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Abstract: If the individual state space of a structured population is given by a metric space S , mea-
sures µ on the σ-algebra of Borel subsets T of S offer a modeling tool with a natural interpretation:
µ(T ) is the number of individuals with structural characteristics in the set T . A discrete-time population
model is given by a population turnover map F on the cone of finite nonnegative Borel measures that
maps the structural population distribution of a given year to the one of the next year. Under suitable
assumptions, F has a first order approximation at the zero measure (the extinction fixed point), which
is a positive linear operator on the ordered vector space of real measures and can be interpreted as a
basic population turnover operator. For a semelparous population, it can be identified with the next
generation operator. A spectral radius can be defined by the usual Gelfand formula.We investigate in
how far it serves as a threshold parameter between population extinction and population persistence.
The variation norm on the space of measures is too strong to give the basic turnover operator enough
compactness that its spectral radius is an eigenvalue associated with a positive eigenmeasure. A suit-
able alternative is the flat norm (also known as (dual) bounded Lipschitz norm), which, as a trade-off,
makes the basic turnover operator only continuous on the cone of nonnegative measures but not on the
whole space of real measures.

Keywords: extinction; basic reproduction number; spectral radius; flat norm; measure kernels; Feller
property; eigenvectors; fixed point

1. Introduction

In the most elementary population models, all members of a population are equal, except that they
may live at different times. In reality, they are different in many aspects like spatial location, chrono-
logical age, development stage, size etc., and the distributions of their individual characteristics have a
considerable influence on the population dynamics.

Let the state space of individual characteristics [1] be described by a metric space (S , d), i.e., a
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nonempty set S with a metric d. A point in S gives an individual’s characteristics, and d describes how
close the characteristics of two different individuals are to each other. From a population point of view,
S represents the population structure. To be specific, we consider the spatial structure of a population,
but it could be any other structure given by one or several individual characteristics.

A natural way to describe the structural distribution is to consider a collection B of subsets of S and
set-functions µ : B → R+ with the interpretation that µ(T ) is the number of individuals located within
the set T ∈ B. The total population size is given by µ(S ). Here are a few properties of B and µ that are
compatible with this interpretation:

Definition 1.1. • ∅ ∈ B, µ(∅) = 0.
• If T1,T2 ∈ B, then T1 ∪ T2 ∈ B and T1 ∩ T2 ∈ B and µ(T1 ∪ T2) = µ(T1) + µ(T2) − µ(T1 ∩ T2).
• If T ∈ B, then S \ T ∈ B and µ(S \ T ) = µ(S ) − µ(T ).
• If (Tn) is a sequence of sets in B and Tn ⊆ Tn+1 for all n ∈ N, then T :=

⋃
n∈N Tn ∈ B and

µ(T ) = limn→∞ µ(Tn).

If B and µ : B → R+ have these properties, B is called a σ-algebra and µ is called a
nonnegative measure; µ : B → R with these properties is called a real measure.

See any of the many books covering measure theory like [2–6] [7, App.B] and Section 6. The
population state space is the set (actually cone) of nonnegative measures, denoted byM+(S ).

In spite of this natural setting, most of the time the special case is considered that µ(T ) =∫
T

f (x)ν(dx), T ∈ B, with some master measure ν and a density f . The dynamics of the population are
then discussed in terms of densities [8, 9], maybe because densities are perceived as mathematically
easier than measures.

Still, there is a substantial body of work in population or other dynamics in terms of measures.
The reasons, among others, are the natural conceptuality of the setting [1, 10–13] or the circumstance
that, even if the initial conditions are given by densities, the solution can become measure-valued in
finite time [14, 15] [16, Sec.9], or in the limit as time tends to infinity [17–20], or via some other
limiting procedure [21]. Another reason is the inclusion of random structural transitions ( [22] and
the references therein) like random mutations [17, 23, 24] or, in the case of this paper, yearly random
spatial movements described by a measure kernel P : B × S → R+ (Sections 9 and 10). Here, P(T, s)
is the probability that an individual that is at s ∈ S at the beginning at the year is still alive at the end
of the year and located within the set T ∈ B.

Similarly as in [25,26], we want to considerM+(S ) as the closed cone of the ordered normed vector
spaceM(S ) of real measures (Section 6) in order to take advantage of the rich mathematical theory that
is available in this framework [27–31, 33, 34] (see Section 5), in particular the theory of homogeneous
order-preserving operators and their spectral radius [35–41, 43–46] (see Sections 4.2 and 7).

Since S is a metric space, M(S ) is an ordered normed vector space not only under the variation
norm, but also under the weaker flat (aka dual bounded Lipschitz) norm (Section 6.1). The variation
norm makes M(S ) a Banach lattice which seems as good a framework as one can wish, except that
compact sets are hard to come by. The flat norm provides applicable conditions for the compactness of
subsets ofM+(S ) but has other challenges: M(S ) is only complete if S is a uniformly discrete metric
space andM+(S ) is only complete if S is complete (Theorem 6.12, Theorem 6.14, [25, 26, 48]).

Most of the population dynamics models with measure-valued solutions are formulated in contin-
uous time. There, the flat norm offers the additional advantage that certain solutions depend continu-
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ously on time, while they do not do so with respect to the variation norm, and is also useful in obtaining
approximation results ( [26, Sec.7] and the references therein).

Discrete-time models bypass the often quite difficult existence and uniqueness problems that
continuous-time models with measures face [11,14,23,49–51] and, almost from the outset, are able to
concentrate on threshold conditions for population extinction and survival, and more readily deal with
the mathematical techniques that help with this fundamental issue (Sections 8 and 12, [16, 36, 47]).
Biologically, discrete-time models are appropriate idealization for populations with very short repro-
ductive seasons. Their essential ingredient is a population turnover map F : M+(S ) → M+(S ) that
maps the structural population distribution at the census period of a given year to that at the census
period of the next year (Section 2). If the sequence (µn) in M+(S ) is constituted by the structural
distributions µn in the nth year, the population development is described by the difference equation

µn = F(µn−1), n ∈ N, (1.1)

with a given initial distribution µ0.
F has a linear first order approximation A at the origin, the order derivative (Section 8.1), which can

be continuously extended to all ofM(S ) with respect to the variation norm. The map A is continuous
on M+(S ) with respect to the flat norm if and only if it is induced by a Feller kernel (Section 10);
in general, it is not continuous with respect to the flat norm on all of M(S ) (Example 10.14). The
spectral radius of this basic population turnover operator A, denoted by r0 and called basic population
turnover number, is the threshold parameter that decides about population extinction: If r0 < 1 , the
zero measure (the extinction state) is locally asymptotically stable; the extinction state is unstable and
a nonzero equilibrium state exists if r0 > 1 (Sections 8 and 12). To establish the latter, one shows that
r0 is an eigenvalue of the basic turnover operator (Sections 7 and 10).

2. Modeling population dynamics with measures

The dynamics of a structured population are governed by the processes of birth, death, and structural
development, with the last being spatial movement in our case.

We consider a population that reproduces during a very short annual reproduction season. For ease
of exposition, we assume that the population is semelparous, i.e., individuals only reproduce once
during their life-time, one year after birth, and die shortly thereafter. We count the years in such a way
that the census period is just before reproductive season.

Births and deaths can be affected by competition for resources. We restrict our exposition to the
reduction of per capita birth rates by inner-species competition. If µ is the spatial distribution of the
adult population, the competition level at the location s generated by µ, (Qµ)(s), is

(Qµ)(s) =

∫
S

q(s, t)µ(dt), s ∈ S . (2.1)

Here q : S 2 → R+ is bounded and continuous and q(s, t) describes the competitive influence an
individual at location t exerts on an individual at s. We call Qµ the competitive force generated by the
population distribution µ.

Let g : S ×R+ → R+ be the per capita birth function, i.e., g(s, q) is the per capita number of offspring
produced at s ∈ S by an adult located at s when the competition level for reproductive resources at s is
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q ∈ R+. The number of neonates in a set T ∈ B is then given by

ν(T ) =

∫
T

g
(
s, (Qµ)(s)

)
µ(ds) (2.2)

provided that µ is the spatial distribution of adults.
Equation (2.2) defines a measure ν on B that represents the spatial distribution of neonates resulting

from the distribution of adults, µ. The movement of individuals during a year is described by a measure
kernel

P : B × S → [0, 1] (2.3)

where P(T, s) is the probability that a neonate born at s ∈ S at the beginning of the year is still alive at
the end of the year and located at some point in the set T .

Definition 2.1. P : B × S → R+ is called a measure kernel, if

• for any s ∈ S , P(·, s) is a measure on B and
• for any T ∈ B, P(T, ·) is a Borel measurable function on S .

If the measure ν represents the spatial distribution of neonates shortly after the reproductive season
at the beginning of the year,

(Ãν)(T ) =

∫
S

P(T, s)ν(ds), T ∈ B, (2.4)

provides the resulting number of surviving adults at the end of the year that are located within the set T .
If there were no deaths over the year, P(·, s) would be a probability measure, P(S , s) = 1, for all

s ∈ S . In such a case, the measure kernel P is sometimes called a Markov kernel or a stochastic kernel
[2, Def.19.11]. But we will not make this unrealistic assumption but rather assume that P(S , s) ∈ [0, 1]
for all s ∈ S . Such measure kernels are called transition kernels in [52].

If the measure µ represents the spatial distribution of adults at the beginning of a given year, imme-
diately before the reproductive season, the number of adults in a set T ∈ B at the end of the year (and
the beginning of the next year), is given by∫

S
P(T, s)ν(ds)

(2.2)
=

∫
S

P(T, s) g
(
s, (Qµ)(s)

)
µ(ds)

=: F(µ)(T ).

(2.5)

Here Qµ is the competitive force due to the population distribution µ given by (2.1). (2.5) defines a
map F fromM+(S ) to itself, called the yearly population turnover map. In (2.5), for µ ∈ M+(S ), the
measure kernel κµ,

κµ(T, s) = P(T, s) g
(
s, (Qµ)(s)

)
, T ∈ B, s ∈ S , (2.6)

does not necessarily satisfy κµ(T, s) ∈ [0, 1] and is not a transition kernel in the sense of [52].
Though individual development (here spatial movement) is modeled stochastically by the measure

kernel P, population development is ultimately modeled deterministically by the map F.
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3. A general measure-theoretic framework

In the previous section, we have made some simplifying biological assumptions like semelparity
of the population and competition that only affects reproduction. Instead, we may like to consider
iteroparous populations and competitive effects on both reproduction and survival as we will do in a
future publication. To have a general framework, let S be a non-empty set and B a σ-algebra of subsets
of S .

Definition 3.1. A map κ : B × S → R+ is called a measure kernel if
κ(·, s) ∈ M+(S ) for all s ∈ S and κ(T, ·) ∈ Mb

+(S ) for all T ∈ B.

Here Mb(B) is the Banach space of bounded measurable functions with the supremum norm and
Mb

+(S ) the cone on nonnegative function in Mb(S ).
We consider yearly turnover maps F of the following form,

F(µ)(T ) =

∫
S
κµ(T, s) µ(ds), µ ∈ M+(S ), T ∈ B, (3.1)

where {κµ; µ ∈ M+(S )} is a family of measure kernels κµ : B × S → R+. Consider a typical individual
that, in a given year, is located at the point s ∈ S , and let µ ∈ M+(S ) be the spatial distribution of the
population in that year. Then, under the environment affected by the population distribution µ, κµ(T, s)
is the probability that this individual is still alive and located within the set T ∈ B in the next year plus
the amount of its offspring that is produced during this given year and is still alive and also located in
T in the next year.

In the special case of a semelparous population, where only the offspring is accounted for, κµ takes
the form (2.6).

If µ is the zero measure, we use the notation κo. κo is the basic population turnover kernel describing
the yearly turnover in a competition-free environment. In the case of (2.6), κo(T, s) = P(T, s)g(s, 0) for
T ∈ B and s ∈ S .

Assumption 3.2. For each µ ∈ M+(S ), κµ is a measure kernel and
{
κµ(S , t); µ ∈ M+(S ), t ∈ S

}
is a

bounded subset of R.

Standard measure-theoretic arguments imply the following result.

Proposition 3.3. Let the Assumption 3.2 be satisfied. Then F mapsM+(S ) into itself.

3.1. Convolutions and spectral radius of measure kernels

The convolution of two measure kernels κ j : B × S → R+, j = 1, 2, is defined by

(κ1 ? κ2)(T, s) =

∫
S
κ1(T, t)κ2(dt, s), T ∈ B, s ∈ S . (3.2)

κ1 ? κ2 is again a measure kernel.

Definition 3.4. Let κ : B×S → R+ be a measure kernel. We inductively define the multiple convolution
kernels κn? by κ1? = κ and κ(n+1)? = κn? ? κ.

The spectral radius of the kernel κ is defined by

r(κ) = inf
n∈N

(
sup
s∈S

κn?(S , s)
)1/n

. (3.3)
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We will see later that, in (3.3), inf
n∈N

can be replaced by lim
n→∞

. See (9.7).

Definition 3.5. The kernel family {κµ; µ ∈ M+(S )} is called upper semicontinuous at the zero measure
if for any ε ∈ (0, 1) there is some δ > 0 such that

κµ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S ,

for all µ ∈ M+(S ) with µ(S ) ≤ δ.
The kernel family {κµ; µ ∈ M+(S )} is called lower semicontinuous at the zero measure if for any

ε ∈ (0, 1) there is some δ > 0 such that

κµ(T, s) ≥ (1 − ε)κo(T, s), T ∈ B, s ∈ S ,

for all µ ∈ M+(S ) with µ(S ) ≤ δ.
The kernel family {κµ; µ ∈ M+(S )} is called continuous at the zero measure if for any ε ∈ (0, 1) there

is some δ > 0 such that

(1 − ε)κo(T, s) ≤ κµ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S ,

for all µ ∈ M+(S ) with µ(S ) ≤ δ.

In a preview of results, we will showcase the spectral radius of the basic turnover kernel κo as a
crucial threshold parameter between local stability and instability of the extinction state represented by
the zero measure; r(κo) is called the basic population turnover number. For a semelparous population,
the basic turnover number coincides with the basic reproduction number.

The proofs can be found in Section 11.

3.2. Local (global) stability of the zero measure in the subthreshold case

Theorem 3.6. Make Assumption 3.2. Let the kernel family {κµ; µ ∈ M+(S ) be upper semicontinuous
at the zero measure.
(a) If r = r(κo) < 1, the extinction state is locally asymptotically stable in the following sense:

For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that, for each solution (µn)n∈Z+
of the

difference equation µn = F(µn−1), n ∈ N,

µn(S ) ≤ Mαα
nµ0(S ), n ∈ N,

if µ0 ∈ M+(S ) with µ0(S ) ≤ δα.

(b) If r = r(κo) < 1 and κµ(T, s) ≤ κo(T, s) for all T ∈ B, s ∈ S , the extinction state is globally stable in
the following sense:

For each α ∈ (r, 1) there exists some Mα ≥ 1 such that for each solution (µn)n∈Z+
of the difference

equation µn = F(µn−1), n ∈ N, µn(S ) ≤ Mαα
nµ0(S ) for all n ∈ N.

Recall that µn(S ) is the total population size in the nth year.
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Corollary 3.7. Let Assumption 3.2 be satisfied. Let the family of measure kernels {κµ; µ ∈ M+(S )} be
upper semicontinuous at the zero measure.

Let S be the union of pairwise disjoint nonempty sets T1, . . . ,Tm in B and

β jk = sup
t∈T j

κo(Tk, t), j, k = 1, . . . ,m,

and assume that the matrix of size m with coefficients β jk is irreducible and has a spectral radius r < 1.
Then r(κo) ≤ r < 1.
(a) Further, the extinction state is locally asymptotically stable in the following sense:
For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that, for each solution (µn)n∈Z+

of the
difference equation µn = F(µn−1), n ∈ N,

µn(S ) ≤ Mαα
nµ0(S ), n ∈ N,

if µ0 ∈ M+(S ) with µ0(S ) ≤ δα.

(b) If κµ(T, s) ≤ κo(T, s) for all T ∈ B, s ∈ S the extinction state is globally stable in the following
sense:

For each α ∈ (r, 1) there exists some Mα ≥ 1 such that for each solution (µn)n∈Z+
of the difference

equation µn = F(µn−1), n ∈ N, µn(S ) ≤ Mαα
nµ0(S ) for all n ∈ N.

3.3. Instability of the zero measure in the superthreshold case

The next instability result only weakly highlights the threshold role of the spectral radius of κo, but
may be more practical and is a counterpart to Corollary 3.7.

Theorem 3.8. Let Assumption 3.2 be satisfied. Let the family of measure kernels {κµ; µ ∈ M+(S )} be
lower semicontinuous at the zero measure.

Let T1, . . . ,Tm be pairwise disjoint nonempty sets in B and

α jk = inf
t∈T j

κo(Tk, t), j, k = 1, . . . ,m,

and assume that the matrix of size m with coefficients α jk has a spectral radius r > 1.
Then r(κo) ≥ r > 1. Further, there is some δ0 > 0 such for that any solution (µn)∈Z+

of µn = F(µn−1),
n ∈ N, with µ0(Tk) > 0, k = 1, . . . ,m, there is some n ∈ Z+ with µn(S ) ≥ δ0.

Notice that there is some µ0 ∈ M+(S ) with µ0(Tk) > 0 for k = 1, . . . ,m, namely µ =
∑m

k=1 δsk with
suitable points sk from the nonempty sets Tk.

Remark 3.9. Assume that S is the union of pairwise disjoint nonempty sets T1, . . . ,Tm, m ∈ N, such
that, for j, k = 1, . . . ,m, κo(Tk, ·) is constant on T j,

κo(Tk, s) = α jk, s ∈ T j.

If the matrix of size m with coefficients α jk is irreducible, then its spectral radius, r0, equals r(κo) and
is a threshold parameter:

If r0 < 1, the zero measure is locally stable in the sense of Theorem 3.6; it is unstable in the sense
of Theorem 3.8 if r0 > 1.

Further r0 = r(κo) is associated with an eigenfunction f in the interior of Mb
+(S ), r0 f (s) =∫

S
f (t)κo(dt, s) for all s ∈ S .
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In order to prove an instability result that shows that the stability result in Theorem 3.6 is almost
sharp, we assume that S is a metric space and B the σ-algebra of Borel sets.

We consider the following concepts [25, 48].

Definition 3.10. Consider a subset N ofM+(S ).

• N is called tight if for any ε > 0 there exists a compact subset K of S such that µ(S \ K) < ε for
all µ ∈ N .
• A single measure µ ∈ M+(S ) is called tight, and we write µ ∈ Mt

+(S ), if {µ} is tight.
• N is called pre-tight if for any ε > 0 there exists a closed totally bounded subset T of S such that
µ(S \ T ) < ε for all µ ∈ N .
• A single measure µ ∈ M+(S ) is called separable, and we write µ ∈ Ms

+(S ), if there exists a
countable subset T of S such that µ(S \ T̄ ) = 0.
• A single measure µ ∈ M(S ) is called separable, and we write µ ∈ Ms(S ), if its absolute value |µ|

is separable.

By definition, a subset T of S is totally bounded if for any ε > 0 there exists a finite subset K of T
such that T ⊆

⋃
s∈K Uε(s). Here Uε(s) = {t ∈ S ; d(t, s) < ε} is the open neighborhood with center s and

radius ε. T ⊆ S is compact if and only if T is totally bounded and complete [2, Sec.3.7].
If S is a compact metric space,M+(S ) is trivially tight. If S is a separable metric space,M+(S ) =

Ms
+(S ).

Definition 3.11. A measure kernel κ is called a tight kernel if {κ(·, s); s ∈ S } is a tight set of measures.
A measure kernel κ is called a kernel of separable measures if all measures κ(·, s), s ∈ S , are

separable.

Definition 3.12. κ : B × S → R+ is called a Feller kernel if

κ(·, s) ∈ M+(S ) for all s ∈ S and if κ has the Feller property∫
S

f (y)κ(dy, ·) ∈ Cb(S ) for any f ∈ Cb(S ).

Cf. [2, Sec.19.3]. See Example 10.12. By Proposition 6.3, if κ is a Feller kernel, κ(U, ·) is a Borel
measurable function on S for all open subsets U of S and thus for all Borel sets U in S .

Theorem 3.13. Let Assumption 3.2 be satisfied. Let the kernel family {κµ; µ ∈ M+(S )} be lower
semicontinuous at the zero measure.

Assume that κo = κ1 + κ2 with two Feller kernels κ j of separable measures and assume that κ1 is a
tight kernel and r := r(κo) > 1 ≥ r(κ2).

Then there exists some eigenmeasure ν ∈ Ms
+(S ), ν(S ) = 1, such that

rν(T ) =

∫
S
κo(T, s)ν(ds), T ∈ B.

Further, there is some δ0 > 0 such for that any solution (µn)∈Z+
of µn = F(µn−1), n ∈ N, with ν-positive

µ0 ∈ M+(S ) there is some n ∈ Z+ with µn(S ) ≥ δ0.

µ0 ∈ M+(S ) is called ν-positive if there exists some δ > 0 such that µ(T ) ≥ δν(T ) for all T ∈ B.
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In an iteroparous population, the kernel κ1 may be associated with reproduction and first year de-
velopment and the kernel κ2 with adult survival and adult development. If r(κ2) < 1, κ∞2 =

∑∞
n=1 κ

n?
2 is

a measure kernel, and the measure kernel

κ1 + κ1 ? κ
∞
2 = κ1 +

∞∑
n=1

κ1 ? κn?
2

can be interpreted as next generation kernel and its spectral radius as basic [53] (or inherent net [54,
55]) reproduction number. We again like to think of κo = κ1 + κ2 as basic population turnover kernel
and its spectral radius as basic turnover number; this spectral radius has also been called inherent
population growth rate [55].

Remark 3.14. The following trichotomy holds (Theorem 7.16):

• r(κ1 + κ1 ? κ
∞
2 ) > 1 and r(κ1 + κ2) > 1

or
• r(κ1 + κ1 ? κ

∞
2 ) = 1 and r(κ1 + κ2) = 1

or
• r(κ1 + κ1 ? κ

∞
2 ) < 1 and r(κ1 + κ2) < 1.

3.4. Existence of a nonzero equilibrium measure in the superthreshold case

Assumption 3.15. For all µ ∈ Ms
+(S ), the kernel κµ in (3.1) is a Feller kernel of separable measures.

We will derive from the preceding assumption that F mapsMs
+(S ) into itself and from the next one

that F is compact onMs
+(S ) with respect to the flat norm.

Assumption 3.16. IfN is a bounded subset ofMs
+(S ), then the set of measures {κµ(·, s); s ∈ S , µ ∈ N}

is tight and the set {κµ(S , s); s ∈ S , µ ∈ N} is bounded in R.

The next assumption looks rather technical, but is often satisfied; the technicality is the prize we
pay for the generality of the framework. We will derive from it that F is continuous onMs

+(S ) with
respect to the flat norm.

The Banach space of bounded continuous real-valued functions on S with the supremum norm is
denoted by Cb(S ) and the cone of nonnegative functions in it by Cb

+(S ). L denotes the following convex
set of Lipschitz continuous functions,

L =
{
h ∈ [0, 1]S ; ∀t, t̃ ∈ S : |h(t) − h(t̃)| ≤ d(t, t̃)

}
. (3.4)

Recall that MS denotes the set of functions from S to a set M.

Assumption 3.17. If µ ∈ Ms
+(S ) and (µn) is a sequence inMs

+(S ) such that
∫

S
f dµn →

∫
S

f dµ for all
f ∈ Cb

+(S ), then, for all h ∈ L, ∫
S

h(t) κµn(dt, s)→
∫

S
h(t) κµ(dt, s) (3.5)

uniformly for s in every closed totally bounded subset of S .
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Assumption 3.18. lim sup
µ(S )→∞

sup
s∈S

κµ(S , s) < 1.

We will derive from this assumption that F and some perturbations of F map a bounded convex
subset ofMs

+(S ) into itself. Applying the Schauder-Tychonov fixed point theorem [58, Thm.10.1] to
perturbations of F, we will derive the following fixed-point result.

Theorem 3.19. Let the Assumptions 3.2 and 3.15 – 3.18 be satisfied and r(κo) > 1. Let the kernel
family {κµ; µ ∈ M+(S )} be lower semicontinuous at the zero measure.
Then there exists a nonzero fixed point µ ∈ Ms

+(S ) of F, µ(T ) =
∫

S
κµ(T, s)µ(ds), T ∈ B .

4. Discrete-time population models in normed vector spaces

To prove the results in Section 3, we want to use the rich theory of homogeneous operators and their
spectral radius [35–41, 43–46].

Given a yearly population turnover map F : XF → XF like in (2.5) or (3.1) on a nonempty set
XF 3 0 of a real vector space X, the dynamics of the population can be studied by a difference equation

xn = F(xn−1), n ∈ N, x0 ∈ XF , (4.1)

with the population structure being encoded in the set XF [47]. The vector xn describes the structural
distribution of the population in year n while F : XF → XF formulates the rule how the structural
distribution in a given year follows from the structural distribution of the previous year. If X is a
normed vector space, the norm ‖xn‖ is some measure of the population size in year n.

A fundamental question (Sections 8 and 12) is as to whether or not the population dies out, ‖xn‖ → 0
as n→ ∞.

4.1. Homogeneous operators

In order to motivate the framework in which we will address this question, we assume that XF is a
(positively) homogeneous subset of X:

If x ∈ XF and α ∈ R+, then αx ∈ XF .

Let us assume for the moment that F is Gateaux-differentiable at 0, i.e., that all directional derivatives

B(x) = ∂F(0, x) = lim
R+3 b→0

1
b

F(bx), x ∈ XF , (4.2)

exist. Then B : XF → XF is (positively) homogeneous (of degree one) [36, Thm.3.1]:

If x ∈ XF and α ∈ R+, then B(αx) = αB(x).

Since we rarely consider homogeneity in a different sense, an operator B with this property is simply
called homogeneous. B is a first order approximation of F in a weak sense, and we will need B to be a
first order approximation in a stronger sense. In Section 3, XF =M+(S ) and B is given by

(Bµ)(T ) =

∫
S
κo(T, s)µ(ds), µ ∈ M+(S ),T ∈ B,

with Definition 3.5 describing in what sense B is a first order approximation of F. We call B the
basic population turnover operator because it approximates the turnover operator at low population
densities.

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1168–1217.



1178

Lemma 4.1. Assume that there are δ > 0 and c > 0 such F : XF → XF satisfies ‖F(x)‖ ≤ c‖x‖ for all
x ∈ XF with ‖x‖ ≤ δ. Then the Gateaux derivative B of F at 0 is bounded: ‖Bx‖ ≤ c‖x‖ for all x ∈ XF .

4.2. The spectral radius of homogeneous operators

Let B : XB → XB be a homogeneous operator: XB is a subset of a real normed vector space X and

x ∈ XB, α ∈ R+ =⇒ αx ∈ XB, B(αx) = αB(x). (4.3)

The operator norm of the homogenous operator B is defined as

‖B‖ := sup
{
‖B(x)‖; x ∈ XB, ‖x‖ ≤ 1

}
, (4.4)

and B is called bounded if this supremum exists. By the homogeneity,

‖B(x)‖ ≤ ‖B‖ ‖x‖, x ∈ XB, (4.5)

when B is bounded. The powers (iterates) Bn : XB → XB of a bounded homogeneous B are also
bounded homogeneous operators and

‖Bn+m‖ ≤ ‖B‖n‖Bm‖, n,m ∈ N. (4.6)

The spectral radius of a bounded homogeneous B : XB → XB is defined by the Gelfand formula [56]

r(B) = inf
n∈N
‖Bn‖1/n = lim

n→∞
‖Bn‖1/n. (4.7)

The last equality is shown in the same well-known way as for a bounded linear everywhere-defined
map (Theorem 3 in [57, Sec.VIII.2]). The name “spectral radius” is motivated by the following fact.
Let B be a bounded linear map on X. If XC is the complexification of X and BC the extension of B to
XC, then

r(B) = sup{|λ|; λ ∈ σ(BC)}, (4.8)

where σ(BC) ⊆ C denotes the spectrum of B [40, 56] [58, Sec.9.8].
Equation (4.8) is partially preserved for bounded homogeneous B. Recall that, for linear bounded

everywhere-defined B, eigenvalues are special elements of the spectrum of B.
For homogeneous B : XB → XB, we call λ ∈ (0,∞) an eigenvalue of B and v ∈ XB an associated

eigenvector of B if B(v) = λv , 0.

Proposition 4.2. Let B : XB → XB be homogeneous and bounded, λ ∈ (0,∞), 0 , v ∈ XB and
B(v) = λv. Then λ ≤ r(B).

Proof. Since B is homogeneous, we can assume that ‖v‖ = 1. By induction, λnv = Bn(v) for all n ∈ N.
Since Bn is homogeneous and bounded, λn ≤ ‖Bn‖ ‖v‖ ≤ ‖Bn‖ and λ ≤ ‖Bn‖1/n for all n ∈ N. The
assertion now follows from (4.7). �

Mallet-Paret and Nussbaum [38, 39] suggest an alternative definition of a spectral radius for homo-
geneous (not necessarily bounded) maps B : XB → XB. First, define asymptotic least upper bounds for
the geometric growth factors of B-orbits,

γ(x, B) := γB(x) := γx(B) := lim sup
n→∞

‖Bn(x)‖1/n, x ∈ XB, (4.9)
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and then the orbital spectral radius
ro(B) = sup

x∈XB

γB(x). (4.10)

Here γB(x) := ∞ if the sequence (‖Bn(x)‖1/n) is unbounded and ro(B) = ∞ if γB(x) = ∞ for some
x ∈ XB or the set {γB(x); x ∈ XB} is unbounded. Since ‖Bn(x)‖ ≤ ‖Bn‖ ‖x‖ by (4.6),

γ(x, B) ≤ r(B), x ∈ XB, ro(B) ≤ r(B). (4.11)

If XB is a closed cone in X, the number r(B) has been called partial spectral radius by Bonsall [35],
XB spectral radius by Schaefer [31, 33], and cone spectral radius by Nussbaum [41]. Mallet-Paret and
Nussbaum [38, 39] call r(B) the Bonsall cone spectral radius and ro(B) the cone spectral radius. For
x ∈ XB, the number γB(x) has been called local spectral radius of B at x by Förster and Nagy [59].

Since r(B) makes sense as long as the domain of definition XB is homogeneous (including the
familiar special case XB = X) and the domain of definition is part of the concept of an operator, we
simply call r(B) the spectral radius of B and ro(B) the orbital spectral radius. If a name were to be
attached to r(B), Gelfand spectral radius might be as appropriate as Bonsall cone spectral radius.

The spectral radius and orbital spectral radius coincide for many applications [43]. For the purposes
of this paper, the following condition for ro(B) = r(B) is the most relevant.

Theorem 4.3. Let XB be a closed homogeneous set in the normed vector space X and B : XB → XB be
continuous, compact and homogeneous. Then ro(B) = r(B).

This result is proved in [38, Thm.2.3] under the overall assumptions that X is a Banach space and
XB a closed cone in X (see Section 5), but the proof also works for the weaker assumptions in Theorem
4.3.

Various other conditions for equality are given in [38, 43]. But they require more mathematical
structure than homogeneity, namely also order and monotonicity (Section 5). Gripenberg [60], gives
an example for ro(B) < r(B).

There are at least three motivations to consider the more general situation of a bounded homogenous
order-preserving operator rather than of a bounded linear positive operator. The first is of mathematical
nature, namely that the Gateaux derivative (4.2) is homogeneous but not linear and that homogenous
operators are not Frechet differentiable at 0 unless they are linear [36, Sec.3].

The second, biological, motivation are two-sex population models [61, Ch.4] which often use ho-
mogeneous mating functions resulting in homogeneous first order approximations of the population
turnover operator [36, 44–46, 62, 63].

The third motivation comes from the population turnover map F in (2.5) that has the first order
approximation

(Bµ)(T ) =

∫
S

P(T, s)g(s, 0)µ(ds), T ∈ B, s ∈ S , µ ∈ M+(S ). (4.12)

B can readily be extended to a linear map A on M(S ). If M(S ) is endowed with the variation norm
(Section 6.1), A is a bounded linear operator but B lacks needed compactness properties. If S is a
metric space, M(S ) can alternatively be endowed with the flat norm which makes B continuous on
M+(S ) (Theorem 10.4 (e)) with useful compactness properties (Proposition 10.10), but the extension
A of B toM(S ) is not bounded in general (Example 10.14).
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5. Wedges, cones, and associated orders

Let X be a vector space over R. A nonempty subset W of X is called homogeneous, if αx ∈ W for
all α ∈ R+ and x ∈ W.

Any homogeneous subset contains the vector 0. If W is a homogeneous subset of X, we use the
notation

Ẇ = W \ {0}. (5.1)

X and {0} are obvious homogeneous subsets of X.
A subset W of X is called convex, if αx + (1 − α)y ∈ W for all x, y ∈ W and α ∈ (0, 1).
Geometrically, convexity of W means that a line segment is contained in W whenever its endpoints

are elements of W.
W is called additive if x + y ∈ W for all x, y ∈ W. A homogeneous subset of X is convex if and only

if it is additive.

5.1. Wedges and cones

W ⊆ X is called a wedge if it is convex and homogeneous. A wedge W is called a cone if W∩(−W) =

{0}, i.e., x = 0 is the only vector x ∈ X such that x and −x are elements in W.
X is a wedge and {0} is a cone. If x ∈ X, {αx;α ∈ R+} is a cone.
If X is a normed vector space over R and a cone (wedge) W is a closed subset of X, W is called a

closed cone (wedge).

5.2. Partial orders

If W is a cone, the definition
x ≤ y ⇐⇒ y − x ∈ W (5.2)

provides a partial order ≤ on X. We also write y ≥ x for x ≤ y. This order is compatible with addition
and with the multiplication by positive real numbers. We recover the cone from the order by

W = {x ∈ X; x ≥ 0}. (5.3)

A real vector space X has many cones. When we talk about an ordered vector space we typically have
a specific cone in mind which induces the order. This cone is denoted by X+, and we will talk about it
as the order cone in order to single it out from the other cones contained in X.

X is called an ordered Banach space if X is an ordered normed vector space which is complete. If
X is a vector space of real-valued functions, X+ typically is the cone of nonnegative functions.

5.3. Lattices

Let X be an ordered vector space with order cone X+ and S ⊆ X.
S is called an inf-semilattice [64] (or minihedral [27]) if x ∧ y = inf{x, y} exist and are elements of

S for all x, y ∈ S .
S is called a sup-semilattice if x ∨ y = sup{x, y} exist and are elements of S for all x, y ∈ S . S is

called a lattice if x ∧ y and x ∨ y exist and are elements of S for all x, y ∈ S .
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X is a lattice if x ∨ y exist for all x, y ∈ X. Since x ∧ y = −((−x) ∨ (−y)), also x ∧ y exist for all x, y
in a lattice X.

Equivalently, X is a lattice if for any x ∈ X the absolute value

|x| = x ∨ (−x) = sup{x,−x} (5.4)

exists. The following connections hold if X is a lattice:

x ∨ y = (1/2)(x + y + |x − y|), x ∧ y = (1/2)(x + y − |x − y|). (5.5)

An ordered normed vector space X that is a lattice is called a normed lattice if

x, y ∈ X, |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖. (5.6)

In a normed lattice X, ∥∥∥ |x| − |y| ∥∥∥ ≤ ‖x − y‖, x, y ∈ X. (5.7)

A normed lattice that is complete is called a Banach lattice [2, 34].

5.4. Normal cones

The following result for normed vector spaces is well-known [27, Sec.1.2].

Theorem 5.1. Let X be a normed vector space with wedge W. Then the following three properties are
equivalent:

(i) There exists some δ > 0 such that ‖x + z‖ ≥ δ whenever x ∈ W, z ∈ W and ‖x‖ = 1 = ‖z‖.
(ii) The norm is semi-monotonic: There exists some M ≥ 0 such that ‖x‖ ≤ M‖x + z‖ for all x, z ∈ W.

(iii) There exists some M̃ ≥ 0 such that ‖x‖ ≤ M̃‖y‖ whenever x ∈ X, y ∈ W, and y + x and y − x are
elements in W.

A wedge W in a normed vector space X is called

• normal if it satisfies one (and then all) of (i), (ii), (iii) in Theorem 5.1.

Remark 5.2. By (i), any normal wedge is a cone. We have formulated these equivalences for wedges
to make clear that any of the properties (i), (ii), (iii) makes a wedge a cone. In a normed lattice, the
order cone X+ is normal (see (5.6).

5.5. Generating, total, solid, serially complete and non-flat wedges

If X is a real vector space and W a wedge in X, then

W −W = {w − v; v,w ∈ W} (5.8)

is a linear subspace of X.

• W is called generating if X = W −W.

Now let W be a wedge in a normed vector space X with norm ‖ · ‖.

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1168–1217.



1182

• W is called total if W −W is dense in X.
• W is called solid if W contains an interior point.
• W is called serially complete if every series

∑∞
n=1 xn with xn ∈ W and

∑∞
n=1 ‖xn‖ converging in R

converges in W.
• W is called non-flat [28, Sec.1.8] if there exists some c ≥ 1 such that for any x ∈ W − W there

exist v,w ∈ W such that x = v − w and ‖v‖ + ‖w‖ ≤ c‖x‖.
• W is called flat if there is a bounded sequence (xn) in W −W such that, for all sequences (vn) and

(wn) in W with xn = vn −wn for all n ∈ N, at least one of the sequences (vn) or (wn) is unbounded.

Bonsall [35] says that W −W has the strict bounded decomposition property if W is non-flat.
One easily checks the following relation between the last two concepts.

Proposition 5.3. Let W be a wedge in a normed vector space X. Then W is non-flat if and only if it is
not flat.

5.6. Operators between ordered normed vector spaces

Let X and Y be vector spaces and B : XB → Y with XB ⊆ X.

Definition 5.4. B is called additive if B(x + z) = B(x) + B(z) for all x, z ∈ XB with x + z ∈ XB.

Definition 5.5. Let Y be an ordered vector space with order cone Y+.

• B is called superadditive if B(x + z) ≥ B(x) + B(z) for all x, z ∈ XB with x + z ∈ XB.
• B is called subadditive if B(x + z) ≤ B(x) + B(z) for all x, z ∈ XB with x + z ∈ XB.

Let XB be a convex subset of X.
• B is called a convex operator if B(αx + (1 − α)z) ≤ αB(x) + (1 − α)B(z) for all x, z ∈ XB and
α ∈ (0, 1).
• B is called a concave operator if B(αx + (1 − α)z) ≥ αB(x) + (1 − α)B(z) for all x, z ∈ XB and
α ∈ (0, 1).

Remark 5.6. If XB is convex and B is homogeneous, superadditivity (subadditivity) of B is equivalent
to concavity (convexity) of B.

Definition 5.7. Let X and Y be ordered normed vector spaces with order cones X+ and Y+. We use the
same symbols ‖ · ‖ and ≤ for the norms on X and Y and for the orders induced by X+ on X and by Y+

on Y , respectively.

• B is called a positive operator if B(XB ∩ X+) ⊆ Y+.
• B is called order-preserving if B(x) ≤ B(z) for all x, z ∈ XB with x ≤ z.
• B is called order-preserving on Z ⊆ XB if B(x) ≤ B(z) for all x, z ∈ Z with x ≤ z.

Example 5.8. Let X and Y be as above and B : XB → Y with X+ ⊆ XB ⊆ X. If B is positive and
superadditive, B is order-preserving.

Proof. Let x, z ∈ XB and x ≤ z. By (5.2), z − x ∈ X+ ⊆ XB. Since B is positive, B(z − x) ∈ Y+ and, since
B is superadditive, B(x) ≤ B(x) + B(z − x) ≤ B

(
x + (z − x)

)
= B(z). �
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6. The ordered vector space of real measures

Let S be a nonempty set and B a σ-algebra on S .
LetM(S ) denote the set of real measures on B (Definition 1.1).
M(S ) becomes a real vector space by the definitions (µ+ ν)(T ) = µ(T ) + ν(T ) and (αµ)(T ) = αµ(T )

where T ∈ B and α ∈ R and µ, ν ∈ M(S ).
M(S ) has the cone of all nonnegative measures, M+(S ). M(S ) is a vector lattice which is even

order-complete: Each subset N of M(S ) which has an lower (upper) bound has an infimum (supre-
mum). For this, it is enough to provide an infimum (largest lower bound) to any subset N ofM+(S ),

µ(T ) = inf
{ m∑

j=1

µ j(T j)
}
, T ∈ B, (6.1)

where the infimum is taken over all m ∈ N, all subsets {µ1, . . . , µm} ofN and all subsets {T1, . . . ,Tm} of
B such that T is their disjoint union [5, III.7.5]. The same construction works for any subset N with
lower bound. If N has an upper bound, the infimum in (6.1) is replaced by the supremum.

The absolute value |µ| of a measure (in this context also called the variation of the measure) is given
by |µ| = sup{µ,−µ},

|µ|(T ) = sup{µ(U) − µ(T \ U);B 3 U ⊆ T }

= sup{|µ(U)| + |µ(T \ U)|;B 3 U ⊆ T } = sup
{ n∑

j=1

|µ(T j)|
}
,

(6.2)

where the supremum is taken over all n ∈ N and subsets {T1, . . . ,Tn} of B such that T is its disjoint
union [2, Cor.10.54 & Thm.10.56].

The following is a consequence of the Vitali-Hahn-Saks Theorem [5, III.7] [57, II.2], but can also
be proved by more elementary means.

Corollary 6.1. Let (µn) be an increasing sequence inM+(S ) such that (µn(S )) is a bounded sequence
in R. Then µ(T ) = limn→∞ µn(T ) exists for every T ∈ B and provides a measure µ ∈ M+(S ).

6.1. Measures under the variation norm and the flat norm

The variation norm (also called total variation) onM(S ) is defined by

‖µ‖] = |µ|(S ), µ ∈ M(S ), (6.3)

where |µ| is the absolute value of µ defined by (6.2).
If µ ∈ M+(S ), ‖µ‖] = µ(S ). So the variation norm is additive and order-preserving onM+(S ), and

M+(S ) is a normal cone. The variation norm makesM(S ) a Banach lattice (Section 5.3); in particular,
M+(S ) is a non-flat generating cone: Every real-valued measure µ can be written as the difference
of its positive and negative variation, µ = µ+ − µ−, and ‖µ±‖] ≤ ‖µ‖]. By Corollary 6.1, the cone
M+(S ) is serially complete (Section 5.5). The variation norm is equivalent to the supremum norm
‖µ‖∞ = supT∈B |µ(T )|, and the two norms are equal onM+(S ).

Let (S , d) be a metric space. B now denotes the Borel σ-algebra of S which is the smallest σ-
algebra that contains all open and closed sets. The sets in the Borel σ-algebra are called Borel sets. In
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a metric space, the Borel σ-algebra is also the smallest σ-algebra for which all (bounded) continuous
functions are measurable [4, Thm.7.1.1]. This second σ-algebra is often [4] but not always [2] called
the Baire-σ-algebra.

The following is a summary of results needed later. For more details, we refer to [26]. Many of the
results can already been found in [4, 48]. See also [22, 25].

The subsequent lemma guarantees that the two σ-algebras mentioned above coincide in a metric
space for all common definitions of Baire sets. Recall L in (3.4).

Lemma 6.2. B is the smallest σ-algebra that contains all sets f −1({0}), f ∈ L.

Proposition 6.3. Let T be a closed subset of S . Then there exists a decreasing sequence of Lipschitz
continuous functions ( fn) with values between 0 and 1 such that fn → χT pointwise.

Let T be a open subset of S . Then there exists an increasing sequence of Lipschitz continuous
functions ( fn) with values between 0 and 1 such that fn → χT pointwise.

We introduce the following functional onM(S ),

‖µ‖[ = sup
f∈L

∣∣∣∣ ∫
S

f dµ
∣∣∣∣, (6.4)

with L in (3.4). ‖ · ‖[ is a norm onM(S ) [26], which we call the flat norm, and

‖µ‖[ ≤ ‖µ‖], µ ∈ M(S ). (6.5)

In the literature, definitions different from (6.4) are used [4,50,51,66] that lead to equivalent norms.
For instance, [0, 1]S is replaced by [−1, 1]S . Also different names are used for the flat norm or its
equivalent definitions. For details see [26].

All the definitions have in common that

‖µ‖[ = µ(S ) = ‖µ‖], µ ∈ M+(S ). (6.6)

This implies that the flat norm is additive and order-preserving onM+(S ).
In the following, all topological notions concerningM(S ) andM+(S ) are meant with respect to the

flat norm unless it is explicitly said otherwise.

Theorem 6.4. M+(S ) is a generating, normal, closed, and serially complete cone.

Serial completeness (Section 5.5) follows from Corollary 6.1.

Lemma 6.5. Let (S , d) be a metric space. For x ∈ S , let δx denote the Dirac measure at x. Then
1 = ‖δx‖[ and, for y, x ∈ S ,

‖δx − δy‖[ = min{1, d(x, y)}.

6.2. Convergence inM+(S )

Recall Definition 3.10.

Theorem 6.6. Let (µn) inM+(S ) and µ ∈ Ms
+(S ). Equivalent are

(i) ‖µn − µ‖[ → 0,
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(ii)
∫

S
f d(µn − µ)→ 0 for all continuous functions f ∈ Cb(S ),

(iii)
∫

S
f d(µn − µ)→ 0 for all Lipschitz continuous functions f : S → [0, 1].

Cf. [4, Thm.11.3.3].

Corollary 6.7. Ms
+(S ) is a closed cone ofM(S ).

The next result follows from [25, Thm.3.9] and [26, Thm.4.19] and its proof.

Theorem 6.8. The set of measures
∑n

j=1 q jδs j with n ∈ N, q j ∈ Q+ and s j ∈ S is dense inMs
+(S ).

The set of measures
∑n

j=1 q jδs j with n ∈ N, q j ∈ Q and s j ∈ S is dense in Ms(S ). If (S , d) is
separable, thenM(S ) is separable.

For a function f : S → R that is bounded below define [2, Thm.3.13]

[ f ]k(s) = inf
{
f (t) + kd(s, t); t ∈ S

}
, s ∈ S , k ∈ N. (6.7)

Then inf f (S ) ≤ [ f ]k(s) ≤ [ f ]k+1(s) ≤ f (s) for all k ∈ N, and [ f ]k is Lipschitz continuous with k being
a Lipschitz constant. If f is lower semicontinuous on S , [ f ]k → f pointwise on S ; if f is uniformly
continuous, [ f ]k → f uniformly on S .

Lemma 6.9. Let F be an equicontinuous family of functions f : S → R+ [6, Def.8.3]. For each
f ∈ F , let ([ f ]k) be the approximation (6.7). Then, for each s ∈ S for which { f (s); f ∈ F } is bounded,
sup
f∈F

∣∣∣ f (s) − [ f ]k(s)
∣∣∣→ 0 as k → ∞.

Proof. Let s ∈ S and { f (s); f ∈ F } be bounded. Suppose that sup f∈F

∣∣∣ f (s) − [ f ]k(s)
∣∣∣ → 0 as k → ∞

does not hold. Since f (s) ≥ [ f ]k(s), there exists some ε > 0 and a sequence (kn) in N such that kn → ∞

as n→ ∞ and sup f∈F
(
f (s) − [ f ]kn(s)

)
> ε for all n ∈ N. Then there exist fn ∈ F such that

fn(s) > [ fn]kn(s) + ε, n ∈ N.

By (6.7), there exists a sequence (tn) ∈ S such that

fn(s) > fn(tn) + knd(s, tn) + ε, n ∈ N.

Since kn → ∞ and { fn(s); n ∈ N} is bounded, d(s, tn) → 0 as n → ∞. Since { fn; n ∈ N} ⊆ F is
equicontinuous, fn(s) − fn(tn)→ 0 as n→ ∞ which implies 0 ≥ ε, a contradiction. �

Proposition 6.10. Let F be an equicontinuous family of functions f : S → R+ such that { f (s); f ∈
F , s ∈ S } is bounded. Let µ ∈ M(S ) and (µn) be a sequence in M+(S ) such that ‖µn − µ‖[ → 0 as
n→ ∞. Then

∫
S

f dµn →
∫

S
f dµ as n→ ∞ uniformly for f ∈ F .

Proof. We can assume that 0 ≤ f (s) ≤ 1 for all f ∈ F and s ∈ S . For f ∈ F , let ([ f ]k) be the
approximation in (6.7). Then

0 ≤ [ f ]k(s) ≤ f (s) ≤ 1, k ∈ N, f ∈ F , s ∈ S . (6.8)

By Lemma 6.9,
hk(s) := sup

f∈F

∣∣∣ f (s) − [ f ]k(s)
∣∣∣→ 0, k → ∞, s ∈ S .
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Since { f − [ f ]k; f ∈ F } is equicontinuous, hk is continuous and thus integrable. By (6.8), hk(s) ≤
sup f∈F f (s) ≤ 1. By the dominated convergence theorem,

sup
f∈F

( ∫
S

f dµ −
∫

S
[ f ]kdµ

)
= sup

f∈F

∫
S

∣∣∣ f − [ f ]k

∣∣∣dµ ≤ ∫
S

hkdµ→ 0, k → ∞.

Let ε > 0. Then there exists k ∈ N such that

0 ≤
∫

S
f dµ −

∫
S
[ f ]kdµ ≤

ε

4
, f ∈ F .

For all n ∈ N,, ∫
S

f dµ ≤
∫

S
[ f ]kdµ +

ε

4
=

∫
S
[ f ]kd(µ − µn) +

∫
S
[ f ]kdµn +

ε

4
.

Since k is a Lipschitz constant for [ f ]k and [ f ]k ≤ f ,∫
S

f dµ ≤ k‖µ − µn‖[ +

∫
S

f dµn +
ε

4
.

Since ‖µ−µn‖[ → 0 as n→ ∞, there exists some N = Nk ∈ N such that ‖µ−µn‖ ≤ ε/(4k) for all n ≥ Nk

and so ∫
S

f dµ ≤
∫

S
f dµn +

ε

2
, n ≥ Nk, f ∈ F . (6.9)

Define g f (s) = 1 − f (s) for all s ∈ S and all f ∈ F . Then {g f ; f ∈ F } is an equicontinuous family in
Cb+(S ) and, by (6.8), g f (s) ∈ [0, 1] for all f ∈ F , s ∈ S . By (6.9), applied to {g f ; f ∈ F } instead of F ,
there exists some N ∈ N such that

µ(S ) −
∫

S
f dµ =

∫
S

g f dµ ≤
∫

S
g f dµn +

ε

2
≤ µn(S ) −

∫
S

f dµn +
ε

2
, n ≥ N,

for all f ∈ F . We rearrange∫
S

f dµ ≥
∫

S
f dµn −

ε

2
+ µ(S ) − µn(S ), n ≥ N, f ∈ F .

Since µn(S )→ µ(S ) as n→ ∞, there is some Ñ ∈ N such that∫
S

f dµ ≥
∫

S
f dµn − ε, n ≥ Ñ, f ∈ F .

In combination with (6.9),
∫

S
f dµn →

∫
S

f dµ uniformly for f ∈ F . �

6.3. Compactness and completeness inM+(S )

Theorem 6.11. Let (µn) be a tight sequence inM+(S ) such that (µn(S )) is bounded. Then (µn) has a
converging subsequence (with the limit measure being tight as well).

Theorem 6.12. If S is not uniformly discrete (for any ε > 0 there exist s, t ∈ S with 0 < d(s, t) < ε),
then the ordered normed vector spaceM(S ) is not complete.

Proposition 6.13. LetN ⊆ Ms
+(S ) be a totally bounded set of separable measures. ThenN is pre-tight

and, if S is complete, tight.

Theorem 6.14 ( [25, Thm.3.8]). Ms
+(S ) is complete if and only if S is complete.
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7. Homogeneous operators on ordered normed vector spaces

In the following, let X be an ordered normed vector space with closed order cone X+.

7.1. Upper estimates for growth factors

In this subsection, let B : XB → XB be a homogeneous operator on a homogeneous set XB contained
in X+.

Lemma 7.1 (Bonsall [35]). Let (an) be an unbounded sequence in R+. Then there exists a sequence
(n j) in N such that n j → ∞ and

an j → ∞, j→ ∞, ak ≤ an j , k = 1, . . . , n j, j ∈ N.

Proof. For each j ∈ N, choose n j ≤ j such that an j = max{a1, . . . , a j}. Since (an) is unbounded, n j → ∞

and an j → ∞ as j→ ∞. By construction, ak ≤ an j for k = 1, . . . , j ≥ n j. �

Lemma 7.2. Let X be an ordered normed vector space with closed order cone X+. Let B : XB → XB

be a homogeneous operator on a homogeneous set XB contained in X+ and let some power of B be
compact.

Further let x ∈ XB and (yn) be a bounded sequence in X+. Let m ∈ N, and Bn(x) ≤ yn for all n ∈ N,
n ≥ m.

Then the sequence (Bn(x)) is bounded.

Proof. Assume that x ∈ XB and (Bn(x)) is unbounded. Set an = ‖Bn(x)‖. By Lemma 7.1, there exists a
sequence (n j) in N such that

an j → ∞, j→ ∞, ak ≤ an j , k = 1, . . . , n j, j ∈ N.

Set w j =
Bn j (x)

an j
. Then w j ∈ XB and ‖w j‖ = 1. Choose ` ∈ N such that B` is compact. Since B is

homogeneous, w j = B`(v j) with v j =
Bn j−`(x)

an j
∈ XB. By the properties of the (an), ‖v j‖ ≤ 1. After

choosing a subsequence, w j → w with w ∈ X+, ‖w‖ = 1. By assumption, after choosing subsequences
again, w j ≤

yn j

an j
for j ∈ N. Since (yn j) is bounded and an j → ∞,

yn j

an j
→ 0. Since X+ is closed,

w = lim j→∞ w j ≤ 0. Since w ∈ X+ and X+ is a cone, w = 0 contradicting ‖w‖ = 1. �

Recall the large-time bound of the geometric growth factor for initial value u ∈ XB,

γB(u) := lim sup
n→∞

‖Bn(u)‖1/n. (7.1)

Lemma 7.3. Let X be an ordered normed vector space with closed order cone X+. Let B : XB → XB

be a homogeneous operator on a homogeneous set XB contained in X+ and let some power of B be
compact. Further let (xn) be a bounded sequence in X+, x a point in XB, m, k ∈ N, λ ≥ 0, and
Bn+m(x) ≤ λn+kxn for all n ∈ N, n ≥ m. Then γB(x) ≤ λ.

Proof. If λ = 0, then Bn+m(x) = 0 for all n ∈ N and γB(x) = 0.
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So we can assume that λ > 0. Set C(x) = λ−1B(x). Then C is homogeneous, and some power of C
is compact. Further,

Cn+m(x) = λ−(n+m)Bn+m(x) ≤ λk−mxn, n ∈ N,

with the right hand side of this inequality forming a bounded sequence. By Lemma 7.2, applied to C,
γC(x) ≤ 1. By definition of the growth bounds, (4.9), and the homogeneity of B, γB(x) ≤ λ. �

7.2. A uniform boundedness principle

Theorem 7.4. Let X be an ordered normed vector space with closed order cone X+ and Z be an ordered
normed vector space with a normal order cone Z+. Let XH ⊆ X+ be a serially complete cone and H
be a family of homogeneous order-preserving operators H : XH → Z+.

If {‖H(x)‖; H ∈ H} is bounded for each x ∈ XH , then {‖H‖; H ∈ H} is bounded.

Proof. Assume that {‖H(x)‖; H ∈ H} is bounded for each x ∈ XH , but {‖H‖; H ∈ H} is not bounded.
Then, for every n ∈ N, there exists some Hn ∈ H such that ‖Hn‖ > n4 and, by (4.4), some xn ∈ XH
with ‖xn‖ ≤ 1 such that ‖Hn(xn)‖ > n4. Since XH is serially complete, x =

∑∞
n=1 n−2xn converges and is

an element in XH ⊆ X+ by the definitions in Section 5.5. Since X+ is closed, x ≥ n−2xn for all n ∈ N.
Since each Hn is order-preserving and homogeneous,

Hn(x) ≥ n−2Hn(xn), n ∈ N.

Since Z+ is normal, there exists some c > 0 such that

c‖Hn(x)‖ ≥ ‖n−2Hn(xn)‖ ≥ n2,

a contradiction. �

7.3. A series characterization of the spectral radius

We give a characterization of Datko/Pazy type. The proof uses an adaption of the one of [65,
Prop.9.4] in combination with Theorem 7.4. See [65] for bibliographic notes.

Theorem 7.5. Let X be an ordered normed vector space with normal order cone X+. Let B be a
homogeneous order-preserving operator B : XB → XB on a serially complete cone XB ⊆ X+. Then the
following are equivalent for λ > 0 and p > 0:

(i) r(B) < λ. (ii)
∞∑

n=1

λ−pn‖Bn‖p < ∞.

(iii)
∞∑

n=1

λ−pn‖Bn(x)‖p < ∞, x ∈ XB.

Proof. Since r(B) = λ if and only if r((1/λ)B) = 1 by (4.7), it is sufficient to prove the statement for
λ = 1.

(i) ⇒ (ii). Let r(B) < 1. Choose some r ∈ (r(B), 1). Then there exists some c > 1 such that
‖Bn‖ ≤ crn for all n ∈ N and (ii) follows.

(ii)⇒ (iii) is obvious.
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(iii)⇒ (i). (iii) implies that ‖Bn(x)‖ → 0 for each x ∈ XB. By the Uniform Boundedness Theorem
7.4, there is some M > 0 such that ‖Bn‖ ≤ M for all n ∈ N. For all n ∈ N and x ∈ XB,

n‖Bn(x)‖p =

n∑
k=1

‖Bn(x)‖p =

n∑
k=1

‖Bn−k(Bk(x))‖p.

By (4.5),

n‖Bn(x)‖p ≤

n∑
k=1

‖Bn−k‖p ‖Bk(x)‖p ≤ Mp
∞∑

k=1

‖Bk(x)‖p < ∞.

So, for each x ∈ XB, {‖n1/pBn(x)‖, n ∈ N} is bounded. Again by Theorem 7.4, {‖n1/pBn‖, n ∈ N} is
bounded. So there exists some n ∈ N such that ‖Bn‖ < 1. By (4.7), r(B) = infn∈N ‖Bn‖1/n < 1. �

Corollary 7.6. Let X be an ordered normed vector space with normal order cone X+. Let B be a
homogeneous order-preserving operator B : XB → XB on a serially complete cone XB ⊆ X+. Then, for
all p > 0,

r(B) = inf
{
λ > 0;

∞∑
n=1

λ−pn‖Bn(x)‖p < ∞, x ∈ XB

}
= inf

{
λ > 0;

∞∑
n=1

λ−pn‖Bn‖p < ∞
}
.

Corollary 7.7. Let X be an ordered normed vector space with normal closed order cone X+. Let B be
a homogeneous order-preserving operator B : XB → XB on a serially complete cone XB ⊆ X+. Let
r = r(B) > 0. Then there exists some x ∈ XB such that

∑∞
n=1 r−n‖Bn(x)‖ = ∞.

7.4. Eigenvectors of compact homogeneous operators

In the following, let X be an ordered normed vector space with closed order cone X+ and B : XB →

XB be a homogeneous, compact and order-preserving operator on a closed cone XB contained in X+.

Theorem 7.8. Assume that B : XB → XB is compact and continuous and that r = r(B) > 0. Then there
exists x ∈ XB, ‖x‖ = 1, such that B(x) = rx.

Notice that this theorem does not assume that X+ is complete and can be applied toMs(S ) with the
flat norm even if the metric space S and soMs

+(S ) is not complete (Theorem 6.14). If X+ is complete,
the compactness assumption for B can considerably be relaxed [39].

Theorem 7.8 is proved in [42] under the additional assumption that X+ is normal. The normality
assumption can be avoided by using Lemma 7.3.

To set the stage for the proof of Theorem 7.8, we recall (7.1).

Proposition 7.9. Let B : XB → XB be compact and continuous and let u ∈ ẊB. Then there exist x ∈ XB,
‖x‖ = 1, and λ ≥ γu(B) such that B(x) + u = λx.

The idea of perturbing B and using one of the classical fixed point theorems seems as old as the
theory of positive operators [27, Sec.2.2] [30, Sec.3] [67, Thm.3.6].
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Proof. For u ∈ ẊB, define
Bu(x) = B(x) + u, x ∈ XB.

Then Bu(x) ≥ u and
{
‖Bu(x)‖; x ∈ XB

}
is bounded away from 0 because X+ is closed. We define

K(x) =
Bu(x)
‖Bu(x)‖

, x ∈ XB.

Since B is continuous on XB, K is continuous on XB. K maps the set C = XB∩Ū1, Ū1 = {x ∈ X; ‖x‖ ≤ 1},
into itself. C is a closed convex subset of X and K(C) has compact closure. By Tychonov’s fixed point
theorem [58, Thm.10.1], K has a fixed point v ∈ XB, ‖v‖ = 1,

B(v) + u = λv, λ = ‖B(v) + u‖ > 0. (7.2)

Since B(v) ∈ X+, u ≤ λv. Since u ∈ X+, B(v) ≤ λv. Since B is order preserving and homogeneous,
Bn(v) ≤ λnv for all n ∈ N. Hence

Bn(u) ≤ λnλv, n ∈ N. (7.3)

Since B is compact, γB(u) ≤ λ by Lemma 7.3. �

Recall that the orbital spectral radius is defined by ro(B) = sup
x∈XB

γB(x).

Proof of Theorem 7.8. Since B is compact, ro(B) = r(B) > 0 by Theorem 4.3.
Since γB(αu) = γB(u) for all u ∈ XB, α > 0, we can choose a sequence (un) in ẊB such that ‖un‖ → 0

and γB(un) → ro(B) > 0. By Proposition 7.9, for each n ∈ N, there exist xn ∈ XB such that ‖xn‖ = 1
and λn ≥ γB(un) such that

λnxn = B(xn) + un. (7.4)

Since B is compact, after choosing a subsequence, B(xn) converges to some y ∈ XB. The corresponding
subsequence of (λn) is bounded and λn → λ ≥ ro(B) > 0 after choosing another subsequence. Since
un → 0, by (7.4) xn → x ∈ XB with ‖x‖ = 1 and, since B is continuous at x, λx = B(x). By Proposition
4.2, λ = ro(B) = r(B). �

7.5. Eigenvectors for additive homogeneous maps with some compactness

Corollary 7.10. Assume that B : XB → XB is additive and continuous and some power of B is compact
and r = r(B) > 0.

Then there exists some x ∈ XB, ‖x‖ = 1, such that B(x) = rx.

Proof. Let m ∈ N such that Bm is compact. Bm is also continuous, homogeneous and order-preserving
and r(Bm) = (r(B))m = rm > 0. By Theorem 7.8, there exists some y ∈ ẊB such that Bmy = rmy. Set
x =

∑m−1
j=0 r− jB jy [28, Thm.9.3] [41, Thm.2.2]. Since B is additive,

B(x) =

m−1∑
j=0

r− jB j+1(y) =

m∑
j=1

r1− jB j(y) + ry = rx. �
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For a moment, we consider the more general situation that X is a normed vector space and W is a
wedge in X. Then X̃ = W − W is a linear subspace of X. The following construction is well-known
from the literature [32, 40] and will be put to new use.

Define a seminorm on X̃ by

‖x‖∼ = inf
{
‖v‖ + ‖w‖; x = v − w, v,w ∈ W

}
. (7.5)

We have
‖x‖ ≤ ‖x‖∼, x ∈ X̃, ‖x‖ = ‖x‖∼, x ∈ W. (7.6)

The inequality shows that ‖ · ‖∼ is a norm and follows from ‖v − w‖ ≤ ‖v‖ + ‖w‖. For x ∈ W, x = x − 0
and so ‖x‖ = ‖x‖∼. The inequality also shows that W is closed under ‖ · ‖∼ if it is closed under the
original norm. The equality of the norms on W shows that W is normal under ‖ · ‖∼ if it is normal under
‖ · ‖.

Remark 7.11. W is a generating non-flat cone of X̃ under ‖ · ‖∼.

Proposition 7.12. If W is a serially complete wedge in X under ‖ · ‖, then X̃ is a Banach space under
‖ · ‖∼.

Proof. We use the characterization of a Banach space in terms of series: A normed vector space is a
Banach space if and only if any absolutely convergent series converges in the space. [6, Prop.9.3].

Let (xk) be a sequence in X̃ such that
∑∞

n=1 ‖xn‖
∼ converges in R. For any n ∈ N, by (7.5), there

exist vn,wn ∈ W such that xn = vn − wn and ‖vn‖ + ‖wn‖ < ‖xn‖
∼ + 2−n. Since W is serially complete,

v =
∑∞

n=1 vn and w =
∑∞

n=1 wn converge in W with respect to ‖ · ‖. Since ‖ · ‖ and ‖ · ‖∼ coincide on W,
these series also converge with respect to ‖ · ‖∼. So

∑∞
n=1 xn =

∑∞
n=1(vn − wn) converges with respect to

‖ · ‖∼. �

Corollary 7.13 ( [28, Thm.1.5]). Let X be an ordered normed Banach space and the order cone X+

be closed and generating. Then X+ is non-flat. In particular, there exists some c > 0 such that for all
x ∈ X there exist v,w ∈ X+ such that x = v − w and ‖v‖ + ‖w‖ ≤ c‖x‖.

Proof. Since W = X+ is generating, X = X̃ as sets. By (7.6), the identity is continuous from X with
‖ · ‖∼ to X with ‖ · ‖. Since X is a Banach space under both norms (Proposition 7.12), the identity is
continuous from X with ‖ · ‖ to X with ‖ · ‖∼ by the open mapping theorem. By Remark 7.11, X+ is a
non-flat cone with respect to ‖ · ‖. �

Example 7.14. Let S be a non-empty set and B a σ- algebra of subsets of S . Let ‖ · ‖ be a norm on
M(S ) such that ‖µ‖ = µ(S ) for all µ ∈ M+(S ). Then ‖ · ‖∼ is the variation norm onM(S ).

Let B : W → W be a homogeneous additive operator on W. We define an extension A : X̃ → X̃ by

Ax = Bv − Bw, x = v − w ∈ X̃, v,w ∈ W.

Since B is additive, the definition does not depend on the choice of v and w. Indeed, if v−w = ṽ− w̃ for
v, ṽ,w, w̃ ∈ W, then v + w̃ = ṽ + w ∈ W and B(v) + B(w̃) = B(ṽ) + B(w) and B(v)− B(w) = B(ṽ)− B(w̃).
It is obvious from the definition that A : X̃ → X̃.
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One readily checks that A is additive and (positively) homogeneous on X̃. Let α < 0. Then

A(αx) =A(αv − αw) = A((−α)w − (−α)v)
=B((−αw) − B((−α)v) = −αB(w) + αB(v) = αAx.

This shows that A is linear. The linear extension A is uniquely determined by B.

Proposition 7.15. Let B : W → W be a bounded homogeneous additive operator on W. Then the
linear extension A : X̃ → X̃ is bounded with respect to ‖ · ‖∼ and ‖A‖∼ = ‖B‖ for the respective operator
norms. This equality translates to the respective spectral radii.

Proof. We can assume that B is not the zero operator on W. Otherwise, A is the zero operator on X̃ and
the assertion is valid.

Let x ∈ X̃ and x = v − w with v,w ∈ W. Then Ax = B(v) − B(w) with

‖B(v)‖ + ‖B(w)‖ ≤ ‖B‖(‖v‖ + ‖w‖).

Since B(v), B(w) ∈ W, by (7.5),
‖A(x)‖∼ ≤ ‖B‖(‖v‖ + ‖w‖).

Now ‖B‖ > 0 and so
‖v‖ + ‖w‖ ≥ ‖Ax‖∼/‖B‖.

Since x = v−w, again by (7.5), ‖x‖∼ ≥ ‖Ax‖∼/‖B‖. This implies that A is bounded with respect to ‖ · ‖∼

and ‖A‖∼ ≤ ‖B‖. The oppositive inequality is obvious because A extends B, and we obtain equality. �

The next result is an extension of [68, Thm.3.10] which, in turn, is a generalization of [54, Thm.3]
to infinite dimensions.

Theorem 7.16. Let X be an ordered normed vector space and let its order cone X+ be closed, normal
and serially complete. Let Q and B be bounded homogeneous additive operators on X+, r(Q) < 1.
Then r(Q + B) − 1 and r

(
B

∑∞
n=0 Qn) − 1 have the same sign.

Proof of Theorem 7.16. By Proposition 7.12, Remark 7.11 and the preceding remarks, X̃ under ‖ · ‖∼

is an ordered Banach space and W = X+ is a normal generating closed cone of X̃ with ‖ · ‖∼. Let
Q̃ be the bounded linear extension of Q to X̃ and A the bounded linear extension of B to X̃ with
‖ · ‖∼. Then Q̃ + A is the extension of Q + B to X̃ and A(I − Q̃)−1 the extension of B

∑∞
n=0 Qn to X̃.

By Proposition 7.15, the respective spectral radii of the extensions are equal to those of the original
operators. By [68, Thm.3.10], r(Q̃ + A) − 1 = r(A(I − Q̃)−1) − 1 have the same sign, which implies the
assertion. �

Theorem 7.17. Let X be an ordered normed vector space and let its order cone X+ be closed, normal
and serially complete. Let Q and B be continuous homogeneous additive operators on X+, r(Q) <
r(B + Q) =: λ. Assume that B2 and at least one of BQ or QB are compact on X+.

Then there exists some w ∈ Ẋ+ such that (B + Q)(w) = λw.

Proof. We first assume that r(Q + B) =: λ = 1. So r(Q) < 1.
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By Theorem 7.16, r(BR) = 1 with

R =

∞∑
n=0

Qn = I + QR = I + RQ. (7.7)

Since B is additive,
BR = B + BQR = B + BRQ.

Since all ingredients are additive and QR = RQ by (7.7) ,

(BR)2 =B2R + BQR(BR) = B2R + BR(QB)R.

Since by assumption, B2 and at least one of BQ or QB are compact on X+, (BR)2 is compact (and
continuous) on X+. By Corollary 7.10, there exists some v ∈ Ẋ+ such that v = BRv. Set w = Rv. By
(7.7), w = v + Qw and w − Qw = v = Bw, i.e., w = (B + Q)(w).

We return to the general case λ = r(Q + B) > r(Q). Set Bλ = 1
λ
B and Qλ = 1

λ
Q. Then

r(Qλ + Bλ) =
1
λ

r(Q + B) = 1 >
1
λ

r(Q) = r(Qλ).

By our previous consideration, there exists some w ∈ Ẋ+ such that w = (Qλ + Bλ)w = 1
λ
(Q + B)w. �

8. Nonlinear dynamics on cones

Let X+ be the closed order cone of an ordered normed vector space X and F : X+ → X+, F(0) = 0.

8.1. Order derivatives

B : X+ → X+ is called an order derivative of F : X+ → X+ at 0 if

for any ε ∈ (0, 1) there is some δ > 0 such that
(1 − ε)B(x) ≤ F(x) ≤ (1 + ε)B(x) for all x ∈ X+ with ‖x‖ ≤ δ.

(8.1)

The following is shown in [36], Prop.3.3, Lemma 3.6 and 3.7.

Lemma 8.1. The order derivative B satisfies B(0) = 0. B is uniquely determined if it is homogeneous.
If X+ is normal and B is homogeneous, B is the Gateaux-derivative of F at 0.

A homogeneous B : X+ → X+ is called a lower order derivative of F at 0 if one part of (8.1) holds:

For any ε ∈ (0, 1) there is some δ > 0 such that
F(x) ≥ (1 − ε)B(x) for all x ∈ X+ with ‖x‖ ≤ δ.

(8.2)

B is called an upper order derivative if the other part of (8.1) holds:

For any ε ∈ (0, 1) there is some δ > 0 such that
F(x) ≤ (1 + ε)B(x) for all x ∈ X+ with ‖x‖ ≤ δ.

(8.3)
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8.2. An instability result on a cone

Theorem 8.2. Let F, B : X+ → X+ and let B be homogeneous and order-preserving and a lower
order-derivative of F at 0 as in (8.2).

Let r > 1 and let θ : X+ → R+ be a homogeneous bounded order-preserving functional with
θ(B(x)) ≥ rθ(x) for all x ∈ X+.

Then there exists some δ0 > 0 such that

sup
n∈Z+

‖Fn(x)‖ ≥ δ0 for all x ∈ X+ with θ(x) > 0.

In particular, 0 is an unstable equilibrium of F.

Proof. Choose some ε ∈ (0, 1) such that 1 < (1 − ε)r =: s. Then choose some δ > 0 such that
F(x) ≥ (1 − ε)B(x) for all x ∈ X+ with ‖x‖ ≤ δ.

Suppose that the statement is false. By contraposition, there exists some x ∈ X+ such that θ(x) > 0
and supn∈Z+

‖Fn(x)‖ < δ.
Since θ is bounded, this implies that (θ(Fn(x))) is a bounded sequence.
We will show by induction that θ(Fn(x)) ≥ snθ(x) for all n ∈ Z+, which is a contradiction because

s > 1.
This statement holds for n = 0. Let n ∈ Z+ and θ(Fm+n(x)) ≥ snθ(Fm(x)). Then

Fn+1(x) = F(Fn(x)) ≥ (1 − ε)B(Fn(x)).

Since B and θ are order-preserving and homogeneous,

θ(Fn+1(x)) ≥(1 − ε)θ(B(Fn(x))) ≥ (1 − ε)rθ(Fn(x))
≥ssnθ(x) = sn+1θ(x). �

If x, v ∈ X+, x is called v-positive

if there exists some δ > 0 such that x ≥ δv. (8.4)

Theorem 8.3. Let B be a lower order derivative of F at 0, B order-preserving, and let r > 1 and v ∈ Ẋ+

such that B(v) ≥ rv.
Then there exists some δ0 > 0 such that for any v-positive x ∈ X+ with ‖x‖ ≤ δ0 there is some n ∈ N

such that ‖Fn(x)‖ > δ0.
In particular, 0 is unstable.

Proof. Let r > 1 and v ∈ Ẋ+ such that B(v) ≥ rv. We define [44, (2.14)]

θ(x) = sup{β ∈ R+; βv ≤ x} =: [x]v.

By [44, Rem.3.4], θ(B(x)) ≥ rθ(x) for all x ∈ X+. Apply Theorem 8.2. �
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8.3. Existence of a nonzero fixed point

For discrete time-dynamics, ‘persistence at equilibrium’
comes in the form of a fixed point of the population turnover map.

Theorem 8.4. Let B be a lower order derivative of F at 0, B order-preserving, and let F be continuous
and compact on Ẋ+. Assume that there is some continuous homogeneous subadditive functional θ :
X+ → R+ and the following hold:

(i) There is some ζ ∈ (0, 1) such that θ(x) ≥ ζ‖x‖ for all x ∈ X+.
(ii) lim sup

‖x‖→∞
θ(F(x))/θ(x) < 1.

(iii) There is some v ∈ Ẋ+ and r > 1 such that B(v) ≥ rv.

Then there exists some x ∈ Ẋ+ such that F(x) = x.

We emphasize that X+ does not need to be complete.

Proof. For λ ∈ (0, 1), we define Fλ : X+ → X+ by

Fλ(x) = F(x + λv) + λv, x ∈ X+, (8.5)

where v is chosen according to assumption (iii).
We claim: There exists some R > 0 such that θ(Fλ(x)) ≤ R for all λ ∈ (0, 1] and all x ∈ X+ with

θ(x) ≤ R.
Suppose not. Then, for any n ∈ N, there exist xn ∈ X+ and λn ∈ (0, 1] such that θ(xn) ≤ n and

θ(Fλn(xn)) ≥ n. Since θ is subadditive and homogeneous, for all n ∈ N,

n ≤ θ
(
F(xn + λnv) + λnv

)
≤ θ(F(xn + λnv)) + θ(v).

Since F is compact on Ẋ+ and θ bounded on X+, (xn) is unbounded. After choosing subsequences,
‖xn‖ → ∞ as n→ ∞. By assumption (ii), there exists some α ∈ (0, 1) and β > 0 such that

θ(F(x)) ≤ αθ(x), x ∈ X+, ‖x‖ ≥ β.

So, for large enough n, n ≤ αθ(xn + λnv) + θ(v) ≤ αn + 2θ(v), a contradiction because α ∈ (0, 1).
Thus, we have shown that there is an R > 0 such that, for any λ ∈ (0, 1], Fλ maps the convex closed

bounded set {x ∈ X+; θ(x) ≤ R} into itself. Since Fλ is compact and continuous on X+, by Tychonov’s
fixed point theorem [58, Thm.10.1], there exists xλ ∈ X+ with θ(xλ) ≤ R and Fλ(xλ) = xλ.

Now, choose a sequence (λn) in (0, 1] such that λn → 0 for n→ ∞. By assumption (i) and (8.5), for
each n ∈ N, there exists some xn such that

F(xn + λnv) + λnv = xn, 0 < ‖xn‖ ≤ R/ζ. (8.6)

We choose ε ∈ (0, 1) such that (1 − ε)r > 1 with the number r from assumption (iii). Since B is a
lower order derivative of F, by (8.2) we choose δ > 0 such that F(x) ≥ (1 − ε)B(x) for all x ∈ Ẋ+ with
‖x‖ ≤ 2δ. We claim that

lim inf
n→∞

‖xn‖ ≥ δ. (8.7)
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Suppose not. Then, for some large n ∈ N, ‖xn‖ ≤ δ and λn‖v‖ ≤ δ and so ‖xn + λnv‖ ≤ 2δ and

xn ≥ (1 − ε)B(xn + λnv) + λnv.

Since v ∈ X+ and B is order-preserving, xn ≥ (1 − ε)B(xn). Since B is homogeneous and order-
preserving, xn ≥ (1 − ε)kBk(xn), k ∈ N. We also have that xn ≥ λnv and B(v) ≥ rv. So

xn ≥ (1 − ε)kBk(λnv) ≥ [(1 − ε)r]kλnv, k ∈ N.

Since X+ is a closed cone and (1 − ε)r > 1, this implies that v = 0, a contradiction. So (8.7) holds.
Since F is compact on Ẋ+ and the sequence (xn + λnv) in Ẋ+ is bounded and λn → 0, F(xn + λnv) →
y ∈ X+ after choosing a subsequence. By (8.6) and (8.7), xn → y as n → ∞ with y ∈ X+ and δ ≤ ‖y‖.
Since F is continuous on Ẋ+, F(y) = y. �

By Theorem 7.8, there is the following consequence.

Corollary 8.5. Let F : X+ → X+ be continuous and compact on Ẋ+. Assume that
lim sup‖x‖→∞ ‖F(x)‖/‖x‖ < 1. Let B be a lower order derivative of F and let B : X+ → X+ be compact,
continuous and order-preserving, and r(B) > 1. Then there exists some x ∈ Ẋ+ such that F(x) = x.

Again, we emphasize that X+ does not need to be complete.

9. Linear maps induced by measure kernels

Let (S ,B) and (S̃ , B̃) be measurable spaces with B and B̃ σ-algebras of subsets of S and S̃ , respec-
tively.

Definition 9.1. A function κ : B × S̃ → R+ is called a measure kernel if
κ(·, s) ∈ M+(S ) for all s ∈ S̃ and κ(T, ·) ∈ Mb(S̃ ) for all T ∈ B.

Here M(S̃ ) denotes the vector space of measurable functions from S̃ to R and Mb(S̃ ) the Banach
space of bounded measurable functions from S̃ to R with the supremum norm. Cf. [2, Sec.19.2] [3,
Sec.10.3] [69]. Measure kernels are simply called measurable maps in [70, Sec.5.3]. See also [22].

The measure kernel κ induces a linear bounded map A∗ from Mb(S ) to Mb(S̃ ) with the supremum
norm and a linear bounded map A fromM(S̃ ) toM(S ) with the variation norm by

(A∗ f )(s) =

∫
S

f (t)κ(dt, s), s ∈ S̃ , f ∈ Mb(S ), (9.1)

(Aµ)(T ) =

∫
S̃
κ(T, s)µ(ds), T ∈ B, µ ∈ M(S̃ ). (9.2)

The following duality relation holds,∫
S̃
(A∗ f )dµ =

∫
S

f d(Aµ), f ∈ Mb(S ), µ ∈ M(S̃ ). (9.3)

This formula is first proved for simple measurable functions, then for nonnegative bounded measur-
able functions, which are uniform limits of increasing sequences of simple functions, and finally for
bounded measurable functions, which are differences of nonnegative measurable bounded functions.

There is equality of the operator norms,

‖A∗‖ = ‖A‖ = sup
s∈S̃

κ(S , s). (9.4)
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9.1. Convolution of measure kernels

Let S = S̃ and B = B̃. The convolution of two measure kernels κ j, j = 1, 2, is defined by (3.2).
κ1 ? κ2 is again a measure kernel,∫

S
f (z)(κ1 ? κ2)(dz, s) =

∫
S

( ∫
S

f (z)κ1(dz, t)
)
κ2(dt, s), f ∈ Mb(S ), s ∈ S . (9.5)

This follows from (9.3) with µ = κ2(·, s), s ∈ S . (9.5) implies that this convolution is associative, i.e.,
for three measure kernels κ j, j = 1, 2, 3,

κ1 ? (κ2 ? κ3) = (κ1 ? κ2) ? κ3. (9.6)

Lemma 9.2. For j = 1, 2, let κ j be measure kernels and A j∗ and A j be the linear bounded operators
on Mb(S ) andM(S ), respectively. Then A2∗A1∗ and A1A2 are induced by κ1 ? κ2 via (9.1) and (9.2).

9.2. Spectral radius of a measure kernel

Multiple convolutions κn? of a measure kernel κ : B × S → R+ are defined in Definition 3.4.
By Lemma 9.2, κn? induces An

∗ on Mb(S ) and An onM(S ). Guided by (9.4) and (4.7), the spectral
radius of the kernel κ, r(κ) is defined by (3.3), and we have

r(κ) = r(A∗) = r(A) = lim
n→∞

(
sup
s∈S

κn?(S , s)
)1/n

. (9.7)

SinceM(S ) with the variation norm is an ordered Banach space with the closed generating order cone
M+(S ), by Proposition 7.15 and Example 7.14,

r(κ) = r(A) = r(A+), (9.8)

where A+ = B is the restriction of the bounded linear map A in (9.2) toM+(S ). By [43, Thm.1.7],

r(κ) = r(A+) ≥ sup
µ∈Ṁ+(S )

inf
{ ∫

S

κ(T, s)
µ(T )

µ(ds); T ∈ B, µ(T ) > 0
}
. (9.9)

Further, Mb(S ) with the supremum norm is an ordered Banach space with the closed generating order
cone Mb

+(S ), which is non-flat, and
r(κ) = r(A∗) = r(A∗+), (9.10)

where A∗+ is the restriction of the bounded linear map A∗ in (9.1) to Mb
+(S ). By [43, Thm.1.7],

r(κ) = r(A∗+) ≥ sup
f∈Ṁb

+(S )
inf

{ ∫
S

f (s)
f (t)

κ(ds, t); t ∈ S , f (t) > 0
}
. (9.11)

Mb
+(S ) is a solid cone and f ∈ M̆b

+(S ), the open interior of Mb
+(S ), if and only if f ∈ M(S ) and

0 < inf f (S ) ≤ sup f (S ) < ∞. By [43, Thm.1.15],

r(κ) = r(A∗+) ≤ inf
f∈M̆b

+(S )
sup

{ ∫
S

f (s)
f (t)

κ(ds, t); t ∈ S
}
. (9.12)
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Since ‖µ‖ = µ(S ) for µ ∈ M+(S ) in the variation norm, the series characterization of the spectral
radius in Corollary 7.6, with p = 1, translates to

r(κ) = inf
{
λ > 0; ∀µ ∈ M+(S ) :

∞∑
n=1

λ−n
∫

S
κn?(S , t)µ(dt) < ∞

}
= inf

{
λ > 0;

∞∑
n=1

λ−n sup
s∈S

κn?(S , s) < ∞
}

= inf
{
λ > 0; sup

s∈S

∞∑
n=1

λ−nκn?(S , s) < ∞
}
.

(9.13)

The third equality follows from the first two. The formulas are reminiscent of what has been called
the Perron root of κ by Shurenkov (“On the relationship between spectral radii and Perron roots”,
preprint) [69],

r℘(κ) = inf
{
λ > 0; ∀s ∈ S :

∞∑
n=1

λ−nκn?(·, s) is σ-finite
}
. (9.14)

Obviously, r℘(κ) ≤ r(κ) and equality does not always hold (even for Feller kernels, Examples 10.12
and 10.13). Conditions for equality appear to involve irreducibility conditions (Shurenkov) or commu-
nication conditions [69] that are beyond the scope of this paper. Actually, in view of the fact that the
equalities in (9.13) hold without any such conditions, the question whether or under which conditions
r(κ) equals

inf
{
λ > 0; ∀s ∈ S :

∞∑
n=1

λ−nκn?(S , s) < ∞
}

may be more compelling. Corollary 7.7 implies the following for measure kernels.

Remark 9.3. Let r = r(κ) > 0. Then there exists some µ ∈ M+(S ) such that
∞∑

n=1

r−n
∫

S
κn?(S , t)µ(dt) =

∞.

10. Feller kernels

Let S and S̃ be metrizable topological spaces and B and B̃ the respective Borel σ-algebras.

Definition 10.1. A function κ : B × S̃ → R+ is called a Feller kernel if

κ(·, s) ∈ M+(S ) for all s ∈ S̃ and if κ has the Feller property∫
S

f (y)κ(dy, ·) ∈ Cb(S̃ ) for any f ∈ Cb(S ).

A Feller kernel κ is called a Feller kernel of separable measures if

κ(·, s) ∈ Ms
+(S ) for all s ∈ S̃ .

Cf. [2, Sec.19.3]. See Example 10.12. By Proposition 6.3, if κ is a Feller kernel, κ(U, ·) is a
Borel measurable function on S̃ for all open subsets U of S and thus for all Borel sets U in S̃ . This
implies that every Feller kernel is a measure kernel and induces the maps A : M(S̃ ) → M(S ) and
A∗ : Mb(S )→ Mb(S̃ ). Since κ is a Feller kernel, A∗ maps Cb(S ) to Cb(S̃ ).
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Theorem 10.2. Let κ : B × S̃ → R+ be a Feller kernel. Let µ ∈ M+(S̃ ) and A(µ) ∈ Ms
+(S ). Then A is

continuous at µ with respect to the flat norm.

Proof. Let (µn) be a sequence in M+(S̃ ) with ‖µn − µ‖[ → 0. Let f ∈LCb(S ). By our Feller type
property, the definition g(s) =

∫
S

f (t)κ(dt, s) = (A∗ f )(s), s ∈ S̃ , provides a function g ∈ Cb(S̃ ). By
(9.3) and Theorem 6.6,∫

S
f (t)(Aµn)(dt) =

∫
S

A∗ f dµn →

∫
S

A∗ f dµ =

∫
S

f (t)(Aµ)(dt).

By Proposition 6.6, ‖Aµn − Aµ‖[ → 0. �

Proposition 10.3. Let A :Ms
+(S̃ )→Ms

+(S ) be additive, homogeneous and continuous with respect to
the flat norm. Then A is induced by a Feller kernel of separable measures via (9.2).

Proof. Set κ(T, s) = (Aδs)(T ) for s ∈ S̃ and T ∈ B. Since δs ∈ M
s
+(S ), κ(·, s) ∈ Ms

+(S ) for any s ∈ S̃ .
Let (sn) be a sequence in S̃ and sn → s ∈ S̃ . By Lemma 6.5, ‖δsn − δs‖[ → 0 and ‖Aδsn − Aδs‖[ → 0
because A is continuous. By Theorem 6.6, κ has the Feller property. Let B be the additive homogenous
operator induced by κ. Then Bδs = Aδs for all s ∈ S̃ . Let N be the set of measures

∑k
j=1 q jδs j with

s j ∈ S̃ and q j ∈ Q+. By Theorem 6.8,N is dense inMs
+(S̃ ) and Bν = Aν for all ν ∈ N . Let µ ∈ Ms

+(S̃ ).
Choose a sequence (µn) inN such that ‖µn − µ‖[ → 0 as n→ ∞. Let f ∈ Cb(S ). Since κ has the Feller
property, g ∈ Cb(S̃ ) where g(s) =

∫
S

f (t)κ(dt, s) for s ∈ S̃ . By Theorem 6.6,∫
S

f d(Bµ) =

∫
S

gdµ = lim
n→∞

∫
S

gdµn = lim
n→∞

∫
S

f d(Bµn) = lim
n→∞

∫
S

f d(Aµn).

Since A is continuous by assumption,
∫

S
f d(Bµ) =

∫
S

f d(Aµ). By Theorem 6.3, (Bµ)(T ) = (Aµ)(T ) for
all open subsets T of S and so for all T ∈ B. �

Theorem 10.4. Let κ : B× S̃ → R+ be a Feller kernel of separable measures. Then the following hold:

(a) The map S̃ 3 s 7→ κ(·, s) from S̃ toMs
+(S ) is continuous with respect to the flat norm.

(b) For any compact subset K of S̃ , the set of measures {κ(·, s); s ∈ K} inMs
+(S ) is pre-tight and, if S

is complete, tight.
(c) If N is a tight bounded subset ofM+(S̃ ), then A(N) is a pre-tight set of measures inM+(S ) and,

if S is complete, tight.
(d) For any separable set T̃ ∈ B̃, there exists a separable closed subset T of S such that κ(S \T, s) = 0

for all s ∈ T̃ .
(e) A mapsMs

+(S̃ ) continuously intoMs
+(S ).

(f) A mapsMs(S̃ ) intoMs(S ).

Proof. (a) Since κ has the Feller property, the map S̃ 3 x 7→ κ(·, x) ∈ Ms
+(S ) is continuous with respect

to the flat norm by Theorem 6.6.
(b) If K is a compact subset of S̃ , the set ΓK = {κ(·, s), s ∈ K} is the continuous image of a compact

set by (a) and thus a compact set inMs
+(S ) with the flat norm. By Proposition 6.13, it is a pre-tight set

and, if S is complete, a tight set.
(c) Let N a tight bounded subset ofM+(S̃ ) and ε > 0. Since κ has the Feller property, there exists

some c1 > 0 such that κ(S , x) ≤ c1 for all x ∈ S̃ . Since N is a bounded subset ofM+(S̃ ), there exists
some c2 > 0 such that µ(S ) ≤ c2 for all µ ∈ N .
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Since N is tight, there exists a compact set K such that µ(S \ K) < ε
2c1

for all µ ∈ N . Further, there
exists a closed totally bounded set T in S such that κ(S \ T, x) < ε

2c2
for all x ∈ K. Then, for all µ ∈ N ,

(Aµ)(S \ T ) =

∫
K
κ(S \ T, x)µ(dx) +

∫
S̃ \K

κ(S \ T, x)µ(dx)

≤ sup
x∈K

κ(S \ T, x)c2 + c1µ(S̃ \ K) ≤ ε.

So the set of measures A(N) is pre-tight and, if S is complete, tight.
(d) Let T̃ ∈ B̃ be separable and D be a dense countable subset of T̃ . For any t ∈ D, there exists a

separable subset Tt ∈ B such that κ(S \Tt, t) = 0. Let T be the closure of
⋃

t∈D Tt. Since D is countable,
T is a closed separable subset of S . Further, for all t ∈ D, κ(S \ T, t) ≤ κ(S \ Tt, t) = 0 .

Let s ∈ T̃ . Then there exists a sequence (t j) in D such that t j → s. By (a), ‖κ(·, t j) − κ(·, t)‖[ → 0 as
j→ ∞. Since S \ T is open,

κ(S \ T, s) ≤ lim inf
j→∞

κ(S \ T, t j) = 0

by Theorem [26, Thm.4.10].
(e) Let µ ∈ Ms

+(S̃ ). By definition, there exists a separable set T̃ ∈ B̃ such that µ(S \ T̃ ) = 0. Choose
T according to (d). Then

(Aµ)(S \ T ) =

∫
T
κ(S \ T, s)µ(ds) = 0.

This shows that Aµ is separable. By Theorem 10.2, A is continuous at µ.
(f) Let µ ∈ Ms(S̃ ). By Definition 3.10, |µ| ∈ Ms

+(S̃ ) and µ± = 1
2 (|µ| ± µ) ∈ Ms

+(S̃ ). Since A is linear,
by (e), Aµ = Aµ+ − Aµ− ∈ Ms(S ). �

Theorem 10.5. Let d be a metric that induces the topology of S . Let κ : B × S̃ → R+ be a measure
kernel of separable measures. Assume that

∫
S

f (y)κ(dy, ·) ∈ Cb(S̃ ) for any f : S → [0, 1] with
| f (y) − f (z)| ≤ d(y, z) for all y, z ∈ S . Then κ has the Feller property.

Further, the map s 7→ κ(·, s) from (S̃ , d) toMs
+(S ) endowed with the associated flat norm is contin-

uous.

Proof. Let (sn) be a sequence in S̃ and s ∈ S̃ and sn → s. By assumption,
∫

S
f (y)κ(dt, sn) →∫

S
f (y)κ(dt, s) for all f : S → [0, 1] with | f (y) − f (z)| ≤ d(y, z) for all y, z ∈ S . Since κ(·, s) is

separable, by Proposition 6.6,
∫

S
g(y)κ(dy, sn)→

∫
S

g(y)κ(dy, s) for all g ∈ Cb(S ).
The last statement follows from Theorem 10.4 (a). �

Remark 10.6. Let κ be a Feller kernel of separable measures and As denote the restriction of A from
Ms(S̃ ) to Ms(S ) and As

+ the restriction of A from Ms
+(S̃ ) to Ms

+(S ). Since the Dirac measures are
separable, we still have for the operator norms that ‖As‖ = ‖As

+‖ = sups∈S̃ κ(S , s), (see (9.4)). If
S = S̃ and B = B̃, by (3.3),

r(As) = r(A) = r(As
+) = r(κ).

Remark 10.7. The map A induced by a measure kernel via (9.2) is continuous fromM+(S̃ ) toM+(S )
with respect to the variation norms even without the Feller type property. But it seems difficult to come
up with conditions for A to be compact with respect to the variation norm.
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10.1. Tight measure kernels

Definition 10.8. A measure kernel κ : B × S̃ → R+ is called a tight measure kernel if the set of
measures {κ(·, x); x ∈ S̃ } is tight.

A measure kernel κ is called a pre-tight measure kernel if set of measures {κ(·, x); x ∈ S̃ } is pre-tight.

Proposition 10.9. Let κ : B × S̃ → R+ be a Feller kernel of separable measures. Then κ is a pre-tight
Feller kernel (tight Feller kernel if S is complete) if for any ε > 0 there is a compact subset K of S̃
such that κ(S , t) < ε for all t ∈ S̃ \ K.

Proof. Let ε > 0. By assumption, there is a compact subset K of S̃ such that κ(S , t) < ε for all t ∈ S̃ \K.
By Theorem 10.4 (b), the set of measures {κ(·, s); s ∈ K} inMs

+(S ) is pre-tight and, if S is complete,
tight. So there exists some totally bounded closed (compact if S is complete) subset T of S such the
κ(S \ T, t) < ε for all t ∈ K. But also κ(S \ T, t) ≤ κ(S , t) < ε for all t ∈ S̃ \ K. �

Proposition 10.10. Let κ : B × S̃ → R+ be a tight measure kernel. Then A is continuous and compact
fromM+(S̃ ) toM+(S ) with respect to the flat norm and mapsM+(S̃ ) intoMt

+(S ).

Proof. To show that A is compact, let (µn) be a bounded sequence inM+(S̃ ) with the flat norm.
Since {κ(·, t); t ∈ S̃ } is tight, for any ε > 0 there exists some compact set K in S such that κ(S \K; t) <

ε for all t ∈ S̃ . By (9.2),

(Aµn)(S \ K) =

∫
S
κ(S \ K, t)µn(dt) ≤ εµn(S ), n ∈ N.

Since (µn(S̃ )) is a bounded sequence, the sequence (Aµn) is tight.
Finally, (Aµn)(S ) ≤ supt∈S̃ κ(S , t)µn(S ) and the set {(Aµn)(S ); n ∈ N} is bounded inR. By Proposition

6.11, (Aµn) has a convergent subsequence.
By the same arguments as above, A mapsM+(S ) intoMt

+(S ) and is continuous with respect to the
flat norm by Theorem 10.2. �

Proposition 10.11. Let P : B× S̃ → R+ be a tight Feller kernel and g ∈ Cb+(S̃ ×S ). Then κ̃ : B× S̃ →
R+,

κ̃(T, s) =

∫
T

g(s, t)P(dt, s), s ∈ S̃ ,T ∈ B, (10.1)

is a tight Feller kernel. In particular, κ̃(S , ·) ∈ Cb(S̃ ).

Proof. κ̃ inherits tightness from P via the boundedness of g.
Let f ∈ Cb(S ). Set h(s) =

∫
S

f (t)κ̃(dt, s), s ∈ S̃ . Then

h(s) =

∫
S

f (t)g(s, t)P(dt, s), s ∈ S̃ .

Our task is to show that h ∈ Cb(S̃ ). Since g and f are bounded and P(S , ·) is bounded, h is bounded.
To demonstrate the continuity of h on S̃ , let s ∈ S̃ and (sn) a sequence in S̃ with sn → s. To

show that h(sn) → h(s), let ε > 0. Since P is tight, there exists a compact subset K of S such that
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P(S \ K, s) ≤ ε for all s ∈ S̃ . By the triangle inequality,

|h(sn) − h(s)| ≤
∫

S
| f (t)| |g(sn, t) − g(s, t)|P(dt, sn)

+
∣∣∣∣ ∫

S
f (t)g(s, t)P(dt, sn) −

∫
S

f (t)g(s, t)P(dt, s)
∣∣∣∣.

Since f (t)g(s, t) is a continuous bounded function of t ∈ S and P is a Feller kernel, the second expres-
sion on the right hand side of this inequality converges to 0 as n→ ∞ and

lim sup
n→∞

|h(sn) − h(s)| ≤ lim sup
n→∞

∫
S
| f (t)| |g(sn, t) − g(s, t)| P(dt, sn)

≤2 sup | f | sup |g| ε + sup | f | lim sup
n→∞

sup
t∈K
|g(sn, t) − g(s, t)| P(S , sn).

Since g is uniformly continuous on the compact set
(
{sn; n ∈ N} ∪ {s}

)
× K,

lim sup
n→∞

sup
t∈K
|g(sn, t) − g(s, t)| = 0 and so

lim sup
n→∞

|h(sn) − h(s)| ≤ 2 sup | f | sup |g| ε.

Since this holds for any ε > 0, |h(sn) − h(s)| → 0 as n→ ∞. �

Example 10.12 (Survival and deterministic movement (development)). Let

κ(T, s) = χT
(
ξ(s)

)
g(s), s ∈ S ,T ∈ B,

where ξ : S → S is continuous, g ∈ Cb
+(S ). Notice that

f ∈ Cb(S ) =⇒

∫
S

f (t)κ(dt, ·) = f (ξ(·))g(·) ∈ Cb(S ).

For each s ∈ S , κ(·, s) = g(s)δξ(s) is a tight measure and κ is a Feller kernel of separable measures. By
Theorem 10.4, the map A induced by κ onM(S ) mapsMs(S ) into itself and mapsMs

+(S ) continuously
into itself with respect to the flat norm. One readily derives from (6.4) that A mapsM(S ) continuously
into itself if ξ and g are both Lipschitz continuous.

κ is tight if and only if for any ε > 0 there is a compact subset T of S such that g(s) < ε if s ∈
S and ξ(s) < T.

An is associated with the kernel χT
(
ξn(s)

) ∏n−1
j=0 g

(
ξ j(s)

)
,

r(A) = lim
n→∞

(
sup
s∈S

n−1∏
i=0

g
(
ξ j(s)

))1/n
. (10.2)

There may or may not be an eigenvector of A associated with r(A).
Suppose that s∗ ∈ S and ξ(s∗) = s∗ and g(s∗) ≥ g(s) for all s ∈ S . Then g(s∗) = r(A) and

Aδs∗ = g(s∗)δs∗ .
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Now assume that for any compact subset K of S there is some n ∈ N such that ξn(s) ∈ S \ K for all
s ∈ S . We claim that there is no r > 0 and µ ∈ Mt

+(S ), µ , 0, such that Aµ = rµ. Suppose that such
r > 0 and µ exist. Then µ = r−nAnµ for all n ∈ N and

µ(T ) = r−n
∫

S
χT (ξn(s))

n−1∏
j=0

g
(
ξ j(s)

)
µ(ds), n ∈ N,T ∈ B. (10.3)

By our assumption, µ(T ) = 0 for any compact subset T of S . Since µ ∈ Mt
+(S ), µ = 0.

Let us assume that for any compact subset T of S and any s ∈ S , ξn(s) < T for all but finitely many
n ∈ N and g(s) = 1 for all s ∈ S . Then χT (ξn(s)) → 0 as n → ∞ and the right hand side of (10.3)
converges to 0 by the dominated convergence theorem and µ(T ) = 0. So µ is the zero measure if µ is
tight.

Let us finally assume in addition that S is σ-compact, i.e., K is a countable union of compact sets.
Then any µ ∈ M+(S ) is tight. So, the spectral radius is not associated with an eigenmeasure; however
it is associated with all constant positive functions as eigenfunctions.

Further, for any compact set T of S and any s ∈ S , κn?(T, s) = χT (ξn(s)) = 0 for all but finitely
many n ∈ N. This implies that

∑∞
n=1 λ

−nκn?(T, s) ∈ R+ for all λ ∈ (0,∞) and the so-called Perron root
of κ in (9.14) equals r℘(κ) = 0 while r(κ) = 1.

Example 10.13 (Bonsall’s kernel). A Feller kernel on the σ-compact metric space S = (0, 1] that
has got some attention without the Feller kernel perspective is κ(·, s) = δs/2, s ∈ (0, 1] [35, 44, 71].
Obviously, r(κ) = 1, and according to our considerations in Example 10.12, r℘(κ) = 0. There are
no eigenmeasures of κ associated with positive eigenvalues, but plenty of eigenfunctions, f (s) = sα,
α ≥ 0, associated with the eigenvalues (1/2)α. For α > 0, these eigenfunctions are also in C0(0, 1], the
space of continuous functions f on (0, 1] with f (s) → 0 as s → 0, which is a Banach space under the
supremum norm and hasM((0, 1]) as dual space. A∗ maps C0(0, 1] into itself, and the spectral radius
of its restriction A0 to C0(0, 1] still equals 1. Let Ccon(0, 1] be the closed cone of nonnegative convex
function in C0(0, 1]. Ccon(0, 1] is a total but not generating cone of C0(0, 1] that is invariant under A0

and the restriction of A0 to Ccon(0, 1], Acon, is compact and r(Acon) = 1/2 [35, 71].

Example 10.14 (Multiplication operator). Consider the special case ξ(s) = s for all s ∈ S in Example
10.12 with g ∈ Cb+(S ). The induced map A on M(S ) takes the form of a multiplication operator
(Aµ)(T ) =

∫
T

g(s)µ(ds) for T ∈ B. A mapsMs(S ) into itself. A is a bounded linear map onM(S ) with
respect to the variation norm. A mapsMs

+(S ) into itself continuously with respect to the flat norm.
A is continuous onMs(S ) with respect to the flat norm if and only if g is Lipschitz continuous.

Proof. One readily derives from (6.4) that A maps M(S ) continuously into itself if g is Lipschitz
continuous. Now let A be continuous and thus a bounded linear operator onMs(S ) with the respect to
the flat norm. Let s, t ∈ S . Since ‖δs‖[ = 1,

|g(s) − g(t)| = ‖(g(s) − g(t))δs‖[ ≤ ‖g(s)δs − g(t)δt‖[ + ‖g(t)(δt − δs)‖[.

Since Aδs = g(s)δs, |g(s)− g(t)| = ‖Aδs − Aδt‖[ + g(t)‖δt − δs‖[. Since A is a bounded linear operator on
Ms(S ) with respect to the flat norm and δs ∈ M

s(S ), by Lemma 6.5,

|g(s) − g(t)| ≤
(
‖A‖[ + sup

S
|g|

)
‖δt − δs‖[ =

(
‖A‖[ + sup g(S )

)
min{1, d(t, s)}.

So g is Lipschitz continuous with a Lipschitz constant ‖A‖[ + sup g(S ). �
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10.2. Eigenmeasures of tight Feller kernels

We return to general Feller kernels κ and the maps A induced by them via (9.2). A is a bounded
linear map on M(S ) with the variation-norm. Let A+ denote the restriction of A to M+(S ). Then
‖A‖ = ‖A+‖ = ‖A+‖[ and r(A) = r(A+). Since the variation norm and the flat norm coincide onM+(S ),
this means that the spectral radius of A with respect to the variation norm coincides with the spectral
radius of A+ with respect to the flat norm and with the spectral radius of κ. Recall (3.3), (9.8), (9.11)
and (9.12).

Theorem 10.15. Assume that κ is a tight Feller kernel and r = r(A) = r(κ) > 0. Then there exists some
tight µ ∈ M+(S ), µ , 0, such that

∫
S
κ(·, s)µ(ds) = rµ.

This result follows from Theorem 7.8 and Proposition 10.10. It does not follow from the Krein-
Rutman theorem [72] because A is only compact and continuous on M+(S ) and not necessarily on
M(S ) . It would follow from [35] if S were complete, but not if S (and thenM+(S )) is not complete (or
cannot be made complete by transition to a topologically equivalent metric, Theorem 6.14). See [26]
for details and further remarks.

Theorem 10.16. Let S be a metric space. Let κ j : B×S → R+, j = 1, 2, be Feller kernels of separable
measures and κ = κ1 + κ2. Assume that κ1 is a tight measure kernel and r := r(κ) > r(κ2). Then there
exists some ν ∈ Ms

+(S ) with ν(S ) = 1 and
∫

S
κ(T, s)ν(ds) = rν(T ), T ∈ B. Further,

r(κ) = sup
µ∈Ṁ+(S )

inf
{ 1
µ(T )

∫
S
κ(T, s)µ(ds); T ∈ B, µ(T ) > 0

}
.

This result would follow from [39] if S were complete or completely remetrizable because com-
pleteness of S is equivalent to the completeness of Ms

+(S ) with respect to the flat norm (Theorem
6.14).

Proof. We apply Theorem 7.17 with X = Ms(S ) and X+ = Ms
+(S ), endowed with the flat norm. X+

is a closed, normal and serially complete cone in X with respect to flat norm (Corollary 6.7). Let
B j :Ms

+(S )→M(S ) be given by

(B jµ)(T ) =

∫
S
κ j(T, s)µ(ds), µ ∈ Ms

+(S ), T ∈ B.

By Theorem 10.4, for j = 1, 2, B j mapsMs
+(S ) into itself and is a continuous homogeneous additive

map onMs
+(S ). By Proposition 10.10, B1 is compact on X+. By Theorem 7.17, there exists µ ∈ Ṁs

+(S )
such that (B1 + B2)(µ) = rµ.

The formula for r(κ) follows from the inequality (9.9) which is turned into an equality by the exis-
tence of the eigenmeasure. �

11. Nonlinear dynamics on measures: proofs for the general framework

Proof of Theorem 3.6. Apply [36, Thm.4.2] or [63, Thm.4.1] where B is the homogeneous additive
operator onM+(S ) given by

(Bµ)(T ) =

∫
S
κo(T, s)µ(ds), T ∈ B, µ ∈ M+(S ),
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that is continuous with respect to the variation norm. Then r(B) = r(κo) < 1 and also all other
assumptions are satisfied. �

Proof of Corollary 3.7. By Theorem 3.6 it is sufficient to show that r(κo) ≤ r.
Let S be the union of pairwise disjoint nonempty sets T1, . . . ,Tm in B and

β jk = sup
t∈T j

κo(Tk, t)

and assume that the matrix of size m with coefficients β jk is irreducible and has a spectral radius r < 1.
By the Perron-Frobenius theorem, there exists a vector w ∈ (0,∞)m such that

m∑
k=1

β jkwk = rw j, j = 1, . . . ,m. (11.1)

Define f : S → R+ by

f =

m∑
k=1

wkχTk .

Then f is in the interior of Mb
+(S ). For j ∈ {1, . . . ,m} and t ∈ T j,∫

S
f (s)κo(ds, t) ≤

m∑
k=1

β jkwk = rw j = r f (t).

By (9.12), r(κo) ≤ r. �

Proof of Theorem 3.8. Let T1, . . . ,Tm, m ∈ N, be pairwise disjoint nonempty sets in B and

α jk = inf
t∈T j

κo(Tk, t)

and assume that the matrix of size m with coefficients α jk has a spectral radius r > 1. Then there exists
an eigenvector v ∈ Rm

+ such that

m∑
k=1

α jkvk = rv j, j = 1, . . . ,m.

Set f =
∑m

k=1 vkχTk . Since v is not the zero vector, f ∈ Ṁb
+(S ). Similarly as in the proof before, one

shows that
∫

S
f (s)κo(ds, t) ≥ r f (t). By (9.11), r(κo) ≥ r. We define the linear nonnegative functional

θ :M(S )→ R by

θ(µ) =

∫
S

f dµ =

m∑
k=1

vkµ(Tk).

Let A and A∗ be the maps onM(S ) and Mb(S ) that are induced by κo. Then A∗ f ≥ r f and, by (9.3),

θ(Aµ) =

∫
S

A∗ f dµ ≥
∫

S
r f dµ = rθ(µ).

The statement now follows from Theorem 8.2. �
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Proof of Theorem 3.13. Combine Theorem 8.3 and Theorem 10.16. �

Proof of Remark 3.14. Combine Theorem 7.16 with Section 9. �

Proposition 11.1. Let the Assumption 3.2 be satisfied. Then F mapsMs
+(S ) into itself.

Proof. Theorem 10.4 (b). �

Lemma 11.2. Let ( f̃n) be a bounded sequence in Cb(S ) and (µn) be a bounded pre-tight sequence in
M+(S ). Then ∫

S
f̃ndµn

n→∞
−→ 0 if f̃n

n→∞
−→ 0

uniformly on every totally bounded subset of S .

Proof. Let ε > 0. Since {µn; n ∈ N} is pre-tight, there exists a closed totally bounded subset T of S
such that µn(S \ T ) < ε for all n ∈ N. For all n ∈ N,∣∣∣∣ ∫

S
f̃ndµn

∣∣∣∣ ≤ ∫
T
| f̃n|dµn +

∫
S \T
| f̃n|dµn

≤ sup
T
| f̃n| sup

k∈N
µk(S ) + sup

k∈N
sup

S
| f̃k| µn(S \ T ).

Since f̃n → 0 uniformly on T , the last but one expression converges to 0 as n→ ∞ and

lim sup
n→∞

∣∣∣∣ ∫
S

f̃ndµn

∣∣∣∣ ≤ sup
k∈N

sup
S
| f̃k| ε.

Since this holds for arbitrary ε > 0, the limit superior is zero and we have proved the assertion. �

Proposition 11.3. Let the family of Feller kernels {κµ); µ ∈ Ms
+(S )} satisfy the Assumptions 3.2 and

3.17. Then F :Ms
+(S )→Ms

+(S ) is continuous with respect to the flat norm.

Proof. Let µ ∈ Ms
+(S ) and (µn) be a sequence inMs(S ) such that ‖µn − µ‖[ → 0. By Theorem 6.6,∫

S
f̃ dµn →

∫
S

f̃ dµ, f̃ ∈ Cb
+(S ). (11.2)

Then {µn; n ∈ N} is a compact subset ofM+(S ) with respect to the flat norm and pre-tight by Proposi-
tion 6.13 and a bounded subset ofM+(S ).

Let f ∈ F . By (3.1), ∣∣∣∣ ∫
S

f dF(µn) −
∫

S
f dF(µ)

∣∣∣∣ =
∣∣∣∣ ∫

S
fndµn −

∫
S

f̃ dµ
∣∣∣∣ (11.3)

with
fn(s) =

∫
S

f (t)κµn(dt, s), f̃ (s) =

∫
S

f (t)κµ(dt, s).

By Theorem 6.6, it is sufficient that the expression on the right hand side of the equation converges to
0 as n→ ∞.
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By the triangle inequality and (11.3),∣∣∣∣ ∫
S

f dF(µn) −
∫

S
f dF(µ)

∣∣∣∣ ≤ ∣∣∣∣ ∫
S
( fn − f̃ )dµn

∣∣∣∣ +
∣∣∣∣ ∫

S
f̃ dµn −

∫
S

f̃ dµ
∣∣∣∣.

Since κµ is a Feller kernel, f̃ ∈ Cb
+(S ) and the second term on the right hand side of the last inequality

converges to 0 as n → ∞ by (11.2). As for the first term, by Assumption 3.17, for any closed totally
bounded subset T of S ,

fn(s) − f̃ (s)→ 0, n→ ∞, uniformly for s ∈ T. (11.4)

Further, by Assumption 3.2, ( fn − f̃ ) is a bounded sequence in Cb(S ). Now the first term of the last
inequality converges to 0 by Lemma 11.2. �

Proposition 11.4. Under the Assumptions 3.2 and 3.16, the yearly population turnover map F :
Ms

+(S ) → Ms
+(S ) is compact; for any bounded subset N of Ms

+(S ), F(N) is a tight bounded sub-
set ofMs

+(S ).

Proof. By Proposition 11.1, F mapsMs
+(S ) into itself. LetN be a bounded subset ofMs

+(S ). For any
set T ∈ B and µ ∈ N ,

F(µ)(S \ T ) =

∫
S
κµ(S \ T, s) µ(ds) ≤ sup

s∈S
κµ(S \ T, s) µ(S ). (11.5)

For T = ∅, we obtain that {F(µ)(S ); µ ∈ N} is bounded in R by Assumption 3.16.
Let ε > 0. By Assumption 3.16, there exists some compact set T in S such that

κµ(S \ T, s) ≤ ε
(
1 + sup

µ∈N

µ(S )
)−1
.

By (11.5), F(µ)(S \ T ) ≤ ε for all µ ∈ N . By Definition 3.10, F(N) is a tight subset ofMs
+(S ).

By Theorem 6.11, F(N) has compact closure inMs
+(S ). �

Proposition 11.5. Let the Assumptions 3.2 and 3.18 be satisfied. Then

lim sup
µ(S )→∞

F(µ)(S )
µ(S )

< 1.

Proof. For all µ ∈ Ms
+(S ),

F (µ)(S ) =

∫
S
κµ(S , s) µ(ds) ≤ sup

s∈S
κµ(S , s) µ(S ).

This implies the assertion. �

Proof of Theorem 3.19. We apply Corollary 8.5 with

(Bµ)(T ) =

∫
S
κo(T, s)µ(ds), T ∈ B, µ ∈ M+(S ).

Then B : Ms
+(S ) →M+(S ) is homogeneous, additive, continuous and compact by Proposition 10.10,

and r(B) = r(κo) > 1. Further, F is continuous and compact by Propositions 11.3 and 11.4. Since
{κµ; µ ∈ M+(S )} is lower semicontinuous at measure zero, B is the lower order derivative of F. Further
use Proposition 11.5. Then the assumptions of Corollary 8.5 are satisfies from which the existence of
a non-zero fixed point follows. �
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12. Nonlinear dynamics on measures: semelparous populations

The metric space S with theσ-algebraB of Borel sets represents the habitat of a spatially distributed
population. We consider a difference equation onM+(S ), the cone of nonnegative finite measures on
B,

µn(T ) = F(µn−1)(T ), n ∈ N,T ∈ B, (12.1)

with µ0 ∈ M+(S ) and F :M+(S )→M+(S ) given by

F(µ)(T ) =

∫
S
κµ(T, s)µ(ds),

κµ(T, s) = P(T, s)g
(
s,

∫
S

q(s, t)µ(dt)
)


{
µ ∈ M+(S ),

T ∈ B.
(12.2)

The difference equation describes the year-to-year development of a spatially distributed population
with a short reproductive season. µn is the spatial distribution at the beginning of the nth year. See
Section 2 for the interpretation of the measure kernel P, and the functions g : S × R+ → R+ and
q : S 2 → R+.

Assumption 12.1. For the per capita reproduction function g,

(g1) g : S × R+ → R+ is continuous and bounded.

(g2) g(s, 0) > 0 for all s ∈ S and
g(s, u)
g(s, 0)

→ 1 as u→ 0 uniformly for s ∈ S .

For the competitive influence function q,

(q1) q : S 2 → R+ is continuous and bounded.

For the survival/migration kernel P,

(P1) P : B × S → R+ is a measure kernel (Definition 9.1).
(P2) 0 ≤ P(S , s) ≤ 1 for all s ∈ S .

Proposition 12.2. Assume Assumptions 12.1. Then Assumption 3.2 is satisfied.
Further, the kernel family {κµ; µ ∈ M+(S )} is continuous at the zero measure (Definition 3.5).
If s ∈ S and g(s,w) ≤ g(s, 0) for all w ∈ R+, κµ(T, s) ≤ κo(T, s) for all T ∈ B.

Proof. Let µ ∈ M+(S ). Set

v(s) =

∫
S

q(s, t)µ(dt), w(s) = g(s, v(s)), s ∈ S . (12.3)

By the Assumption 12.1 (q1) and the dominated convergence theorem, v : S → R+ is continuous and
bounded, and so is w : S → R+ by Assumption 12.1 (g1). This implies that

κµ(T, s) = P(T, s)w(s), T ∈ B, s ∈ S , (12.4)

is a measure kernel and κµ(S , s) ≤ sup g for all µ ∈ M+(S ), s ∈ S .
Let ε ∈ (0, 1). By Assumption 12.1 (g2), there exists some δ̃ > 0 such that (1 − ε)g(s, 0) ≤

g(s, u) ≤ (1 + ε)g(s, 0) for all u ∈ [0, δ̃] and s ∈ S . Since q is bounded by Assumption 12.1 (q1),
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there exist some δ > 0 such that q(s, t)δ ≤ δ̃ for all s, t ∈ S . Let µ ∈ M+(S ) and µ(S ) ≤ δ. Then∫
S

q(s, t)µ(dt) ≤ supt∈S q(s, t)δ ≤ δ̃ for all s ∈ S . This implies that

(1 − ε)κo(T, s) ≤ κµ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S ,

and the kernel family {κµ; µ ∈ M+(S )} is continuous at the zero measure. �

12.1. Local (global) asymptotic stability of the extinction state in the subthreshold case

Theorem 12.3. Assume Assumptions 12.1 and r = r(κo) < 1.
Then the zero measure (extinction fixed point) is locally asymptotically stable in the sense of Theo-

rem 3.6 (a).
If, in addition, g(s, u) ≤ g(s, 0) for all u ≥ 0, s ∈ S , then the origin is globally stable in the sense of

Theorem 3.6 (b).

Proof. Combine Theorem 3.6 and Proposition 12.2. �

Remark 12.4. Notice that we have only used the variation norm so far. Therefore, the previous results
remain valid if S is a measurable space with σ-algebra B and the assumptions are slightly modified.

Instead of Assumption 12.1 (g1) we would assume

(g1)’ g : S × R+ → R+ is bounded and measurable where S × R+ is equipped with the appropriate
product σ-algebra,

and instead of Assumption 12.1 (q1) we would assume

(q1)’ q : S 2 → R+ is bounded and measurable where S 2 is equipped with the appropriate product
σ-algebra.

Notice that continuity of q on S 2 does not imply that q is measurable with respect to the product
σ-algebra without additional assumptions (like S being separable [2, Sec.4.10]).

12.2. Superthreshold instability of the extinction state

Proposition 12.5. Assume Assumptions 12.1.

(a) If P is a Feller kernel of separable measures, κo is a Feller kernel of separable measures.
(b) If P is a tight measure kernel, then the set of measures {κµ(·, s); µ ∈ M+(S ), s ∈ S } is tight and

the set {κµ(S , s); µ ∈ M+(S ), s ∈ S } is bounded in R.

Proof. (a) κo inherits these properties from P via (12.4); recall that g(s, 0) is a continuous function of
s ∈ S .

(b) Let P be a tight measure kernel. Let K ∈ B and µ ∈ M+(S ). Since g is bounded by Assumption
12.1 (g1),

κµ(S \ K, s) ≤ (sup g) P(S \ K, s), µ ∈ M+(S ).

With K = ∅, we see that κµ(S , s) ≤ sup g for all s ∈ S , µ ∈ M+(S ).
Let ε > 0. Since P is a tight kernel, there exists a compact subset K of S such that P(S \ K, s) < δ

with δ sup g < ε and κµ(S \K, s) < ε for all µ ∈ M+(S ) and s ∈ S . This implies that the set of measures
{κµ(·, s); µ ∈ M+(S ), s ∈ S } is tight. �
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Theorem 12.6. Make Assumption 12.1.
Assume that P = P1 + P2 with Feller kernels P1 and P2 of separable measures where P1 is a tight

Feller kernel. Let κ1 and κ2 and κ be related to P1, P2 and P by (12.4), respectively, and r = r(κ) > 1
and r > r(κ2).

Then there exists some ν ∈ Ms
+(S ) such that

∫
S
κ(·, s)ν(ds) = rν, and there is some δ0 > 0 such that

for any ν-positive µ0 ∈ M+(S ) and any solutions (µn) inM+(S ) of µn = F(µn−1), n ∈ N, there is some
n ∈ Z+ with µn(S ) > δ0. In particular, the zero measure is unstable.

By (8.4), µ is ν-positive if there is some δ > 0 such that µ(T ) ≥ δν(T ) for all T ∈ B.

Proof. The measure kernels κ j related to P j by (12.4) are also Feller kernels of separable measures
because w is continuous, and κ1 inherits tightness from P1.

Combine Proposition 12.2 with Theorem 3.13. �

12.3. Existence of a nonzero equilibrium measure

Assumption 12.7. Assume:

(i) For any closed totally bounded subset T of S , the set of functions {q(s, ·); s ∈ T } is equicontinuous
on S : For any t0 ∈ S and ε > 0, there exists δ > 0 such that |q(s, t)−q(s, t0)| < ε whenever s, t ∈ S
and d(t, t0) < δ.

(ii) For any closed totally bounded subset T of S , the set of functions {g(s, ·); s ∈ S } is uniformly
equicontinuous on bounded subsets of R+: For any c ∈ (0,∞) and ε > 0, there exists δ > 0 such
that |g(s,w) − g(s, v)| < ε whenever s ∈ S and w, v ∈ [0, c] and |w − v| < δ.

(iii) P : B × S → R+ is a Feller kernel of separable measures.

Lemma 12.8. Assumption 12.7 (i), (ii) are satisfied if S is completely metrizable, and Assumption 12.1
holds.

Proof. Let T be a closed totally bounded subset of S , which is completely metrizable. Then T is
compact.

(ii) Let c > 0. Then the set T × [0, c] is compact. Since g is continuous on S × R+, g is uniformly
continuous on T × [0, c]. This implies (ii)

(i) Suppose that Assumption 12.7 (i) is false. Then there is some s̃ ∈ S such that {q(s, ·); s ∈ T } is
not equicontinuous at s̃.

Then there exists some ε > 0 and a sequence (sn) in T and a sequence (s̃n) in S such that s̃n → s̃ as
n→ ∞ and

|q(sn, s̃n) − q(sn, s̃)| > ε, n ∈ N.

Since T × ({s̃n; n ∈ N} ∪ {s̃}) is a compact subset of S 2, q is uniformly continuous on this set, a
contradiction. �

Lemma 12.9. Let the Assumptions 12.1 and 12.7 (i) be satisfied. Further let µ ∈ Ms
+(S ) and (µn) be a

sequence inMs
+(S ), ‖µn − µ‖[ → 0 as n→ ∞.

Then, (Qµn)(s) → (Qµ)(s) as n → ∞ uniformly for s in any closed totally bounded subset of S .
Further Qµn and Qµ are bounded functions.
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Proof. The convergence statement follows from Proposition 6.10. The boundedness statements are
immediate. �

Lemma 12.10. Let the Assumptions 12.1 and 12.7 (ii) be satisfied. Let T be a closed totally bounded
subset of S and fn : T → R+, n ∈ N, and f : T → R+ be bounded functions such that fn → f uniformly
on T . Let g : T ×R+ → R+ be continuous. Then g

(
s, fn(s)

)
→ g

(
s, f (s)

)
as n→ ∞ uniformly for s ∈ T.

Proof. There exists some c ∈ (0,∞) such that fn(s), f (s) ≤ c for all n ∈ N, s ∈ T . Since {g(s, ·); s ∈ T }
is uniformly equicontinuous on [0, c], the assertion follows. �

Proposition 12.11. Make the Assumptions 12.1 and Assumptions 12.7.
Then Assumption 3.17 is satisfied for {κµ; µ ∈ M+(S )} given by (12.2).

Proof. Let f ∈ Cb
+(S ). For s ∈ S ,∫

S
f (t)κµn(dt, s) −

∫
S

f (t)κµ(dt, s)

=

∫
S

f (t)P(dt, s)
[
g
(
s, (Qµn)(s)

)
− g

(
s, (Qµ)(s)

)]
.

Since
∫

S
f (t)P(dt, s) ≤ sup f (S ), it is sufficient to show that

g
(
s, (Qµn)(s)

)
→ g

(
s, (Qµ)(s)

)
, n→ ∞,

uniformly for s in every closed totally bounded subset T of S . But this follows by combining Lemma
12.9 and Lemma 12.10. �

Assumption 12.12. We assume the following for the competitive influence function q and the per
capita birth rate g:

(i) inf q(S 2) > 0; (ii) g(s, u)→ 0 as u→ ∞ uniformly for s ∈ S .

Proposition 12.13. Make the Assumptions 12.1 and Assumptions 12.12.
Then Assumption 3.18 is satisfied.

Proof. For µ ∈ Ṁ+(S ), by Assumption 12.1 (g1) and (12.2),

κµ(S , s) ≤ sup
s∈S

g
(
s,

∫
S

q(s, t)µ(dt)
)
.

Further,
∫

S
q(s, t)µ(dt) ≥ inf q(S 2) µ(S ). Since inf q(S 2) > 0 by Assumption 12.12 (i), as µ(S ) → ∞,∫

S
q(s, t)µ(dt) → ∞ uniformly in s ∈ S . By Assumption 12.12 (ii), κµ(S , s) → 0 as µ(S ) → ∞

uniformly for s ∈ S . �

Theorem 12.14. Make the Assumptions 12.1, 12.7, and 12.12. Assume that the Feller kernel P is tight
and that r(κ) > 1 for the Feller kernel κ given by κ(T, s) = P(T, s)g(s, 0). Then F has a nonzero fixed
point inMs

+(S ).

Proof. Combine Theorem 3.19 with Propositions 12.13, 12.11, 12.5, 12.2. �
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13. Discussion

This paper establishes the spectral radius r0 of a suitable Feller kernel as threshold parameter that
decides about the extinction of the population the dynamics of which are modeled in the cone of
nonnegative measures. This Feller kernel induces the order derivative of the yearly population turnover
map F at the zero measure.

If r0 < 1, the zero measure (the extinction state) is locally asymptotically stable and, under some
extra conditions, even globally asymptotically stable (Theorem 12.3). If r0 > 1, the zero measure
is unstable (Theorem 12.6) and there exists a nonzero equilibrium measure (Theorem 12.14). While
the first result is quite satisfactory, it is desirable to replace the instability of the extinction state by a
persistence result analogously to population models in other state spaces [36] [73, Ch.7]: If r0 > 1, then
there exists some ε > 0 such that lim infn→∞ µn(S ) ≥ ε for all solutions (µn) of µn = F(µn−1), n ∈ N,
with µ0 ∈ Ṁ+(S ). Even more desirable is the existence of a compact persistence attractor [73, Sec.5.2].
The underlying technical problem consists in finding an eigenfunction f of the Feller kernel associated
with r0, r0 f (s) =

∫
S

f (t)κ(dt, s), s ∈ S . While we have found an eigenmeasure under acceptable
assumptions (Section 10.2) and an eigenfunction in a special case (Remark 3.9), general assumptions
for the existence of an eigenfunction we have found so far are quite restrictive and will be presented
elsewhere.

The threshold role of r0 makes estimates of this spectral radius desirable. Such estimates seem hard
to come by, except in special cases [47, Sec.7] (Remark 3.9). Theoretically, formulas (9.11) and (9.9)
provide lower estimates of the spectral radius and formula (9.12) provides upper estimates, but they
may not be of very practical use. The inequality in (9.9) becomes an equality if there is an eigenmeasure
associated with the spectral radius (Theorem 10.16). The inequality in (9.11) becomes an equality if
there is a a bounded strictly positive eigenfunction associated with the spectral radius, and the one in
(9.12) if the eigenfunction is also bounded away from zero. If the Feller kernel is the sum of two other
Feller kernels, Remark 3.14 can be helpful provided that one of the kernels is of simple form.

We have strived for results that do not require that the individual state space S is separable or is
completely metrizable (i.e., becomes complete after switching to a topologically equivalent metric).
Depending on the application, individual state spaces could become quite intricate.

By results by Alexandrov and Mazurkiewicz, a subset of a complete metric space S is completely
metrizable itself if and only if it is a countable intersection of open subsets (i.e., a so-called Gδ subset)
of S [2, Sec.3.7] [4, Thm.2.5.4]. In particular, the set of rational numbers with the standard topology
is not completely metrizable.

If S is the Banach space S = Cb(K) of bounded continuous real-valued functions on a metric space
K with the supremum norm, then S is separable if and only if K is compact [5, IV.13.16]. In particular,
the Banach space `∞ of bounded real-valued sequences with the supremum norm is not separable.

The results in Section 3 and Section 12 appear to be new even if the individual state space S is
separable or completely metrizable; some complicated looking assumptions like Assumption 12.7 (i)
and (ii) are satisfied if S is completely metrizable.
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