

0.001

0.000

 
 
 
  

 
0.032

0.071

0.014

 
 
 
  

 
0.002

0.009

0.000

 
 
 
  

 
0.112 0.799 0.565 

1: piecewise constant estimates; 2: kernel estimates; 3: bias of p ; 4: mean square error (MSE) of p ; 5: bias of β ; 6: 

mean square error (MSE) of β . 

4.2. Select appropriate number of model components 

In section 4.2, we consider an EM-based semi-parametric mixture hazards model to analyze 

simulated data under models M1~M4 by considering several possible number of risk types, that is 

model components, and use the kernel estimator to estimate the baseline hazard rates with biweight 

as the kernel function. Next, we use validity indices to select the optimal number of model 

components. The following six validity indices are used to compare with the validity indices we have 

come up with ( aRaSV , sRaSV , aRmSV , and sRmSV ). 

1. Partition coefficient PCV  proposed by Bezdek [22]. 

2. Normalized partition coefficient NPCV  proposed by Dave [23]. 

3. Partition entropy PEV  proposed by Bezdek [24]. 

4. Normalized partition entropy NPEV  proposed by Dunn [25]. 

5. Akaike information criterion AIC. 

6. Bayesian information criterion BIC. 
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It is well known that memberships play an important role in fuzzy clustering. Similarly, under 

the EM-based mixture model, the posterior probabilities are closely related to the role of 

memberships. Therefore, we replace the role of memberships with posterior probabilities in the 

validity indices PCV , 
NPCV , PEV , and 

NPEV . Moreover, the formulas for AIC and BIC are computed 

by 

ˆˆ2 ( , ) 2cAIC l k   p  ; ˆˆ2 ( , ) log( )cBIC l k n   p  , 

where ˆˆ( , )cl p   is the complete-data log-likelihood (3) given the estimated parameters, and k is the 

number of parameters for estimation. 

All in all we consider ten indices, including PCV , NPCV , PEV , NPEV , AIC, BIC, aRaSV , sRaSV , 

aRmSV , and sRmSV , to select the optimal number of model components. Table 5 shows the proportion 

of choosing the correct number of model components over 1000 simulation runs based on the 

considered indices respectively. In each simulation run, each model of M1~M4 is fitted for 

components 2, 3, and 4 separately. Note that we assume the number of model components is greater 

than one for satisfying the requirement of the proposed validity indices. We define the proportion of 

choosing the correct number of risk types by each index in Table 5 as: 

#(choose correct g by index)

#(simulaiton)
 . 

Table 5. The proportion of choosing the correct g by each index for 1000 simulation runs 

under models M1~M4 respectively. 

 PCV  NPCV  PEV  NPEV  AIC BIC aRaSV  sRaSV  aRmSV  sRmSV  

M1 0.962 0.880 0.976 0.894 0.964 0.950 0.896 0.896 0.984 0.992 

M2 0.954 0.564 0.963 0.485 0.524 0.631 0.863 0.851 0.981 0.990 

M3 1.000 0.798 1.000 0.868 0.998 0.998 0.994 0.998 1.000 1.000 

M4 0.486 0.780 0.413 0.810 0.646 0.660 0.923 0.916 0.813 0.703 

 

Table 5 shows that the proportion of choosing the correct g by traditional indices PCV , NPCV , 

PEV , NPEV , AIC, and BIC are not consistent under models M1~M4, where at least one model is not 

performing well (denoted by fluorescent yellow color in the table). On the other hand, the proposed 

indices ( aRaSV , sRaSV , aRmSV , and sRmSV ) are consistent and possess high proportions for every model, 

except that the proportion of sRmSV  under M4 is 0.703, which is slightly low, but it is still higher than 
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that of most traditional indices. Hence, the proposed validity indices are superior than others in 

selecting the correct number of components. 

5. Analysis of prostate cancer data 

As a practical illustration of the proposed EM-based semi-parametric mixture hazard model, we 

consider the survival times of 506 patients with prostate cancer who entered a clinical trial during 

1967–1969. These data were randomly allocated to different levels of treatment with the drug 

diethylstilbestrol (DES) and were considered by Byar and Green [26] and published by Andrews and 

Herzberg [27]. Kay [28] analyzed a subset of the data by considering eight types of risk, defined by 

eight categorical variables: drug treatment (RX: 0, 0.0 or 0.2 mg estrogen; 1, 1.0 or 5.0 mg estrogen); 

age group (AG: 0, < 75 years; 1, 75 to 79 years; 2, > 79 years); weight index (WT: 0, > 99 kg; 1, 80 

to 99 kg; 2, < 80 kg); performance rating (PF: 0, normal; 1, limitation of activity); history of 

cardiovascular disease (HX: 0, no; 1, yes); serum haemoglobin (HG: 0, > 12 g/100 ml; 1, 9 to 12 

g/100 ml; 2, < 9 g/100 ml); size of primary lesion (SZ: 0, < 30 cm
2
; 1, ≥ 30 cm2), and Gleason 

stage/grade category (SG: 0, ≤ 10; 1, > 10). Cheng et al. [26] classified this dataset with three types 

of risk as: (1) death due to prostate cancer; (2) death due to cardiovascular (CVD) disease; and (3) 

other causes.  

We analyze the same dataset with eight categorical variables (RX, AG, WT, PF, HX, SZ, SG). 

There are 483 patients with complete information on these covariates, and the proportion of censored 

observations is 28.8%. We ignore the information about the risk factors and use indices, including 

PCV , NPCV , PEV , NPEV , AIC, BIC, aRaSV , sRaSV , aRmSV , and sRmSV  to select the optimal number of 

risk types. From Table 6, the number of risk types selected by aRaSV , sRaSV , aRmSV , and sRmSV  is 

three, and that selected by other indices is two. The number of model components selected by the 

indices we have proposed is the same as that in the previous studies introduced by Cheng et al. [3]. 

Table 6. The value of each index with different number of risk types under prostate cancer data. 

 PCV  NPCV  PEV  NPEV  AIC BIC aRaSV  sRaSV  aRmSV  sRmSV  

g = 2 0.7813 0.5626 0.3369 0.5720 4.1518 4.2989 0.5894 0.4437 0.5894 0.4437 

g = 3 0.6684 0.5027 0.5260 0.6135 4.5012 4.7262 0.3783 0.1974 0.5016 0.2943 

g = 4 0.5581 0.4109 0.7564 0.7075 4.7967 5.0996 0.4746 57.572 0.6123 98.534 

Note: (1) g represents the number of risk types when estimating. (2) The optimal values of g according to 

each index are highlighted in bold. 

From existing medical experience and a previous study, we presume that these model 

components may agree with some particular types of risk and thus can decide whether there are 

significant relationships between the covariates and the survival times by using the Wald statistical 

test. Based on the cause-specific hazard approach, Cheng et al. [3] found that treatment with a higher 

DES dosage (RX = 1) significantly reduces the risk of death due to prostate cancer. Table 7 shows 

that the DES dosage has a significant effect on time to death due to the 1
st
 type of risk, and that the 

estimated regression coefficients of RX is negative. Byar and Green [26] found that patients with a 
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big size of primary lesion (SZ = 1) and high-grade tumors (SG = 1) are at greater risk of prostate 

cancer death. Table 7 lists that SZ and SG have a significant effect on time to death due to the 1
st
 type 

of risk, and that the estimated regression coefficients are all positive. Accordingly, we presume the 1
st
 

type of risk relates to prostate cancer. Furthermore, based on the cause-specific hazard approach, 

Cheng et al. [3] found that treatment with a higher DES dosage (RX = 1) significantly increases the 

risk of death due to CVD. From Table 7, we see that DES dosage has a significant effect on time to 

death due to the 2
nd

 and 3
rd

 types of risk, and that the estimated regression coefficient of RX is 

positive.  

We know that patients with a history of cardiovascular disease (HX = 1) have a higher 

probability of death due to CVD, compared to those patients without such a history. Table 7 shows 

that the estimated regression coefficient of HX is positive due to the 2
nd

 type of risk. Hence, we 

presume the 2
nd

 type of risk may relate to CVD. There is no explicit relationship between covariates 

and survival times adhering to the 3
rd

 type of risk. Thus, we only presume the 3
rd

 type of risk may 

relate to other death causes without specification. According to the significant relationship of 

covariates and survival times, we assess that the 1
st
, 2

nd
 and 3

rd
 types of risk for estimation from an 

EM-based semi-parametric mixture hazard model are classified to prostate cancer, CVD, and other 

unspecified causes, respectively. 

Table 7. The model estimates (with standard errors) of prostate cancer data given the 

number of risk types equal to 3. 

  1
st
 type of risk 2

nd
 type of risk 3

rd
 type of risk 

p  0.2132 0.3930 0.3936 

  

RX −0.0296*(0.1267) 0.3546*(0.1414) 0.7589*(0.1425) 

AG 0.3144*(0.1143) 1.7445*(0.1041) 1.8104*(0.1396) 

WT −0.0817*(0.0916) 1.7915*(0.0967) −0.5555*(0.1290) 

PF 1.4742*(0.2233) 0.1244*(0.2527) 1.6468*(0.3325) 

HX 3.0027*(0.1176) 1.2829*(0.1377) −0.6092*(0.1486) 

HG 0.8489*(0.1536) 1.6074*(0.1669) −5.2153*(0.7267) 

SZ 0.8567*(0.2119) 3.0334*(0.1998) −3.2661*(0.4074) 

SG 4.3184*(0.1010) −0.3907*(0.1419) −0.9933*(0.1560) 

Note: * denotes P-value < 0.05. 

6. Conclusions and discussion 

6.1.  Conclusions 

This study introduces four new validity indices, aRaSV , sRaSV , aRmSV , and sRmSV , for deciding the 

number of model components when applying an EM-based Cox proportional hazards mixture model 

to a dataset of competing risks. We incorporate the posterior probabilities and the sum of standard 

residuals to constitute the new validity indices. Moreover, our study sets up an extended kernel 

approach to estimate the baseline functions more smoothly and accurately. Extensive simulations 

show that the kernel procedure for the baseline hazard estimation is helpful for increasing the correct 
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rate of classifying individual into the true attributable type of risk. Furthermore, simulation results 

demonstrate that the proposed validity indices are consistent and have a higher percentage of 

selecting the optimal number of model components than the traditional competitors. Thus, the 

proposed indices are superior to several traditional indices such as the most commonly used in 

statistics, AIC and BIC. We also employ the propose method to a prostate cancer data-set to illustrate 

its practicability.  

6.2. Discussion 

It is obvious that if we apply the four new validity indices at the same time, then we have the 

best chance to select the optimal number of model components. One concern is picking the best one 

among the proposed validity indices. In fact, the average separation versions ( aRaSV , sRaSV ) easily 

neutralizes the effects of small and large distances among the expectations of component models. On 

the other hand, as long as there is a small distance among the expectations of component models, the 

minimum separation versions ( aRmSV , sRmSV ) will catch the information about the overfitting model. 

Under the analysis of prostate cancer data, we see that aRmSV  and sRmSV  behave more sensitively 

than aRaSV  and sRaSV  for detecting the overfitting models (i.e., the distances of indices between 

overfitting and optimal models are much larger than those between underfitting and optimal models). 

Furthermore, according to the simulation results, the index sRmSV  performs slightly poor on a certain 

model, we thus recommend employing aRmSV  if just one of the proposed validity indices is to be used. 

In the future we may test the effectiveness of the proposed validity indices on statistical models 

other than the mixture Cox proportional hazards regression models. We could also advance the 

efficiency of the proposed indices in determining the number of components of mixture models. 

Another issue is to reduce the computation cost. For instance, the bandwidth of the kernel procedure 

for baseline hazard function estimates is recalculated on each iteration, which consumes computation 

time. All these factors need further investigation and will be covered in our future research.   
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