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Abstract: In this paper, an age-structured within-host viral infection model with cell-to-cell transmis-
sion and general humoral immune response is investigated. We give a rigorous mathematical analysis
on some necessary technical materials, including the relative compactness and persistence of the solu-
tion semiflow, and existence of a global attractor. By subtle construction and estimates of a Lyapunov
functional, we show that the global dynamics is determined by two sharp thresholds, namely, basic re-
production number<0 and immune-response reproduction number<1. When<0 < 1, the virus-free
steady state is globally asymptotically stable, which means that the viruses are cleared and immune-
response is not active; when<1 < 1 < <0, the immune-inactivated infection steady state exists and is
globally asymptotically stable; and when <1 > 1, which implies that <0 > 1, the immune-activated
infection steady state exists and is globally asymptotically stable. Numerical simulations are given to
support our theoretical results.
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1. Introduction

Since a basic within-host viral infection model introduced by Nowak et al. [1], the dynamics of
viral infection such as hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency
virus (HIV) infection models have been widely studied by incorporating various biological factors.
Consider age as a continuous variable, writing the production rate of viral particles and the death rate
of productively infected cells as two continuous functions of age, Nelson et al. [2] studied a HIV
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infection model with infection-age, the model is described as follows:

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t),(
∂

∂t
+
∂

∂a

)
i(t, a) = −δ(a)i(t, a),

dV(t)
dt

=

∫ ∞

0
p(a)i(t, a)da − µ2V(t)

(1.1)

with the boundary and initial condition i(t, 0) = βT (t)V(t),

T (0) = T0 > 0, V(0) = V0 > 0 and i(0, a) = i0(a) ∈ L1
+(0,∞),

(1.2)

where T (t) and V(t) denote the densities of uninfected target cell and free viruses at time t, respectively;
i(t, a) denote the density of infected cells at time t with infection-age a. The parameters of model (1.1)
are biologically explained in Table 1.

Table 1. Parameters and their biological meaning in model (1.1). All these parameters are
assumed to be positive.

Parameter Interpretation
Λ Constant recruitment rate;
β Virus infection rate;
µ1 Mortality rate of uninfected target cell;
µ2 Mortality rate of free viruses;
δ(a) Mortality rate of infected cell with age a;
p(a) Production rate of viral particles.

Nelson et al. analyzed the local stability of the model by evaluating eigenvalues and its related
characteristic equation. In [3], Rong et al. extended the model with combination antiretroviral therapy,
and analyzed the local stability of the model. Huang et al. [4] have been further investigated the
global stability of the model (1.1) with (1.2) by using Lyapunov direct method and LaSalle invariance
principle. For some recent works on viral models with age structure, we refer readers to the papers
[5–13].

Recently, experimental work [14] shows that direct cell-to-cell transmission also contributes to
the viral persistence. In a more recent work [15], the authors reveals that environmental restrictions
limit infection by cell-free virions but promote cell-associated HIV-1 transmission. In fact, cell-to-cell
transmission could be also found in other viral infection for human and animals. For example, hepatitis
C virus [16]; bovine viral diarrhea virus [17]; vaccinia virus [18]. Due to this fact, Lai and Zou [19]
formulated a HIV-1 viral model with direct cell-to-cell transmission and studied the global threshold
dynamics. Yang et al. [20] studied a cell-to-cell virus model with three distributed delays, they also
obtained the global stability of each equilibrium for the model. Wang et al. [21] investigated an age-
structured HIV model with virus-to-cell infection and cell-to-cell transmission, the model takes the
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following form: 

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t) −
∫ ∞

0
k(a)T (t)i(t, a)da,(

∂

∂t
+
∂

∂a

)
i(t, a) = −δ(a)i(t, a),

dV(t)
dt

=

∫ ∞

0
p(a)i(t, a)da − µ2V(t),

(1.3)

with the boundary and initial condition
i(t, 0) = βT (t)V(t) +

∫ ∞

0
k(a)T (t)i(t, a)da,

T (0) = T0 > 0, V(0) = V0 > 0 and i(0, a) = i0(a) ∈ L1
+(0,∞).

(1.4)

By constructing suitable Lyapunov functional, Wang et al. were able to complete a global analysis for
the model (1.3). In [22], Zhang and Liu studied the Hopf bifurcation of an age-structured HIV model
with cell-to-cell transmission and logistic growth.

In viral infection, the host immune system play a critical part on the progress of the infection. The
role of the immune system is to fight off pathogenic organisms within the host, for example, cytotoxic
T lymphocyte cells (CTLs) attack infected cells, and antibody cells attack viruses (humoral immunity
response). In [23], Murase et al. studied an viral infection model with humoral immunity response:

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t),

dI(t)
dt

= βT (t)V(t) − aI(t),

dV(t)
dt

= arI(t) − µ2V(t) − kV(t)Z(t),

dZ(t)
dt

= hV(t)Z(t) − µ3Z(t),

(1.5)

where T (t), I(t), V(t) and Z(t) denote the densities of uninfected cells, infected cells, free viruses and
humoral immunity response released by B cells, respectively; the viruses are removed at rate kZ by
the humoral immunity response; the humoral immunity response are activated in proportion to hV(t)
and removed at rate µ3. The global dynamics of model (1.5) were obtain in [23]. Consider the de-
lay between viral entry into a cell and the maturation delay of the newly produced viruses, Wang et
al. [24] studied a virus model with two delays and humoral immunity response. They established the
global dynamics based on two threshold parameters, and they found that the three equilibria are glob-
ally asymptotically stable under some conditions. For another delay, which is the time that antigenic
stimulation needs for generating immunity response, Wang et al. [25] considered another virus model
with delay and humoral immunity response, they found that this delay could lead to a Hopf bifurcation
at the infected equilibrium with immunity. In [26], Kajiwara et al. proposed a age-structured viral
infection model contains humoral immunity response and the effect of absorption of pathogens into
uninfected cells, they also proved the global stability of each equilibria. Duan and Yuan [30] con-
sidered an infection-age viral model with saturation humoral immune response, the local and global
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stability of this model are obtained. Additionally, for the virus model with CTL immune response, we
refer readers to the papers [27–29, 31–34] and the reference therein.

Based on the above facts, we propose an age-structured viral infection model with cell-to-cell trans-
mission and general humoral immune response in this paper. Precisely, we study the following model:

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t) −
∫ ∞

0
k(a)T (t)i(t, a)da,(

∂

∂t
+
∂

∂a

)
i(t, a) = −δ(a)i(t, a),

dV(t)
dt

=

∫ ∞

0
p(a)i(t, a)da − µ2V(t) − qV(t) f (Z(t)),

dZ(t)
dt

= cV(t) f (Z(t)) − µ3Z(t)

(1.6)

with the boundary and initial condition
i(t, 0) = βT (t)V(t) +

∫ ∞

0
k(a)T (t)i(t, a)da,

T (0) = T0 > 0, V(0) = V0 > 0, Z(0) = Z0 > 0 and i(0, a) = i0(a) ∈ L1
+(0,∞),

(1.7)

where L1
+ is the set of integrable functions from (0,+∞) into [0,+∞). T (t), V(t) and Z(t) denote the

densities of uninfected target cell, free viruses and antibody responses released from B cells at time t,
respectively; i(t, a) denotes the density of infected cells at time t with infection-age a; k(a) denote the
infection rate of productively infected cells with age a; qV(t) f (Z(t)) is the neutralization rate of viruses
and cV(t) f (Z(t)) is the activation rate of antibody responses. The antibody responses vanish at rate µ3.
Other parameters of model (1.6) have the same biological meaning in the Table 1.

We made the following assumption on parameters and nonlinear function f : R→ R.

(A1) k(a), δ(a), θ(a), p(a), c(a) ∈ L∞+ (0,∞), with respective essential supremums k̄, δ̄,
θ̄, p̄, c̄ and respective essential infimums k̃, δ̃, θ̃, p̃, c̃.

(A2) f (Z) > 0 for Z > 0, f (Z) = 0 if and only if Z = 0; f is Lipschitz continuous on R+.

(A3) f (Z) is differentiable such that f ′(Z) > 0 and f (Z) is concave down on R+.

Here are some examples on function f (Z) satisfies (A2) and (A3):

(i) f (Z(t)) = Z(t) which is the bilinear function (see [23]);

(ii) Saturation immune response function f (Z(t)) =
Z(t)

h+Z(t) (see [30]).

The paper is organized as follows. In Section 2, we introduce the existence and uniqueness of the
solutions to system (1.6), the steady state and reproduction numbers are also determined in this section;
In Section 3, we show that system (1.6) is asymptotically smooth; Section 4 is devoted to proving the
local stability of each steady state; uniform persistence and global stability of each steady state is
considered in Section 5; We perform a numerical simulation of a special case in Section 6; Section 7
provide some brief discussions.
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2. Preliminaries

In this section, we show the existence and uniqueness of the solutions to system (1.6) by a standard
method [36] (see also [37, 38]), which is to rewrite system (1.6) as an abstract Cauchy problem.

2.1. Integrated solution

For convenience, we first denote the following notations.

Γ(a) = e−
∫ a

0 δ(τ)dτ, P =

∫ ∞

0
p(a)Γ(a)da, K =

∫ ∞

0
k(a)Γ(a)da.

It is easy to see that
Γ(0) = 1 and Γ′(a) = −δ(a)Γ(a).

Set the following spaces:

X := R × L1(R+,R) × R × R, X+ := R+ × L1
+(R+,R) × R+ × R+,

with the following norm

‖ϕ(·), φ1, φ2, φ3‖X = ‖ϕ‖L1 + |φ1| + |φ2| + |φ3|,

Furthermore, define

X0 := {0} × L1(R+,R) × R × R × R, X0+ := {0} × L1
+(R+,R) × R × R+ × R+,

Let A : Dom(A) ⊂ X → X be the following linear operator:

A



 0

ϕ


φ1

φ2

φ3


=



 −ϕ(0)
−ϕ′ − δϕ


−µ1φ1

−µ2φ2

−µ3φ3


(2.1)

with Dom(A) = R × {0} × W1,1(0,+∞) × R × R. In the following, we apply the method in [36] since
Dom(A) = X0 is not dense in X. Consider the nonlinear map F : Dom(A)→ X defined by

F



 0

ϕ


φ1

φ2

φ3


=



 βφ1φ2 +
∫ ∞

0
k(a)φ1ϕ(a)da

0


Λ − βφ1φ2 −

∫ ∞
0

k(a)φ1ϕ(a)da∫ ∞
0

p(a)ϕ(a)da − qφ2 f (φ3)

cφ2 f (φ3)


.
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One can see that F is Lipschitz continuous on bounded sets. Let

u(t) =

(
T (t),

(
0

i(t, ·)

)
,V(t),Z(t)

)T

,

where T represents transposition. Then we can rewrite system (1.6) as the following abstract Cauchy
problem: 

du(t)
dt

= Au(t) + F(u(t)), t > 0,

u(0) = u0 ∈ X0+.

(2.2)

In order to use the method in [36], we need to show that A is a Hille-Yosida operator. Denote ρ(A) be
the resolvent set of A. The definition of Hille-Yosida operator is:

Definition 2.1. (See [36, Definition 2.4.1]) A linear operator A : Dom(A) ⊂ X → X on a Banach
space (X, ‖ · ‖) (densely defined or not) is called a Hille-Yosida operator if there exist real constants
M > 1, and ω ∈ R, such that (ω,+∞) ⊆ ρ(A), and

‖(λ − A)−n‖ 6
M

(λ − ω)n , for n ∈ N+ and all λ > ω.

Now, we prove the following lemma.

Lemma 2.1. The operator A defined in (2.1) is a Hille-Yosida operator.

Proof. Let

(λI − A)−1



(
ϕ̂0

ϕ̂(a)

)
φ̂1

φ̂2

φ̂3


=



(
0
ϕ

)
φ1

φ2

φ3


,

by some simple calculations, we have

φ1 =
φ̂1

λ + µ1
, φ2 =

φ̂2

λ + µ2
, φ3 =

φ̂3

λ + µ3

and
ϕ(a) = ϕ̂0e−

∫ a
0 (λ+δ(s))ds +

∫ ∞

0
ϕ̂(τ)e−

∫ a
τ

(λ+δ(s))dsdτ.

Denote ζ =

((
ϕ̂0

ϕ̂(a)

)
, φ̂1, φ̂2, φ̂3

)T

, then

∥∥∥(λI − A)−1ζ
∥∥∥
X

=|0| +
∫ ∞

0
ϕ(a)da + |φ1| + |φ2| + |φ3|

=

∫ ∞

0
ϕ(a)da +

|φ̂1|

|λ + µ1|
+
|φ̂2|

|λ + µ2|
+
|φ̂3|

|λ + µ3|

6
|ϕ̂0|

|λ + µ|
+
‖ϕ̂(a)‖L1

|λ + µ|
+
|φ̂1|

|λ + µ|
+
|φ̂2|

|λ + µ|
+
|φ̂3|

|λ + µ|
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=
1

λ + µ
‖ζ‖X .

where µ = min{µ1, µ2, µ3, δ̃}. By the Definition 2.1, the operator A is a Hille-Yosida operator. This ends
the proof. �

Let X0 =

(
T0,

(
0
i0

)
,V0,Z0

)T

∈ X0+, by using [36, Theorem 5.2.7] (see also in [37, 39]), we have

the following theorem.

Theorem 2.1. There exists a uniquely determined semi-flow {U(t)}t>0 on X0+ such that for each X0,
there exists a unique continuous map U ∈ C([0,+∞),X0+) which is an integrated solution of Cauchy
problem (2.2), that is

∫ t

0
U(s)X0ds ∈ Dom(A), ∀t > 0,

U(t)X0 = X0 + A
∫ t

0
U(s)X0ds +

∫ ∞

0
F(U(s)X0)ds, ∀t > 0.

(2.3)

Let

Ω =

{
(T, (0, i(·)),V,Z) ∈ X0+

∣∣∣∣∣ T (t) +

∫ +∞

0
i(t, a)da 6

Λ

µ0
, V(t) +

q
c

Z(t) 6
Λp̄
µ0µ̂

}
, (2.4)

where µ0 = min{µ1, δ̃} and µ̂ = min {µ2, µ3}. We show that Ω is a positively invariant set under semi-
flow {U(t)}t>0.

Theorem 2.2. Ω is a positively invariant set under semi-flow {U(t)}t>0. Moreover the semi-flow
{U(t)}t>0 is point dissipative and Ω attracts all positive solutions of (2.2) in X0+.

Proof. Integrating the second equation of (1.6) along the characteristic line t − a =constant, yields

i(t, a) =


i(t − a, 0)Γ(a), t > a > 0,

i0(a − t)
Γ(a)

Γ(a − t)
, a > t > 0.

(2.5)

Then ∫ ∞

0
i(t, a)da =

∫ t

0
i(t − a, 0)Γ(a)da +

∫ ∞

t
i0(a − t)

Γ(a)
Γ(a − t)

da

=

∫ t

0
i(σ, 0)Γ(t − σ)dσ +

∫ ∞

0
i0(a)

Γ(t + a)
Γ(a)

da.

Note that Γ(0) = 1 and Γ′(a) = −δ(a)Γ(a), thus

d
dt

∫ ∞

0
i(t, a)da =

∂

∂t

∫ t

0
i(σ, 0)Γ(t − σ)dσ +

d
dt

∫ ∞

0
i0(a)

Γ(t + a)
Γ(a)

da

= i(t, 0) −
∫ ∞

0
δ(a)i(t, a)da.
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One has that

d
dt

(
T (t) +

∫ +∞

0
i(t, a)da

)
=Λ − µ1T (t) −

∫ ∞

0
δ(a)i(t, a)da

6Λ − µ0

(
T (t) −

∫ ∞

0
δ(a)i(t, a)da

)
.

We have

lim sup
t→∞

{
T (t) +

∫ ∞

0
i(t, a)da

}
6

Λ

µ0
, t > 0.

From the third and forth equations of (1.6), it is easy to check

lim sup
t→∞

(
V(t) +

q
c

Z(t)
)
6

Λ p̄
µ0µ̂

, t > 0.

Hence
‖U(t)X0‖X+

6 Π,

where Π = Λ
µ0

(
1 +

p̄
µ̂

+ cP̄
qµ̂

)
. Therefore, for any solution of (2.2) satisfying X0 ∈ Ω and U(t)X0 ∈ Ω for

all t > 0, Ω is a positively invariant set under semi-flow {U(t)}t>0. Moreover the semi-flow {U(t)}t>0 is
point dissipative and Ω attracts all positive solutions of (2.2) in X0+. �

2.2. Steady state

In this subsection, we concern with the existence of steady states for system (1.6). Obviously, the
system (1.6) always has a virus-free steady state E0 = (T0, 0, 0, 0) = ( Λ

µ1
, 0, 0, 0). E0 is the unique

equilibrium if <0 6 1, where <0 =
βT0P

µ2
+ T0K is the basic reproduction number of system (1.6). If

<0 > 1, there exists an immune-inactivated infection steady state E1 = (T ∗1 , i
∗
1(a),V∗1 , 0), which is the

same situation in [21], that is,

T ∗1 =
T0

<0
, i∗1(a) = Λ

(
1 −

1
<0

)
Γ(a), V∗1 =

1
µ2

∫ ∞

0
p(a)i∗1(a)da. (2.6)

There also exists another immune-activated infection steady state E2 = (T ∗2 , i
∗
2(a),V∗2 ,Z

∗
2), which is

satisfies 

Λ − µ1T ∗2 = i∗2(0) = βT ∗2V∗2 +

∫ ∞

0
k(a)T ∗2 i∗2(a)da,

di∗2(a)
da

= −δ(a)i∗2(a),∫ ∞

0
p(a)i∗2(a)da −$(Z∗2)V∗2 = 0,

cV∗2 f (Z∗2) − µ3Z∗2 = 0,

(2.7)

where
$(Z∗2) = µ2 + q f (Z∗2).

By some calculations, we have

i∗2(a) = i∗2(0)Γ(a). (2.8)
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From the third equation of (2.7), yields

V∗2 =

∫ ∞
0

p(a)i∗2(a)da

$(Z∗2)
. (2.9)

Substituting (2.8) and (2.9) into the first equation of (2.7) one has that

T ∗2 =
$(Z∗2)

βP +$(Z∗2)K
(2.10)

and

i∗2(0) = Λ − µ1T ∗2 = Λ −
$(Z∗2)

βP +$(Z∗2)K
. (2.11)

In the following, we show that Z∗2 > 0. In fact, combining the last two equations of (2.7) give us∫ ∞

0
p(a)

(
Λ −

µ1$(Z∗2)
βP +$(Z∗2)K

)
Γ(a)da −

µ3Z∗2$(Z∗2)
c f (Z∗2)

= 0. (2.12)

Denote

Φ(Z∗) =

∫ ∞

0
p(a)

(
Λ −

µ1$(Z∗2)
βP +$(Z∗2)K

)
Γ(a)da −

µ3Z∗2$(Z∗2)
c f (Z∗2)

and

<1 :=
ΛcP f ′(0)
µ2µ3

(
1 −

1
<0

)
.

Then
lim
Z∗2→0

Φ(Z∗2) > 0⇔<1 > 1.

It is easy to check dΦ(Z∗)
dZ∗ < 0 and limZ∗→+∞Φ(Z∗) → −∞. Hence, there is only one positive root for

(2.12) if <1 > 1. By the expressions of <0 and <1, we have <1 > 0 ⇒ <0 > 1, then there is the
following theorem on the existence of steady states.

Theorem 2.3. For system (1.6), there are two threshold parameters<0 and<1 such that

(i) if<0 ≤ 1, there exists only one positive steady state E0;

(ii) if<1 < 1 < <0, there exists two positive steady states E0 and E∗1;

(iii) if<1 > 1, there exists three positive steady states E0, E∗1 and E∗2.

The following lemma on immune-inactivated infection steady state and immune-activated infection
steady state will be used in the proof of global stability.

Lemma 2.2. The immune-inactivated infection steady state (T ∗1 , i
∗
1(a),V∗1 , 0) satisfies∫ ∞

0

[
βT ∗1
µ2

p(a)i∗1(a)
(
1 −

i∗1(0)T (t)V(t)
i(t, 0)T ∗1V∗1

)
+ T ∗1k(a)i∗1(a)

(
1 −

i∗1(0)T (t)i(t, a)
i1(t, 0)T ∗1 i∗1(a)

)]
da = 0, (2.13)

and immune-activated infection steady state (T ∗2 , i
∗
2(a),V∗2 ,Z

∗
2) satisfies∫ ∞

0

[
βT ∗2

µ2 + q f (Z∗2)
p(a)i∗2(a)

(
1 −

i∗2(0)T (t)V(t)
i(t, 0)T ∗2V∗2

)
+ T ∗2k(a)i∗2(a)

(
1 −

i∗2(0)T (t)i(t, a)
i2(t, 0)T ∗2 i∗2(a)

)]
da = 0. (2.14)
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Proof. For the immune-inactivated infection steady state (T ∗1 , i
∗
1(a),V∗1 , 0), it follows from the third

equation of (2.6), we have∫ ∞

0

βT ∗1
µ2

p(a)i∗1(a)
i∗1(0)T (t)V(t)
i(t, 0)T ∗1V∗1

da =
βi∗1(0)T (t)V(t)

i(t, 0)µ2V∗1

∫ ∞

0
p(a)i∗1(a)da

= βT (t)V(t)
i∗(0)
i(t, 0)

.

Recall that i(t, 0) = βT (t)V(t) +
∫ ∞

0
k(a)T (t)i(t, a)da in (1.7), hence∫ ∞

0

βT ∗1
µ

p(a)i∗1(a)
i∗1(0)T (t)V(t)
i(t, 0)T ∗1V∗1

da +

∫ ∞

0
T ∗1k(a)i∗1(a)

i∗1(0)T (t)i(t, a)
ii(t, 0)T ∗1 i∗1(a)

da

= βT (t)V(t)
i∗1(0)
i(t, 0)

+ T (t)
∫ ∞

0
k(a)i(t, a)da

i∗1(0)
i(t, 0)

= i∗1(0)

= βT ∗1V∗1 +

∫ ∞

0
k(a)T ∗1 i∗1(a)da,

Thus, (2.13) holds true. The proof of Eq (2.14) is similar to (2.13), so we omitted it. This ends the
proof. �

3. Asymptotically smooth

In this section, we show that the semi-flow {U(t)}t>0 is asymptotically smooth. Since the state space
X0+ is the infinite dimensional Banach space, we need the semi-flow {U(t)}t>0 is asymptotically smooth
to proof the global stability of each steady states. Rewrite U := Φ + Ψ, where

Φ(t)X0 : = (0, $1(·, t), 0, 0), (3.1)
Ψ(t)X0 : = (T (t), $2(·, t),V(t),Z(t)), (3.2)

with

$1(·, t) =

 0, t > a > 0,

i(t, a), a > t > 0,
and $2(·, t) =

 i(t, a), t > a > 0,

0, a > t > 0.

We are now in the position to prove the following theorem.

Theorem 3.1. For any X0 ∈ Ω, {U(t)X0 : t > 0} has compact closure in X if the following two
conditions hold:

(i) There exists a function ∆ : R+ ×R+ → R+ such that for any r > 0, limt→∞ ∆(t, r) = 0, and if X0 ∈ Ω

with ‖X0‖X 6 r, then ‖Φ(t)X0‖X 6 ∆(t, r) for t > 0;

(ii) For t > 0, Ψ(t)X0 maps any bounded sets of Ω into sets with compact closure in X.

Proof. Step I, to show that (i) holds.
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Let ∆(t, r) := e−δ̃tr, it is obvious that limt→∞ ∆(t, r) = 0. Then for X0 ∈ Ω satisfying ‖X0‖X 6 r, we
have

‖Φ(t)X0‖X = |0| +
∫ ∞

0
|$1(a, t)da| + |0| + |0|

=

∫ ∞

t

∣∣∣∣∣i0(a − t)
Γ(a)

Γ(a − t)

∣∣∣∣∣ da

=

∫ ∞

0

∣∣∣∣∣i0(s)
Γ(s + t)

Γ(s)

∣∣∣∣∣ ds

6 e−δ̃t
∫ ∞

0
|i0(s)|ds

6 e−δ̃t‖X0‖X

6 ∆(t, r), t > 0.

This completes the proof of condition (i).
Step II, to show that (ii) holds.
We just have to show that $2(t, a) remains in a precompact subset of L1

+(0,∞). In order to prove it,
we should show the following conditions hold [40, Theorem B.2]:

(a) The supremum of
∫ ∞

0
$2(t, a)da with respect to X0 ∈ Ω is finite;

(b) limu→∞

∫ ∞
u
$2(t, a)da = 0 uniformly with respect to X0 ∈ Ω;

(c) limu→0+

∫ ∞
0

($2(t, a + u) −$2(t, a)da = 0 uniformly with respect to X0 ∈ Ω;

(d) limu→0+

∫ ∞
u
$2(t, a)da = 0 uniformly with respect to X0 ∈ Ω.

Conditions (a), (b) and (d) hold since $2(t, a) 6
(
β p̄
µ̂

+ k̄
)

Λ2

µ2
0
. Next, we verify condition (c). For

sufficiently small u ∈ (0, t), set K(t) =
∫ ∞

0
k(a)i(t, a)da, we have∫ ∞

0
|$2(t, a + u) −$2(t, a)|da

=

∫ t−u

0
|(βT (t − a − u)V(t − a − u) + K(t − a − u)T (t − a − u))Γ(a + u)

− (βT (t − a)V(t − a) + K(t − a)T (t − a))Γ(a)|da

+

∫ t

t−u
|0 − βT (t − a)V(t − a) + K(t − a)T (t − a))Γ(a)|da

6

∫ t−u

0
(βT (t − a − u)V(t − a − u) + K(t − a − u)T (t − a − u))|Γ(a + u) − Γ(a)|da

+

∫ t−u

0
|βT (t − a − u)V(t − a − u) − βT (t − a)V(t − a)|Γ(a)da

+

∫ t−u

0
|K(t − a − u)T (t − a − u) − K(t − a)T (t − a)|Γ(a)da + u

(
Λ

µ0

)2 (
β p̄
µ̂

+ k̃
)
.
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Since Γ(a) is non-increasing function with respect to a and 0 6 Γ(a) 6 1, we have∫ t−u

0
|Γ(a + u) − Γ(a)|da =

∫ t−u

0
(Γ(a) − Γ(a + u)) da

=

∫ t−u

0
Γ(a)da −

∫ t

u
Γ(a)da

6

∫ t−u

0
Γ(a)da +

∫ u

t−u
Γ(a)da 6 u.

Then ∫ ∞

0
|$2(t, a + u) −$2(t, a)|da 6 2u

(
Λ

µ0

)2 (
β p̄
µ̂

+ k̄
)

+ Ξ,

where

Ξ =

∫ t−u

0
|βT (t − a − u)V(t − a − u) − βT (t − a)V(t − a)|Γ(a)da

+

∫ t−u

0
|K(t − a − u)T (t − a − u) − K(t − a)T (t − a)|Γ(a)da.

Thanks to the argument in [41, Proposition 6], T (·)V(·) and T (·)K(·) are Lipschitz on R+. Let M1 and
M2 be the Lipschitz coefficients of T (·)V(·) and T (·)K(·) respectively. Then

Ξ 6 (βM1 + M2)u
∫ t−u

0
Γ(a)da 6 (βM1 + M2)u

∫ t−u

0
Γ(a)da 6

u(βM1 + M2)
δ̃

.

Hence ∫ ∞

0
|$2(t, a + u) −$2(t, a)|da 6 2u

(
Λ

µ0

)2 (
β p̄
µ2

+ k̄
)

+
u(βM1 + M2)

δ̃
,

which converges to 0 as u→ 0+, the condition (c) holds. Let Y ⊂ X be a bounded closed set and B be
a bound for Y, where B > A. It is easy to check M1 and M2 are only depend on A, that is M1 and M2

are independent on X. Consequently, $2(t, a) remains in a precompact subsetY of L+
1 (0,+∞) and thus

Ψ(t,Y) ⊆ [0, B] × Y × [0, B] × [0, B],

which has compact closure in X. The proof is completed. �

4. Local stability of steady states

In this section, we show the local stability of system (1.6) at each steady states.

4.1. Local stability of virus-free steady state

Theorem 4.1. If <0 < 1, then the virus-free steady state E0 of system (1.6) is locally asymptotically
stable.
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Proof. Denote T̄1(t) = T (t) − T0, ī1(t, a) = i(t, a), V̄1(t) = V(t) and Z̄1(t) = Z(t), the linearized equation
of (1.6) at E0 as follows:

dT̄1(t)
dt

= −µ1T̄1(t) − βT0V̄1(t) −
∫ ∞

0
T0k(a)ī1(t, a)da,(

∂

∂t
+
∂

∂a

)
ī1(t, a) = −δ(a)ī1(t, a),

dV̄1(t)
dt

=

∫ ∞

0
p(a)ī1(t, a)da − µ2V̄1(t),

dZ̄1(t)
dt

= −µ3Z̄1(t),

ī1(t, 0) = βT0V̄1(t) +

∫ ∞

0
T0k(a)ī1(t, a)da.

(4.1)

Let the solution of (4.1) has the following exponential form:

T̄1(t) = T̄1eλt, V̄1(t) = V̄1eλt, Z̄1(t) = Z̄1eλt and ī1(t, a) = ī1(a)eλt,

then 

λT̄1 = −µ1T̄1 − βT0V̄1 −

∫ ∞

0
T0k(a)ī1(a)da,

λī1(a) +
dī1(a)

da
= −δ(a)ī1(a),

λV̄1 =

∫ ∞

0
p(a)ī1(a)da − µ2V̄1,

λZ̄1 = −µ3Z̄1,

ī1(0) = βT0V̄1 +

∫ ∞

0
T0k(a)ī1(a)da.

(4.2)

Solve the second equation of (4.2) yields

ī1(a) = ī1(0)e−λaΓ(a).

We can write the characteristic equation as following∣∣∣∣∣∣∣∣∣
λ + µ1 T0

∫ ∞
0

k(a)e−λaΓ(a)da βT0

0 1 − T0

∫ ∞
0

k(a)e−λaΓ(a)da −βT0

0 −
∫ ∞

0
p(a)e−λaΓ(a)da λ + µ2

∣∣∣∣∣∣∣∣∣
=∆(λ)(λ + µ1)
=0,

where

∆(λ) := λ + µ2 − λT0

∫ ∞

0
k(a)e−λaΓ(a)da − µ2T0

∫ ∞

0
k(a)e−λaΓ(a)da − βT0

∫ ∞

0
p(a)e−λaΓ(a)da.
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Since λ = −µ1 < 0, then we only need to consider the root of ∆(λ) = 0. By way of contradiction, we
assume that it has an eigenvalue λ0 with Re(λ0) > 0. We have

|λ + µ2| =

∣∣∣∣∣(λ + µ2)T0

∫ ∞

0
k(a)e−λaΓ(a)da + βT0

∫ ∞

0
p(a)e−λaΓ(a)da

∣∣∣∣∣
6 |λ + µ2|

∣∣∣∣∣∣∣T0

∫ ∞

0
k(a)e−λaΓ(a)da +

βT0

∫ ∞
0

p(a)e−λaΓ(a)da

λ + µ2

∣∣∣∣∣∣∣
6 |λ + µ2|

T0

∫ ∞

0
k(a)Γ(a)da +

βT0

∫ ∞
0

p(a)Γ(a)da

µ2

 .
Hence,

T0

∫ ∞

0
k(a)Γ(a)da +

βT0

∫ ∞
0

p(a)Γ(a)da

µ2
> 1,

which is impossible because<0 =
βT0P

µ2
+ T0K < 1. This completes the proof. �

4.2. Local stability of immune-inactivated steady state

Theorem 4.2. If<1 < 1 < <0, then the immune-inactivated steady state E∗1 of system (1.6) is locally
asymptotically stable.

Proof. Denote T̄2(t) = T (t) − T ∗1 , ī2(t, a) = i(t, a) − i∗1(a), V̄1(t) = V(t) − V∗1 and Z̄2(t) = Z(t), the
linearized equation of (1.6) at E∗1 as follows:

dT̄2(t)
dt

= −βT ∗1 V̄2(t) −
∫ ∞

0
T ∗1k(a)ī2(t, a)da −

(
βV∗1 + µ1 +

∫ ∞

0
i∗1(a)k(a)da

)
T̄2(t),(

∂

∂t
+
∂

∂a

)
ī2(t, a) = −δ(a)ī1(t, a),

dV̄2(t)
dt

=

∫ ∞

0
p(a)ī2(t, a)da − µ2V̄2(t) − q f ′(0)V∗1 Z̄2(t),

dZ̄2(t)
dt

= c f ′(0)V∗1 Z̄2(t) − µ3Z̄2(t),

ī2(t, 0) = βT ∗1 V̄2(t) + βV∗1 T̄2(t) +

∫ ∞

0
T ∗1k(a)ī2(t, a)da +

∫ ∞

0
i∗1(a)k(a)T̄2(t)da.

(4.3)

Let T̄2(t) = T̄2eλt, V̄2(t) = V̄2eλt, Z̄2(t) = Z̄2eλt and ī2(t, a) = ī2(a)eλt, thus we have the following
characteristic equation:

0 = (λ − c f ′(0)V∗1 + µ3)(λ + µ1)(λ + µ2)
(
1 − T ∗1

∫ ∞

0
k(a)e−λaΓ(a)da

)
− (λ − c f ′(0)V∗1 + µ3)(λ + µ1)βT ∗1

∫ ∞

0
p(a)e−λaΓ(a)da

+ (λ − c f ′(0)V∗1 + µ3)(λ + µ2)
(
βV∗1 +

∫ ∞

0
k(a)i∗1(a)da

)
.
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Note that<1 < 1 and using (2.6), we can obtain that µ3−c f ′(0)V∗1 > 0, then the characteristic equation
is equivalent to

0 =(λ + µ1)
[
(λ + µ2)

(
1 − T ∗1

∫ ∞

0
k(a)e−λaΓ(a)da

)
− βT ∗1

∫ ∞

0
p(a)e−λaΓ(a)da

]
+ (λ + µ2)

(
βV∗1 +

∫ ∞

0
k(a)i∗1(a)da

)
. (4.4)

By way of contradiction, we assume that it has an eigenvalue λ0 with Re(λ0) > 0. Obviously, λ = −µ1

and λ = −µ2 are not the roots of (4.4) and note that

i∗1(0) = T ∗1

∫ ∞

0
k(a)i∗1(a)da +

βT ∗1
µ2

∫ ∞

0
p(a)i∗1(a)da

= T ∗1

∫ ∞

0
k(a)i∗1(0)Γ(a)da +

βT ∗1
µ2

∫ ∞

0
p(a)i∗1(0)Γ(a)da.

Then we have ∣∣∣∣∣∣∣1 +
βV∗1 +

∫ ∞
0

k(a)i∗1(a)da

λ0 + µ1

∣∣∣∣∣∣∣
=

∣∣∣∣∣T ∗1 ∫ ∞

0
k(a)e−λ0aΓ(a)da +

1
λ0 + µ2

βT ∗1

∫ ∞

0
p(a)e−λ0aΓ(a)da

∣∣∣∣∣
6

∣∣∣∣∣∣T ∗1
∫ ∞

0
k(a)Γ(a)da +

βT ∗1
µ2

∫ ∞

0
p(a)Γ(a)da

∣∣∣∣∣∣ = 1,

which is impossible since V∗1 > 0 and i∗1(a) > 0. Accordingly, the immune-inactivated steady state E∗1
of system (1.6) is local asymptotically stable if<1 < 1 < <0. �

4.3. Local stability of immune-activated steady state

Theorem 4.3. If <1 > 1, then the immune-activated steady state E∗2 of system (1.6) is locally asymp-
totically stable.

Proof. Applying similar method in the proof of the Theorem (4.2), we have the characteristic equation
as following:

(λ + µ1)
[
(λ + µ2 + q f (Z∗2))(λ − cV∗2 f ′(Z∗2) + µ3) + qcV∗2 f (Z∗2) f ′(Z∗2)

] (
1 −

∫ ∞

0
T ∗2k(a)e−λΓ(a)da

)
+ (λ + µ1)(λ − cV∗2 f ′(Z∗2) + µ3)βT ∗2

∫ ∞

0
p(a)e−λaΓ(a)da

= −
[
(λ + µ2 + q f (Z∗2))(λ − cV∗2 f ′(Z∗2) + µ3) + qcV∗2 f (Z∗2) f ′(Z∗2)

] (
βV∗2 +

∫ ∞

0
k(a)i∗2(a)da

)
. (4.5)

By way of contradiction, we assume that it has an eigenvalue λ0 with Re(λ0) > 0. From the concavity
of function f in (A2), we have µ3 − cV∗2 f ′(Z∗2) > 0 since µ3Z∗2 − cV∗2 f (Z∗2) = 0. Note that λ = −µ1,
λ = −(µ2 + q f (Z∗2)) and λ = cV∗2 f ′(Z∗2) − µ3 are not the roots of (4.5), then we can rewrite (4.5) as

1 + Ξ =

∫ ∞

0
T ∗2k(a)e−λaΓ(a)da. (4.6)
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where

Ξ =

(
1 −

∫ ∞
0

T ∗2k(a)e−λaΓ(a)da
)

qcV∗2 f (Z∗2) f ′(Z∗2)

(λ + µ2 + q f (Z∗2))(λ − cV∗2 f ′(Z∗2) + µ3)
+
βT ∗2

∫ ∞
0

p(a)e−λaΓ(a)da

λ + µ2 + q f (Z∗2)

+
βV∗2 +

∫ ∞
0

k(a)i∗2(a)da

λ + µ1
+

qcV∗2 f (Z∗2) f ′(Z∗2)
(
βV∗2 +

∫ ∞
0

k(a)i∗2(a)da
)

(λ + µ2 + q f (Z∗2))(λ − cV∗2 f ′(Z∗2) + µ3)
.

Then

|1 + Ξ| =

∣∣∣∣∣∫ ∞

0
T ∗2k(a)e−λaΓ(a)da

∣∣∣∣∣
<

∣∣∣∣∣∣ 1
i∗2(0)

(∫ ∞

0
i∗2(0)T ∗2k(a)e−λaΓ(a)da +

βT ∗2
µ2 + q f (Z∗2)

∫ ∞

0
i∗2(0)p(a)Γ(a)da

)∣∣∣∣∣∣
61,

which is contradictory. Here we use the fact:

1 −
∫ ∞

0
T ∗2k(a)e−λaΓ(a)da =

1
i∗2(0)

(
βT ∗2V∗2 +

∫ ∞

0
T ∗2k(a)

[
1 − e−λa

]
i∗2(a)

)
> 0.

This completes the proof. �

5. Global stability of steady states

In this section, we discuss the global stability of system (1.6) by using Lyapunov direct method and
LaSalle invariance principle. We first give the result on uniform persistence.

Theorem 5.1. Assume that<0 > 1. Then there exists a constant ζ > 0 such that

lim inf
t→+∞

T (t) > ζ, lim inf
t→+∞

‖i(·, t)‖L1 > ζ, lim inf
t→+∞

V(t) > ζ

for each X0 ∈ X.

The proof of Theorem 5.1 is similar with that in [21, Section 4] or [30], so we omit the details. In
the following, we proof the global stability of each steady states.

5.1. Global stability of virus-free steady state

Theorem 5.2. The virus-free steady state E0 of system (1.6) is globally asymptotically stable if<0 < 1.

Proof. Let

α1(a) : =

∫ ∞

a

(
βT 0

µ2
p(ε) + T 0k(ε)

)
e−

∫ ε
a δ(s)dsdε; (5.1)

g(x) : = x − 1 − ln x. (5.2)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1450–1478.



1466

By direct calculations, we have α1(0) = <0 and α′1(a) = δ(a)α(a) −
(
βT 0

µ2
p(a) + T 0k(a)

)
. Define the

following Lyapunov functional:
H(t) = H1(t) + H2(t),

where

H1(t) = T0g
(
T (t)
T0

)
+
βT0

µ2
V(t) +

qβT0

cµ2
Z(t), (5.3)

H2(t) =

∫ ∞

0
α1(a)i(t, a)da. (5.4)

Calculating the derivatives of H1(t) and H2(t) along system (1.6), we have

dH1(t)
dt

=

(
1 −

T0

T (t)

)
dT (t)

dt
+
βT0

µ2

dV(t)
dt

+
qβT0

cµ2

dZ(t)
dt

=µ1T0

(
2 −

T0

T (t)
−

T (t)
T0

)
− i(t, 0) −

qβT0µ3

cµ2
Z(t)

+

∫ ∞

0
k(a)T0i(t, a)da +

βT0

µ2

∫ ∞

0
p(a)i(t, a)da,

and

dH2(t)
dt

=

∫ ∞

0
α1(a)

∂i(t, a)
∂t

da

= −

∫ ∞

0
α1(a)

∂i(t, a)
∂a

da −
∫ ∞

0
α1(a)δ(a)i(t, a)da

=<0i(t, 0) −
∫ ∞

0

(
βT0

µ2
p(a) + T0k(a)

)
i(t, a)da,

thus

dH(t)
dt

= µ1T0

(
2 −

T0

T (t)
−

T (t)
T0

)
+ (<0 − 1)i(t, 0) −

qβT0µ3

cµ2
Z(t) 6 0 (5.5)

if <0 < 1. Note that dH(t)
dt |(1.6) = 0 implies that T (t) = T0, i(t, 0) = 0 and Z(t) = 0, then the largest

invariant subset of
{

dH(t)
dt |(1.6) = 0

}
is {E0}. Therefore, the virus-free steady state E0 of system (1.6) is

global asymptotically stable if<0 < 1 by Lyapunov-LaSalle theorem. This ends the proof. �

5.2. Global stability of immune-inactivated steady state

Theorem 5.3. The immune-inactivated steady state E∗1 = (T ∗1 , i
∗
1(a),V∗1 , 0) of system (1.6) is globally

asymptotically stable if<1 < 1 < <0.

Proof. Let

α2(a) : =

∫ ∞

a

(
βT ∗1
µ2

p(ε) + T ∗1k(ε)
)

e−
∫ ε

a δ(s)dsdε. (5.6)
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Define the following Lyapunov functional:

W(t) := W1(t) + W2(t) + W3(t),

where

W1(t) : = T ∗1g
(
T (t)
T ∗1

)
; (5.7)

W2(t) : =

∫ ∞

0
α2(a)i∗1(a)g

(
i(t, a)
i∗1(a)

)
da; (5.8)

W3(t) : =
βT ∗1
µ2

V∗1g
(
V(t)
V∗1

)
+

qβT ∗1
cµ2

Z(t). (5.9)

The derivative of W1(t) is calculated as follows:

dW1(t)
dt

=

(
1 −

T ∗1
T (t)

)
dT1(t)

dt

=

(
1 −

T ∗1
T (t)

) (
Λ − µ1T (t) − βT (t)V(t) −

∫ ∞

0
k(a)T (t)i(t, a)da

)
=µ1T ∗1

(
2 −

T ∗1
T (t)

−
T (t)
T ∗1

)
+ (i∗1(0) − i(t, 0))

(
1 −

T ∗1
T (t)

)
.

Note that

i∗1(a)
d
da

(
i(t, a)
i∗1(a)

− 1 − ln
i(t, a)
i∗1(a)

)
=

(
1 −

i∗1(a)
i(t, a)

)
∂i(t, a)
∂a

+ δ(a)i(t, a)
(
1 −

i∗1(a)
i(t, a)

)
, (5.10)

which leads to∫ ∞

0
α2(a)

(
1 −

i∗1(a)
i(t, a)

)
∂i(t, a)
∂a

da

=α2(a)i∗1(a)
(
i(t, a)
i∗1(a)

− 1 − ln
i(t, a)
i∗1(a)

) ∣∣∣∣∣a=∞

a=0
+

∫ ∞

0
α(a)δ(a)[i∗1(a) − i(t, a))]da

−

∫ ∞

0

(
i(t, a)
i∗1(a)

− 1 − ln
i(t, a)
i∗1(a)

) (
dα2(a)

da
i∗1(a) + α2(a)

∂i∗1(a)
∂a

)
da

= lim
a→∞

α2(a)i∗(a)g
(
i(t, a)
i∗(a)

)
− α2(0)i∗1(0)g

(
i(t, 0)
i∗(0)

)
+

∫ ∞

0
α2(a)δ(a)[i∗1(a) − i(t, a))]da −

∫ ∞

0
g
(
i(t, a)
i∗(a)

) (
dα2(a)

da
i∗1(a) + α2(a)

di∗1(a)
da

)
da.

By some calculations, we have

α2(0) = 1, α′2(a) = δ(a)α2(a) −
(
βT ∗1
µ2

p(a) + T ∗1k(a)
)
,
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and using the fact that
di∗1(a)

da
= −δ(a)i∗1(a).

Hence ∫ ∞

0
α2(a)

(
1 −

i∗1(a)
i(t, a)

)
∂i(t, a)
∂a

da

= lim
a→∞

α2(a)i∗(a)g
(
i(t, a)
i∗(a)

)
− i∗1(0)g

(
i(t, 0)
i∗(0)

)
+

∫ ∞

0
α2(a)δ(a)[i∗1(a) − i(t, a))]da

+

∫ ∞

0

(
T ∗1k(a)i∗(a) +

βT ∗1
µ2

p(a)i∗(a)
)

g
(
i(t, a)
i∗(a)

)
da.

Then we have the derivative of W2(t) as follows:

dW2(t)
dt

=

∫ ∞

0
α(a)

(
1 −

i∗(a)
i(t, a)

)
∂i(t, a)
∂t

da

= −

∫ ∞

0
α(a)

(
1 −

i∗(a)
i(t, a)

) (
∂i(t, a)
∂a

+ δ(a)i(t, a)
)

da

= − lim
a→∞

α(a)i∗(a)g
(
i(t, a)
i∗(a)

)
+ i∗(0)g

(
i(t, 0)
i∗(0)

)
−

∫ ∞

0
T ∗1k(a)i∗(a)g

(
i(t, a)
i∗(a)

)
da −

∫ ∞

0

βT ∗1
µ2

p(a)i∗(a)g
(
i(t, a)
i∗(a)

)
da.

For W3(t), we have

dW3(t)
dt

=
βT ∗1
µ2

(
1 −

V∗1
V(t)

)
dV(t)

dt
+

qβT ∗1
cµ2

dZ(t)
dt

=
βT ∗1
µ2

∫ ∞

0
p(a)i(t, a)da −

βT ∗1
µ2

µ2V(t) −
βT ∗1
µ2

V∗1
V(t)

∫ ∞

0
p(a)i(t, a)da +

βT ∗1
µ2

µ2V∗1

+
qβT ∗1
µ2

V∗1 f (Z(t)) −
qβT ∗1
cµ2

µ3Z(t).

Hence,

dW(t)
dt

=µ1T ∗1

(
2 −

T ∗1
T (t)

−
T (t)
T ∗1

)
− βT ∗1V∗1

T ∗1
T (t)

−

∫ ∞

0
k(a)T ∗1 i∗1(a)

T ∗1
T (t)

da +

∫ ∞

0
k(a)T ∗1 i(t, a)da

− lim
a→∞

α(a)i∗1(a)g
(
i(t, a)
i∗1(a)

)
− i∗1(0) ln

i(t, 0)
i∗1(0)

−

∫ ∞

0
p(a)i∗1(a)g

(
i(t, a)
i∗1(a)

)
da

+
βT ∗1
µ2

∫ ∞

0
p(a)i(t, a)da −

βT ∗1
µ2

V∗1
V(t)

∫ ∞

0
p(a)i(t, a)da +

βT ∗1
µ2

µ2V∗1

+
qβT ∗1
µ2

V∗1 f (Z(t)) −
qβT ∗1
cµ2

µ3Z(t). (5.11)
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Recalling that V∗1 =
∫ ∞

0
p(a)
µ2

i∗1(a)da and i∗1(0) = βT ∗1V∗1 +
∫ ∞

0
k(a)T ∗1 i∗1(a)da. Substituting (2.13) into

(5.11), after some calculations and rearranging the equation yield

dW(t)
dt

=µ1T ∗1

(
2 −

T ∗1
T (t)

−
T (t)
T ∗1

)
− lim

a→∞
α(a)i∗1(a)g

(
i(t, a)
i∗1(a)

)
+

∫ ∞

0

βT ∗1
µ2

p(a)i∗1(a)
(
2 −

T ∗1
T (t)

−
V∗1 i(t, a)
V(t)i∗1(a)

− ln
i(t, 0)
i∗1(0)

+ ln
i(t, a)
i∗1(a)

)
da

+

∫ ∞

0
T ∗1k(a)i∗1(a)

(
1 −

T ∗1
T (t)

− ln
i(t, 0)
i∗1(0)

+ ln
i(t, a)
i∗1(a)

)
da

+

∫ ∞

0

βT ∗1
µ2

p(a)i∗1(a)
(
1 −

i∗1(0)T (t)V(t)
i(t, 0)T ∗1V∗1

)
da

+

∫ ∞

0
T ∗1k(a)i∗1(a)

(
1 −

i∗1(0)T (t)i(t, a)
i(t, 0)T ∗1 i∗1(a)

)
da

=µ1T ∗1

(
2 −

T ∗1
T (t)

−
T (t)
T ∗1

)
− lim

a→∞
α(a)i∗1(a)g

(
i(t, a)
i∗1(a)

)
−

∫ ∞

0

βT ∗1
µ2

p(a)i∗(a)
{

g
(

T ∗1
T (t)

)
+ g

(
V∗1 i(t, a)
V(t)i∗1(a)

)
+ g

(
i∗1(0)T (t)V(t)
i(t, 0)T ∗1V∗1

)}
da

−

∫ ∞

0
T ∗1k(a)i∗1(a)

{
g
(

T ∗1
T (t)

)
+ g

(
i∗1(0)T (t)i(t, a)
i(t, 0)T ∗1 i∗1(a)

)}
da

+
qβT ∗1
µ2

V∗1 f (Z(t)) −
qβT ∗1
cµ2

µ3Z(t).

Note that

qβT ∗1
µ2

V∗1 f (Z(t)) −
qβT ∗1
cµ2

µ3Z(t) 6
qβT ∗1
cµ2

[
ΛcP f ′(0)
µ2µ3

(
1 −

1
<0

)
− 1

]
=

qβT ∗1
cµ2

(<1 − 1).

Thus dW(t)
dt |(1.6) 6 0 when <1 < 1 < <0, dW(t)

dt = 0 if and only if (T (t), i(t, a),V(t),Z(t)) =

(T ∗1 , i
∗
1(a),V∗1 , 0). Applying Lyapunov-LaSalle theorem, the immune-inactivated steady state E∗1 =

(T ∗1 , i
∗
1(a),V∗1 , 0) of system (1.6) is globally asymptotically stable if<1 < 1 < <0. �

5.3. Global stability of immune-activated steady state

Theorem 5.4. The immune-activated steady state E∗2 = (T ∗2 , i
∗
2(a),V∗2 ,Z

∗
2) of system (1.6) is globally

asymptotically stable if<1 > 1.

Proof. Let

α3(a) : =

∫ ∞

a

(
βT ∗2
$(Z∗2)

p(ε) + T ∗2k(ε)
)

e−
∫ ε

a δ(s)dsdε. (5.12)

Define the Lyapunov functional as follows

L(t) := L1(t) + L2(t) + L3(t) + L4(t),
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where

L1(t) : = T ∗2g
(
T (t)
T ∗2

)
;

L2(t) : =

∫ ∞

0
α3(a)i∗2(a)g

(
i(t, a)
i∗2(a)

)
da;

L3(t) : =
βT ∗2
µ2

V∗2g
(
V(t)
V∗2

)
+

qβT ∗2
cµ2

Z(t) − Z∗2 −
∫ Z(t)

Z∗2

f (Z∗2)
f (τ)

dτ
 .

Using the results in the proof of Theorem (5.3), after some calculations, we have the derivative of L(t)
as follows:

dL(t)
dt

=µ1T ∗2

(
2 −

T ∗2
T (t)

−
T (t)
T ∗2

)
− lim

a→∞
α3(a)i∗2(a)g

(
i(t, a)
i∗2(a)

)
−

∫ ∞

0

βT ∗2
$(Z∗2)

p(a)i∗2(a)
{

g
(

T ∗2
T (t)

)
+ g

(
V∗2 i(t, a)
V(t)i∗2(a)

)
+ g

(
i∗2(0)T (t)V(t)
i(t, 0)T ∗2V∗2

)}
da

−

∫ ∞

0
T ∗2k(a)i∗2(a)

{
g
(

T ∗2
T (t)

)
+ g

(
i∗2(0)T (t)i(t, a)
i(t, 0)T ∗2 i∗2(a)

)}
da

+
qβT ∗2V∗2 f (Z∗2)

$(Z∗2)

(
Z(t)
Z∗2
−

f (Z(t))
f (Z∗2)

) (
f (Z∗2)

f (Z(t))
− 1

)
.

It follows from follows (A2) and (A3) that
(

Z(t)
Z∗2
−

f (Z(t))
f (Z∗2)

) ( f (Z∗2)
f (Z(t)) − 1

)
6 0, thus dL(t)

dt |(1.6) 6 0 and dL(t)
dt = 0

if and only if (T (t), i(t, a),V(t),Z(t)) = (T ∗2 , i
∗
2(a),V∗2 ,Z

∗
2). Therefore, the immune-activated steady state

E2 of system (1.6) is global asymptotically stable if<1 > 1 by Lyapunov-LaSalle theorem. �

6. Special case and numerical simulation

6.1. Example

In this subsection, as special case for the age-infection model (1.6) and (1.7) with general nonlin-
ear immune response f (Z), we introduce the following age-infection model with saturation immune
response function, which have been used for modeling HIV infection in [30, 42].

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t) −
∫ ∞

0
k(a)T (t)i(t, a)da,(

∂

∂t
+
∂

∂a

)
i(t, a) = −δ(a)i(t, a),

dV(t)
dt

=

∫ ∞

0
p(a)i(t, a)da − µ2V(t) −

qV(t)Z(t)
h + Z(t)

,

dZ(t)
dt

=
cV(t)Z(t)
h + Z(t)

− µ3Z(t)

(6.1)

with the boundary and initial condition
i(t, 0) = βT (t)V(t) +

∫ ∞

0
k(a)T (t)i(t, a)da,

T (0) = T0 > 0, V(0) = V0 > 0, Z(0) = Z0 > 0 and i(0, a) = i0(a) ∈ L1
+(0,∞).

(6.2)
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The model without cell-to-cell transmission of system (6.1) with (6.2) has been studied in [30]. It is
easy to see that f (Z) =

Z(t)
h+Z(t) satisfy (A2) and (A3). System (6.1) with (6.2) is a special case of the

original system (1.6) and (1.7).
The virus-free equilibrium of system (6.1) with (6.2) is similar to the previous one, E01 =

(T0, 0, 0, 0), where T0 = Λ
µ1

. By some calculation, we obtain the basic reproduction number and
immune-activated reproduction number of system (6.1) with (6.2) as <01 =

βT0P

µ2
+ T0K and <11 =

ΛcP
hµ2µ3

(
1 − 1

<0

)
, respectively. We have the following corollary:

Corollary 6.1. For system (6.1) with (6.2), there are two threshold parameters <01 and <11 with
<01 > <11 such that

(i) If<01 < 1, there exists a virus-free steady state E01, and E01 is globally asymptotically stable;

(ii) If<11 < 1 < <01, there exists a immune-inactivated steady state E11 which is globally asymptoti-
cally stable;

(iii) If <11 > 1, there exists a immune-activated steady state E21 which is globally asymptotically
stable.

Table 2. Parameter values for numerical simulations.

Parameter Value Unite Case 1 Case 2 Case 3 Ref.
Λ 0 ∼ 100 cells ml-day−1 1.2 8 100 [44]
β 5 × 10−7 ∼ 0.5 ml virion-day−1 0.001 0.001 0.001 [42]
µ1 0.007 ∼ 0.1 day −1 0.01 0.01 0.01 [44]
µ2 2.4 ∼ 3 day −1 6 6 6 [44]
µ3 0.3 day −1 0.3 0.3 0.3 [45]
q 0.006 ml cell−1 day −1 0.006 0.006 0.006 [45]
c 0.1 ml virion−1day −1 0.1 0.1 0.1 [45]
h 1 ∼ 100 Saturation constant 10 10 100 Assumed

6.2. Numerical simulation

In this subsection, we perform some numerical simulations to the validity of the theoretical result of
this paper. Specifically, we focus on the age-infection model with saturation immune response function
(see model (6.1)).

The parameter values will be used in numerical simulation are listed in Table 2. Furthermore, we
set the maximum age for the viral production as a† = 10 and we set

δ(a) = 0.03
(
1 + sin

(a − 5)π
10

)
, p(a) = 2.9

(
1 + sin

(a − 5)π
10

)
and

k(a) = 0.0003
(
1 + sin

(a − 5)π
10

)
.

Thus, the averages of δ(a), p(a) and k(a) are 0.03, 2.9 and 0.0003, which are the same in [20, 43].
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Numerical simulation shows the following three cases:

Case 1: Choose parameter values as in Case 1 of Table 2, then we can calculate the basic reproduc-
tion number as<0 ≈ 0.8093 < 1. Corollary 6.1 asserts that the virus-free steady state of system (6.1)
with (6.2) is globally asymptotically stable. From Figure 1, one can observe that the levels of all com-
partmental individuals tend to stable values, where T (t), V(t), i(t, a) and Z(t) converge to a virus-free
steady states (100,0,0,0).

Figure 1. The long time dynamical behaviors of system (6.1) with (6.2) for<0 = 0.8093 < 1,
that is, the virus-free steady state of system (6.1) with (6.2) is globally asymptotically stable.

Case 2: Choose parameter values as in Case 2 of Table 2. By some computing, we can obtain that
<0 ≈ 5.3952 > 1 > <1 ≈ 0.9040. From Corollary 6.1, we derive that immune-inactivated infection
steady state is globally asymptotically stable. Numerical simulation illustrates this fact (see Figure 2).

Case 3: Choose parameter values as in Case 3 of Table 2. Similarly, we can obtain that <0 ≈

29.9893 > 1 and <1 ≈ 1.3408 > 1. Numerical simulation shows that the levels of all compartmental
individuals tend to stable values (see Figure 3), that is, immune-inactivated infection steady state is
globally asymptotically stable.
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Figure 2. The long time dynamical behaviors of system (6.1) with (6.2) for<0 ≈ 5.3952 and
<1 ≈ 0.9040, that is, the immune-activated steady state of system (6.1) with (6.2) is globally
asymptotically stable.

Figure 3. The long time dynamical behaviors of system (6.1) with (6.2) for<0 ≈ 29.9893 >
1 and<1 ≈ 1.3408 > 1, that is, the immune-activated steady state of system (6.1) with (6.2)
is globally asymptotically stable.
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7. Conclusion and discussion

In this paper, we proposed and investigated an age-structured within-host viral infection model
with cell-to-cell transmission and general humoral immunity response. We have shown that the global
stability of equilibria of model (1.6) are determined by the corresponding basic reproduction numbers
<0 and the basic immune reproductive number<1. That is, when<0 < 1, the virus-free steady state
is globally asymptotically stable, which means that the viruses are cleared and immune response is
not active; when <1 < 1 < <0, the immune-inactivated infection steady state exists and is globally
asymptotically stable, which means that viral infection becomes chronic and humoral immune response
would not be activated; and when <1 > 1, the immune-activated infection steady state exists and is
globally asymptotically stable, in this case the infection causes a persistent humoral immune response
and is chronic.

Now, we show the relevance of model formulations between our age-structured model (1.6) and the
standard ODE models. We consider δ(a) ≡ δ, k(a) ≡ k and p(a) ≡ p in model (1.6). Letting

I(t) =

∫ ∞

0
i(t, a)da.

Recall that
i(t, 0) = βT (t)V(t) + kT (t)I(t),

then we have

dI(t)
dt

=

∫ ∞

0

∂i(t, a)
∂t

da = −

∫ ∞

0

(
∂i(t, a)
∂a

+ δi(t, a)
)

da

= i(t, 0) −
∫ ∞

0
δi(t, a)da

= βT (t)V(t) + kT (t)I(t) − δI(t),

here we assume that lima→∞ i(t, a) = 0, which means that there is no biological individual can live
forever. Thus, system (1.6) is equivalent to the following ODE model as

dT (t)
dt

= Λ − µ1T (t) − βT (t)V(t) − kT (t)I(t),

dI(t)
dt

= βT (t)V(t) + kT (t)I(t) − δI(t),

dV(t)
dt

= pI(t) − µ2V(t) − qV(t) f (Z(t)),

dZ(t)
dt

= cV(t) f (Z(t)) − µ3Z(t),

(7.1)

which is the model studied by [23] when f (Z) = Z and k = 0. In fact, we have not found the above
model in any existing literatures, but we think it has the same dynamic behavior with (1.6).

It is necessary to mention it here, in the proof of Lemma 4.1, there may exists zero eigenvalue if
R0 = 1, and it may lead to more complex dynamic behavior. For example, Qesmi et al. [46] propose a
mathematical model describing the dynamics of hepatitis B or C virus infection with age-structure, and
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they found that when<0 = 1, the system may undergo a backward bifurcation. In a recent work [22],
Zhang and Liu studied an age-structured HIV model with cell-to-cell transmission and logistic growth
in uninfected cells. They have shown that there exists Hopf bifurcation of the model by using the Hopf
bifurcation theory for semilinear equations with non-dense domain. Introducing logistic growth in
uninfected cells to model (1.6), it will be interesting to investigate the existence of a Hopf bifurcation.
We leave the above two studies for future consideration.
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