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Abstract: The present research envisages a method for the robotic grasping based on the improved 

Gaussian mixture model. The improved Gaussian mixture model is a method proposed by 

incorporating Bayesian ideas into the Gaussian model. It will use the Gaussian model to perform 

grasping training in a certain area which we called trained area. The improved Gaussian models 

utilized the trained Gaussian models as prior models. The proposed method improved the cumulative 

updates and the evaluation results of the improved models to make robots more adaptable to grasp in 

the untrained areas. The self-taught learning ability of the robot about grasping was semi-supervised. 

Firstly, the observable variables of objects were determined by a camera. Then, we dragged the robot 

to grasp object. The relationship between the variables and robot’s joint angles were mapped. We 

obtained new samples in the close untrained area to improve the Gaussian model. With these new 

observable variables, the robot grasped it successfully. Finally, the effectiveness of the method was 

verified by experiments and comparative tests on grasping of real objects and grasping simulation of 

the improved Gaussian models through the virtual robot experimentation platform. 

Keywords: robotic grasping; improved Gaussian models; V-REP simulation 

 

1. Introduction 

Currently, the utility of robots in fulfilling various tasks in place of human beings in industrial 
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production and daily life is gaining a significant importance. For instance, robots outperform human 

beings in many operations like welding, cutting, punching, paint spraying, treatment of heavy 

materials and sophisticated material processing [1]. In the grasping operations of the robots, frequent 

changes are associated in the poses of the target objects. To make robotic grasping more adaptive, 

robots have to regulate their motions on a real-time basis based on the information about object 

poses. 

At present, more studies focus on the robotic grasping based on machine visions. Firstly, the 

vision-based robots need to visually determine the poses of objects. Then, coordinates of robots’ 

joints are determined through inverse kinetics. At last, the motions of the robots are planned by the 

designed motion planner. In this process, it is necessary to calibrate the visual systems. The operators 

need to be highly professional by traditional visual calibration methods [2–4]. Meanwhile, the 

computations involved in the process are very time-consuming. Besides, it is difficult to determine 

the inverse solutions for robots with new structures or redundant degrees of freedom. Finally, the 

planner design is a little complicated, which may cause other problems. 

Researchers satisfied the present needs for robotic grasping by different methods; some studies 

were devoted to equip the end actuators with sensors such as tactile feedbacks [5], while some 

studies improved the end actuators to make robots more adaptive to grasping, for instance, D. 

Petković presented a novel design of an adaptive neuro fuzzy inference strategy (ANFIS) for 

controlling the input displacement of a new adaptive compliant gripper [6]. The use of embedded 

sensors in a robot gripper offered the control system, the ability to control the input displacement of 

the gripper and to recognize particular shapes of the grasping objects. Some studies focused on 

increasing the underactuated degree of freedom [7], and some studies used flexible materials [8] to 

manufacture more flexible end actuators. C. Qian et al. designed the robotic arms with 12 degrees of 

freedom based on multi-sensor fusion [9]. In these robotic arms, the sensors were used in 

combination with the controllers. It presented general shapes of objects through information fusion, 

and endowed the robotic arms with bionic functions. In consideration of the considerable costs in 

motor control and poor control precision of the robotic arms, S. Liu et al. designed the STM32-based 

robotic arms [10]. In this way, problems such as inaccurate motor positioning and considerable costs 

were effectively avoided. In addition, these robotic arms could be controlled more easily and flexibly. 

Although, the aforementioned methods are effective for increasing adaptivity of the robots’ end 

actuators, they are only useful for robots to grasp objects within the scope of work of the end 

actuators. 

Many researchers identified the poses of objects visually and adjusted the robots’ motions for 

the purpose to grasp objects. Saxena et al. identified the positions and shapes of the target objects by 

analyzing several images of the objects, so as to draft suitable strategies for robotic grasping [11]. W. 

Dong introduced the computer visions in the original industrial transport robots [12]. They obtained 

information about the workpieces and surroundings by machine vision. Then, they identified the 

target workpieces to be operated and made decisions to guide the industrial robots to grasp and place 

workpieces. 

Currently, more and more researchers have introduced the “intelligence” into grasping. They 

performed deep learning and training for robotic arms and gained some outcomes. Z. Yan et al. 

proposed a method for detecting the robots’ grasping positions based on deep learning [13]. In this 

method, the multimodal features of the target objects were employed as the training data. Robots 

learnt about the optimal grasping positions of target objects through unsupervised and supervised 
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learning. In this way, they could accurately identify the optimal grasping positions of the target 

objects. Xia Jing put forward a rapid detection method of robot's plane grabbing posture based on 

cascade convolutional neural network [14]. He built a cascaded two-stage convolutional neural 

network model and used transfer learning to train models on small data sets. The results of online 

robotic grasping experiments showed that the method can quickly calculate the optimal grasping 

point and pose for irregular objects with arbitrary poses and different shapes. Its recognition accuracy 

and speed are improved compared with previous methods, and its robustness and stability are strong. 

Robots can acquire skills for fulfilling the tasks from the people’s presentations. Y. Mollard [15] 

made a rapid and intuitive programming by demonstration of robot. K. Bousmalis [16] studied the 

effect of the randomized simulated environments and domain adaptation methods in training a 

grasping system to grasp novel objects from raw monocular RGB images. As a result, they were 

able to reduce the number of real-world samples needed to achieve a given level of performance, by 

up to 50 times. Max Schwarz et al. proposed a deep object perception pipeline [17]. This method 

quickly and efficiently adapted to the new items using a custom turntable capture system and transfer 

learning. It produced high-quality item segments, on which grasp poses were found. Philipp Schmidt 

presented a data-driven, bottom-up, deep learning approach to robotic grasping of unknown objects 

using Deep Convolutional Neural Networks (DCNNs) [18]. They demonstrated the performance of 

our approach in qualitative grasping experiments on the humanoid robot ARMAR-III. 

Earlier, we proposed a robot demonstration method based on the combination of locally 

weighted regression (LWR) and Q-learning algorithm [19]. This method adapted to the work task by 

learning from the demonstration and generating new actions. In literature [20], we built models in the 

Gaussian process to develop the relationship between the observable variables and the joint variables. 

Then the robot was able to adaptively grasp the target objects. However, adaptive grasping is only 

realized within relatively small training areas when models are built in a Gaussian process. If an area 

for object distribution is enlarged and extends to the untrained area, the effectiveness of this 

modelling method for robotic grasping gets greatly weakened, and the success rate of robotic 

grasping, in turn, gets lower. 

 In view of these problems, this paper proposes a robotic grasping method based on the 

improved Gaussian mixture models. The coordinates of the targets were extracted through a camera 

to get some samples for teaching. The relationships between observable variables and robots’ joint 

angles were mapped by the improved Gaussian models. Furthermore, the Gaussian models gained 

via training were used as prior models and integrated into the process of semi-supervised self-taught 

learning. By self-taught learning of grasping, robots grasped objects in new adjacent areas and new 

training samples were collected. Then we updated the probability distribution of the entire Gaussian 

process, obtained the posterior probabilistic models and achieved a higher success rate of grasping. 

For this purpose, models were built for simulation based on V-REP [21–23]. Then, they were 

compared with the original and improved Gaussian models in success rate of grasping. Besides, test 

areas where grasping by all three methods failed were analyzed in terms of positional deviation. At 

last, it was found that the improved Gaussian models were more adaptive. 

2. Gaussian model and EM algorithms 

Gaussian model precisely quantifies things using Gaussian probability density functions 

(normal distribution curves). It decomposes one thing into several Gaussian probability density 
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functions (normal distribution curves). 

The Expectation-Maximization (EM) algorithms are optimal algorithms for the estimation of the 

maximum likelihood. In general, they are used in place of the Newton’s iteration. Meanwhile they 

are used for estimating the parameters of the probabilistic models containing latent variables or 

missing data. The standard computational framework for EM algorithms is alternately composed of 

E and M steps. The algorithms are convergent, so they are useful for ensuring that iteration can at 

least approach local maximum. 

Robots have to regulate themselves to adapt to objects in the process of grasping. 

:f o r→
 

(1) 

In Figure 1 and Formula (1), o is an observable variable of objects, so is oi; r is robot’s joint 

variable corresponding to the observable variable, so is ri; f is mapping of the observable variable 

into the joint variable. Assuming that X＝{x１, x2, …, xn} is a set of training samples obtained 

through demonstration, where xi=[ri, oi]
Tis a single training sample (vector) made up of joint 

variables and observable variables. In the process of its work, the robot firstly learn from the set of 

training samples (X) to get the mapping function (f); when the new observable variable (onew) is 

determined, corresponding joint variable (rnew) is calculated based on the mapping function (f). 

 

Figure 1. Observable variables and joint variables. 

Selecting a suitable model to describe the mapping function (f) is fairly suitable for robots to 

learn about grasping. In this paper, modelling was performed by the improved Gaussian mixture 

models, to map the relationships between the observable variables of objects and the joint variables 

of robots. The models were trained with EM algorithms, and training samples were divided into 

several categories. Each type of samples followed a kind of Gaussian distribution and corresponded 

to one area.  

A Gaussian mixture model was a linear superposition of several Gaussian distributions. For 

probability distribution of a Gaussian mixture model, the appearance probability of the sample x° is 

as follows: 

1 1
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(2) 

Where, m is total number of Gaussian distributions; p(k)-α(k) is the probability of the kth 
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Gaussian distribution from the sample xo; p(xO|k)=N(xO;μk;Σk) is the probability of the sample xo 

generated by the kth Gaussian distribution; μk and ∑k are mean vector and covariance matrix of the kth 

Gaussian distribution respectively.  

Samples were trained by EM algorithms of Gaussian mixture models and categorized. A work 

area was designated for each kind of samples. The relationships between observable variables of 

objects and joint variables of robots were mapped. After model parameters were initialized, E-step 

and M-step were iterated to constantly update model parameters until they are converged:  

E-step: calculate the weight (rik) of the kth Gaussian distribution from the ith sample (xi). 
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M-step: update parameters of each cluster. 
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(4) 

While robots were grasping objects based on improved Gaussian model, the observable 

variables of the objects were identified through a camera to calculate the posterior probability of 

these variables in each Gaussian distribution. The robots’ joint coordinates were determined by a 

regression of the improved Gaussian process corresponding to the maximum posterior probability. 

Then robots were able to grasp the objects successfully. 

3. Control methods for robotic grasping based on improved Gaussian models 

3.1. Principles of robotic grasping methods based on improved Gaussian models 

Principles of robotic grasping methods based on improved Gaussian models are shown in Figure 2: 

(1) Relationships between observable variables of target objects and corresponding robots’ joint 

variables were mapped using original Gaussian models. Then we identified the overall mapped 

relationships based on data regarding 12 groups of samples. 

(2) Target positions were randomly selected in new training areas as inputs of Gaussian 

processes. Joint angles were predicted as the outputs. In simulation models, positive solutions were 

determined on the basis of joint angles. Positions of the corresponding pixel coordinates at ends of 

robots were observed and recorded. If the predicted and actual positions deviated by Δd less than 10 

mm, the newly determined robots’ joint angles were regarded as new samples to input and update the 

training sets of Gaussian processes, in order to update the entire distribution process. When cumulative 

values reached the thresholds, it meant that enough samples were additionally obtained from the new 

training areas. Then posterior Gaussian distribution in the new training areas was identified. 
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Figure 2. Robotic grasping methods based on improved Gaussian models. 

3.2. Control Methods for Robotic Grasping Based on Improved Gaussian Models 

Gaussian process modelling (GPM) method is a hypothesis for following joint normal 

distribution based on observable and predicted variables. We use it to calculate observable variables. 

Posterior probability distribution can be identified by a random input covariance matrix for training 

machines. GPM is a Bayesian approach, by which robots can get mapping functions from samples f. 

For a minority of samples, Gaussian process models can be trained. Then nonlinear connections of 

related variables are created. 

Before data are obtained, it is assumed that joint variables and observable variables of objects 

follow Gaussian distribution, where the mean is μ and the covariance matrix is K: 

( )h N  : ，
 (5)  

Where, h = [a, o]T is a vector composed of observable variables and joint variables. 

Meanwhile, the posterior distribution of multi-dimensional variables obtained for the sample set 

X is Gaussian distribution: 

2  ,( ( ),) np h X N K I  = +│
 (6)  

Where, θ = {μ, K, δn
2} The marginal likelihood function of the sample set X is as follows: 
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(9)  

The logarithm of the above formula is determined as follows: 
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A and B are fitted data of the model and penalty term of model complexity respectively. 

By determining partial derivatives of covariance matrix and mean vectors of the mode, the 

derivatives were found to be 0. The maximum likelihood estimations of the mean vectors and 

covariance matrix are respectively as follows: 
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Next, it is necessary to forecast joint variables using Gaussian process models. The relationships 

between visual observable variables and joint variables shall be established based on teaching and 

training samples. At first, vectors and matrices of the Gaussian process are partitioned as follows:  
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(15)  

Robots acquire information O* about target objects through a camera, and the conditional 

probability distribution of corresponding joint angle a* is as follows: 

( ) ( , )a aap a o N K   =│
 (16)  

Where： 

( ) ( )2
-1

a a ao oo n oK K I o    = + + −
 

(17)  

( )
-1

2

aa aa ao oo n oaK K K K I K = − +
 

(18)  

μa
* is the mean of joint angle corresponding to the new target position. It is the maximum 

probability of corresponding Gaussian distribution meanwhile. The covariance matrix is Kaa
*, which 

reflects predictive uncertainty. If robot joint is μa
* , the likelihood of robotic grasping will be the 

highest. 

By reading data of the controller, relatively accurate joint coordinates of robots are determined 

as follows: 
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( ) ( )2 2 2
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(19)  

In case of no visual calibration and inverse kinematic solution, target objects of the Gaussian 

process are closely associated with joint variables. Therefore, robots’ joint angles adaptable to target 

poses can be forecast according to observable variables. 

The obtained Gaussian process models are deemed prior models. New models are built for the 

grasping in new trained areas by improved Gaussian methods. The equation is as follows: 

( ) ( )|
(

( )
)

p X p
p X

p X

 



=│

 
(20)  

Where p(θ) is probability distribution of prior models; X is training sample; p(θ|X) is probability 

distribution of posterior models; p(X) is marginal likelihood. By the following equation, it is 

calculated that: 

( ) ( ) ( )|p X p X p d  = 
 (21)  

The Gaussian methods were improved for the purpose of expanding new application areas 

without excessively increasing sample points of original models. Therefore, this paper introduced an 

evaluation mechanism, in order that improved models could have expected functions after certain 

amount of sample points were updated. A mechanism was established for evaluating grasping in 

combination with the actual grasping positions. The actual positions were identified based on target 

positions and posterior models, so as to figure out termination requirements for posterior models. 

Evaluation functions were determined as follows: 

( )
2- 2, ( )d

r r a d a dr S e S d x x y y = +  = − + −
 

(22)  

Where, Sr is the evaluated value when Δd is 0; λ is a parameter for ensuring convergence of e-λΔd 

to 0 when Δd is high enough. 𝑆𝑟
′  is the value evaluated after another new sample is used. 

The termination requirements for completing updates of areas are as follows: 

( )1
n

ii
R r 

=
=  

 (23)  

In other words, the new area shall be deemed to have been updated when the cumulative 

evaluated value reaches certain threshold. 

4. Experiments 

4.1. Building of the experimental platform 

This robotic grasping system covered data acquisition, data processing and industrial robots, as 

shown in Figure 3. A UR3 robot was used. It had six spindles from the bottle to the end, including 

base, shoulder joint, elbow joint, wrist joint 1, wrist joint 2 and wrist joint 3. MV-EM200C/M camera 

was used and its resolution was 1,600*1,200. The gripper at the end was a motor-driven three-finger 

gripper with a single degree of freedom. 

The experimental platform was configured as shown in Figure 4. The camera was placed above 

the platform. UR3 robot was on the experimental platform. The block was in the area near the black 

cloth. The block to be grasped was a small cube. By determining the mean of the coordinates of edge 
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points of the block, the pixel coordinates x and y in the centre of the object were identified, as shown 

in Figure 5. 

 

Figure 3. System components. 

 

Figure 4. Configuration of the experimental platform. 

 

Figure 5. Poses of the target objects. 
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4.2. Grasping experiment based on improved Gaussian models 

The experimenter dragged the robot to the position of each block to determine the joint angles. 

Pixel coordinates of the blocks were obtained through a camera. Twelve experiments were performed. 

At last, obtained data of the observable variables and joint angles were used as training samples of 

models. Joint angles and pixel coordinates of the robot was recorded and utilized as training samples 

and input for the Gaussian process models, as shown in Table 1. 

Table 1. Set of training samples. 

No. 
Observable 

Variables 
Corresponding Joint Coordinates (Radian) 

 
Pixel 

(x) 

Pixel 

(y) 
Base 

Shoulder 

Joint 

Elbow 

Joint 

Wrist Joint 

1 

Wrist Joint 

2 

Wrist Joint 

3 

1 239 88 -0.134 -1.730 -2.022 -0.965 1.573 0.007 

2 347 88 0.003 -1.661 -2.103 -0.951 1.574 0.145 

3 455 87 0.149 -1.609 -2.161 -0.944 1.575 0.291 

4 455 191 0.130 -1.768 -1.976 -0.970 1.574 0.271 

5 347 192 0.003 -1.810 -1.920 -0.985 1.573 0.145 

6 239 192 -0.118 -1.868 -1.841 -1.008 1.572 0.023 

7 239 297 -0.105 -2.004 -1.639 -1.073 1.571 0.036 

8 347 297 0.003 -1.953 -1.717 -1.045 1.572 0.144 

9 454 296 0.116 -1.917 -1.772 -1.026 1.573 0.257 

10 401 244 0.062 -1.861 -1.852 -1.003 1.573 0.204 

11 293 245 -0.055 -1.907 -1.785 -1.024 1.572 0.086 

12 293 140 -0.062 -1.767 -1.977 -0.973 1.573 0.079 

After training samples were obtained, the mean vector of the Gaussian process μ and the 

maximum likelihood estimation of covariance matrix（K+δn
2I）were determined. The new observable 

variables and robot’s joint coordinates followed the same probability distribution. In case, if there 

was any new observable input o*, the joint angles μa
* were obtained that the robot was most likely to 

grasp at, so as to make grasping successful. 
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Figure 6. Joint angles of the training samples and corresponding pixel coordinates. 

Figure 6 shows the pixel coordinates and the corresponding joint angles of training samples. 

The joint angles of the base, shoulder joint, elbow joint, wrist joint 1, wrist joint 2 and wrist joint 3 

were allocated from the bottom to the top. Figure 7 shows the distribution and grasping status of the 

training samples and the test samples on the pixel plane. The squares represent the training samples, 

hollow circles were successfully grasped test samples, and the solid circles were the test samples that 

were not successfully grasped. It is evident from the figure that the Gaussian models were helpful in 

the successful grasping in areas within the set of the training samples, but the grasping always failed 

outside the training areas. Hence, it is inferred that the Gaussian process models function fairly well 

within the training areas. The grasping results were not satisfactory on the boundaries near the 

training areas and test points outside the training areas. This suggested that the Gaussian process 

models were reliant upon the prior samples and were able to function well without these samples. 

This is a limitation of Gaussian models. 

 

Figure 7. Planar distribution of pixels and grasping status of training and test samples. 

Sample points of new areas were cumulatively updated by the improved Gaussian models. We 

selected points conforming to Δd < 10 mm as new samples for updating sample sets and calculated 

the evaluated values, until they reached the thresholds. This experiment suggested that only six new 
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data were needed, and this number was far lower than the number of training samples necessary for 

the original Gaussian models. 

Table 2. New sample set. 

No. 
Pixel 

(x) 
Pixel (y) 

Position  

Error (Δd) 
Base 

Shoulder 

Joint 

Elbow 

Joint 

Wrist 

Joint 1 

Wrist 

Joint 2 

Wrist 

Joint 3 

1 560 88 5.26  0.253 -1.568  -2.232  -0.912  1.576  0.395 

2 668 192 1.63  0.378 -1.662  -2.107  -0.942  1.576  0.520 

3 560 192 8.86  0.252 -1.713  -2.041  -0.960  1.575  0.394 

4 722 244 8.64  0.440 -1.709  -2.045  -0.957  1.576  0.582 

5 615 245 4.02  0.316 -1.761  -1.977  -0.975  1.575  0.458 

6 614 140 7.57  0.315 -1.615  -2.170  -0.927  1.576  0.457 

 

Figure 8. Distribution of joint angles. 

Figure 8 shows distribution of the robot’s joint angles. The first row lists the joint angles of the 

original Gaussian model, while the second row shows the joint angles that were determined after the 

update of six sample points. It is evident that changes occurred to these joint angles. In particular, 

these changes were rather significant for the wrist joints 2 and 3, which suggested that the joint 

angles for grasping changed considerably in the new mapping relationships after the update. 

In order that the experiment could be accurate and generalized, this paper modelled and 

simulated the grasping based on VREP. As shown in Figure 9, The UR3 and blocks were put on the 

table and a camera was placed above them. We compared the success rate of the grasping among the 

original Gaussian model for grasping real objects, the improved Gaussian model for grasping 

simulation based on VREP and the improved Gaussian model for grasping real objects, as shown in 

Figures 10–12. 
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Figure 9. V-REP based simulation platform. 

 

Figure 10. Success rate of grasping by the original gaussian model. 

 

Figure 11. Success rate of VREP-based grasping simulation. 
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Figure 12. Success rate of grasping by the improved gaussian model. 

 

Figure 13. Analysis of positional deviations in areas of failed grasping. 

Sixty points of the new area were randomly selected for testing, the test results are shown in 

Figure 10–12. The red solid circles indicted successful grasping and the hollow circles reflected 

failed grasping. According to the results, the success rate of direct grasping by the original Gaussian 

model was only 18.3%. The points for successful grasping were consisted in adjacency to the 

original area. The success rate of grasping by VREP-based simulations and improved Gaussian 

model was 81.7%, while the success rate of grasping by the improved Gaussian model was 75%. The 

success rate of the improved Gaussian model was slightly lower than the success rate of the 

simulation, possibly due to the errors in the precision of the camera sensor and robotic arm. This 

suggested that the improved Gaussian model could achieve more desirable grasping results in 

untrained areas after a minority of samples were updated. 

In addition, we analysed the positional deviations for the 11 points where the grasping failed in 

any of the three methods. We got their positional deviation (Δd) between the statistical points and 

gripper end, as shown in Figure 13. It was observed that the displacement deviation was the highest 
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in the original Gaussian model, displacement deviation of the improved Gaussian model was higher 

than that of V-REP simulation but far lower than that of the original Gaussian model. This indirectly 

suggested that the improved Gaussian model was much more adaptive than the original model even 

in areas where grasping failed. 

5. Conclusion 

In this paper, a robotic grasping method based on the improved Gaussian model was put 

forward. This method was effective for grasping, as like the Gaussian models. It associated the 

observable variables with joint angles, trained areas with a minority of samples and successfully 

predicted the grasping at points of training areas without calibrating the visual systems. Unlike the 

original Gaussian model which was ineffective for predicting grasping results outside training areas, 

the improved model predicted grasping and achieved desirable results only by upgrading a minority 

of samples without any need for training samples in large areas. Finally, comparative tests were 

performed on real grasping, VREP-based grasping simulations by the improved Gaussian model and 

positional deviation analysis on areas of failed grasping. The experimental results validated the 

effectiveness of the method proposed in this paper. 
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