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Abstract: Under voluntary vaccination, a critical role in shaping the level and trends of vaccine
uptake is played by the type and structure of information that is received and used by parents of
children eligible for vaccination. In this article we investigate the feedbacks of spatial mobility and
the spatial structure of information on vaccination dynamics, by extending to a continuous spatially
structured setting existing behavioral epidemiology models for the impact of vaccine adverse events
(VAEs) on vaccination choices. We considered the simplest spatial setting, namely classical ’Fickian’
diffusion, and focused on the noteworthy case where the infection is absent. This scenario mimics the
important case of a population where a previously endemic vaccine preventable infection was
successfully eliminated, but the re-emergence of the disease must be prevented. This is, for example,
the case of poliomyelitis in most countries worldwide. In such a situation, the dynamics of VAEs and
of the related information arguably become the key determinant of vaccination decision and of
collective coverage. In relation to this ’information issue’, we compared the effects of three main
cases: (i) purely local information, where agents react only to locally occurred events; (ii) a mix of
purely local and global, country-wide, information due e.g., to country-wide media and the internet;
(iii) a mix of local and non-local information. By representing these different information options
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through a range of different spatial information kernels, we investigated: the presence and stability of
space-homogeneous, nontrivial, behavior–induced equilibria; the existence of bifurcations; the
existence of classical and generalized traveling waves; and the effects of awareness campaigns
enacted by the Public Health System to sustain vaccine uptake. Finally, we analyzed some analogies
and differences between our models and those of the Theory of Innovation Diffusion.

Keywords: human behavior; vaccination; infectious diseases; spatiotemporal; nonlocal;
integrodifferential; traveling waves

1. Introduction

Mathematical epidemiology (ME) of infectious disease is one of the oldest and richest areas of
mathematical biology [1,2], but it is also the area that probably had the largest impact on actual public
health policies. Indeed, mathematical models of infections are nowadays routinely applied by
international and national public health institutions: from the design of immunization programs up to
the preparedness plans against possible future pandemics [3].

A limitation of classical ME is that its key assumptions are the legacy of classical Statistical
mechanics. As a consequence, the social contacts between agents at risk of spreading or acquiring the
infection are treated as ’encounters of particles’ of a perfect gas. Pairwise, the contagion process is
abstracted as it were a chemical reaction. As a consequence, transmission processes have been
traditionally modelled by means of the mass action law.

Treating human beings as molecules implies that the spread of infectious diseases is totally
unaffected by the agents’ behavior, and vice-versa, simply because behavior is absent from the models
of classical ME. This means that e.g., models used to evaluate the impact and cost-effectiveness of
vaccination programs under voluntary immunization did not include neither the individuals risk
perceptions about the disease nor those about vaccine-related adverse events (VAEs). Similarly, ME
models treat the social contact process between individuals as a physical constant, implying that
individuals continue contacting each other at the same rate independently of the magnitude they
perceived of the risk of contracting the infection.

Nowadays we know well that the above assumption are quite coarse, possible useful to depict
’normal’ situations but totally inadequate to describe scenarios such as vaccine scares, where the
perceived risk of VAEs blows up for a while, or the course of an epidemics with high mortality [4, 5].

The pioneering work that first included the human behavior in ME was [6], which extended the
classical Kermack and McKendrick’s ODE epidemic model to account for behavioral responses.
Unfortunately, this paper remained relatively isolated until the need of embedding human behavior in
ME models became increasingly urgent. This need arose due to the onset of a range of new
phenomena such as the increasing mistrust and opposition towards vaccines [7–10]. In [4, 5] it was
argued that such phenomena are characteristic of the current landscape of infection and public health
in modern industrialised countries. Notably, mistrust towards vaccination can be considered as part of
the more global phenomenon known as post-trust society [11].

This led in the last two decades to the birth of a new branch of ME: the behavioral Epidemiology
of infectious diseases (BEID) [4, 5]. The main aim of BEID is to properly model the role of human
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behavior in the transmission and control of infectious diseases. This is done by integrating the classical
ME tools with models and ideas from disciplines ranging from psychology to neural sciences, and from
economics to sociology.

Most BEID models of vaccination behavior include the strategic behavior of agents, and therefore
extensively use Game Theory. In particular, Bauch [12] pioneered the applications of evolutionary
games to describe the dynamics of the vaccine propensity in a population by using an Imitation Game
Dynamics (IGD) i.e., a model where the strategy perceived as better at a given time spreads in the
population through imitation. In [12] the perceived risk of infection is taken as linearly increasing with
the infection prevalence, whereas the perceived risk of VAE is assumed constant. Instead, in [13] the
perceived risk of suffering a vaccine side effect is modelled as an increasing function of the information
of the present and past incidence of VAEs.

As expected, in BEID a key role is played by the information that agents can access and use to
evaluate risks, which modulates their vaccine–related decisions. In [14], the IGD vaccination model
was further extended by including the effect of public interventions in communicating actual risks from
vaccines and infection.

Most previously cited BEID models [12–15], and other works in the same line, are based on ordinary
differential equation (ODE) models, and disregard any type of structural heterogeneity. In particular,
they are ’spatially homogeneous’, which is a crude approximation from at least two standpoints: (i)
the wide and complicate population mobility patterns; (ii) the complicate role played by the spatial
information network for behavior in relation to health.

In relation to this, a still unexplored area in the BEID literature regards the incorporation of
behavioral hypotheses within classical PDE models of spatial dynamics of the reaction-diffusion type.
In our opinion this represent a worthwhile effort for two main reasons. The first one is substantive and
relates to the critical role played by information in behavioral epidemiology models. From this
standpoint it is fundamental to subdivide the type of information that can be accessed by vaccination
decision makers into a few sharply distinct types namely, ’local’ vs ’global’ vs ’non-local’ based on
simple hypotheses on the underlying spatial information kernels. The second reason relates to the
robust analytic techniques that classical diffusion mathematics makes it available for the
understanding of real world processes. Indeed, since the pioneering works of Kendall [16] and of
Bailey [1, 17] published in sixties, mathematical reaction-diffusion theory was extensively applied in
ME models for the spread of human [2, 18–22] and animal [23] infectious diseases. A paradigmatic
example is the well–known pioneering paper by Noble [24] on European plague epidemics in the 14th
century. Recently, Ducrot and Giletti [25] showed that, under Fickian diffusion hypothesis, that the
Kermack– McKendrick epidemic model with non-diffusive susceptible population can have pulsating
traveling wave solutions. Very recently Magal and coworkers [26] adopted Fickian diffusion with
anisotropic diffusion coefficients to model the spread of infectious diseases, with focus on the impact
of diffusion on the basic reproduction number. They adopted a similar approach [27] to model the
spread of influenza in Puerto Rico, including also behavioral effects. They obtained a good match
between their simulations and available spatiotemporal data. As far as vector-borne infectious
diseases are concerned, recently Fitzgibbon et al. [28] proposed a model, where the diffusion of hosts
was described by Fickian diffusion. Zhao and colleagues [29] again adopted Fickian diffusion to
model the spread of a two–groups infectious diseases of SIR type, focusing in particular on the onset
of traveling waves.
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As stressed in the review paper [30], in its pioneering period, an important chapter of the spatial
modelling of the spread of infectious disease was represented by the modelling of the contagion as a
non–local process, as in [1, 2, 16–20].

In the light of the above background, our aim in this article is to investigate the interplay between
vaccination dynamics, human decisions, spatial mobility and information. To do so we extended to a
continuous spatially structured setting the behavioral epidemiology models for the impact of vaccine
adverse events (VAEs) on vaccination choices that were first introduced in [13, 14] by a classical
economy–oriented game theory approach and reformulated as a process of double contagion of ideas
in [5, 15, 31]. We note here that the first phenomenological approach is partially remindful of the
phenomenological theory of innovation diffusion (TID) by Mahajan [32–34] (see also [36]). However,
taking into the account the second approach, which is more mechanistic, important differences
emerge with TID, which are stressed in Section 12.

In particular, we will consider voluntary immunization decisions and focus on the simple but
important case where the disease is absent in the population under study. This case is not special at
all. On the contrary, it is of central relevance since, e.g., it represents the case of a population where a
previously endemic vaccine preventable infectious disease of childhood has been successfully
eliminated, so that prevalence is equal to zero, but there is the need to maintain a high-coverage
immunization policy in the post-elimination period to prevent the risk of infection re-emergence. A
major instance is that of poliomyelitis in industrialized countries. In such a context, where the
absence of the infection will remarkably reduce the incentive to immunize thereby weakening the
probability of switching from the ’non-vaccinator’ to the ’vaccinator’ strategy , the dynamics of VAEs
will arguably become the key determinant of vaccination decision and collective coverage. To
investigate the interplay with spatial mobility the resulting vaccination dynamics is set into the
simplest possible framework for spatial mobility, namely classical diffusion based on Fick’s law.

The consideration of the spatial effects i.e., the spatial distribution of VAEs, requires to carefully
take into account the information on VAEs that is handled by parents of children eligible for vaccination
while forming their perceptions of risk, that they will subsequently use to take their immunization
decisions.

In relation to this ’information issue’ we considered three main scenarios. In the first scenario, the
information that individuals access and use uniquely concerns VAEs occurred locally. In the second
case, the information used is both the local one and a global, nation-wide, average. Roughly speaking,
this scenario corresponds to the case where agents take their decisions also based on national media
such as national news or the internet. The third scenario is an intermediate one and aims at taking
into the account both the known phenomenon of information attenuation [37], and the reasonable
assumption that agents give less weight to events occurred at far distant locations. We represented the
latter scenario, where the information used is not purely local but it is also not global, by resorting to a
range of different spatial information kernels.

Of the resulting wide collection of problems we have investigated (by also distinguishing the nature
of space as bounded vs non-bounded) (i) the presence and stability of space homogeneous equilibria,
focusing on the nontrivial behavioral equilibrium; (ii) conditions for bifurcations; (iii) existence of
classical and generalized traveling waves; (iv) effects of awareness campaigns enacted by the Public
Health System to effectively sustain vaccine uptake, as first proposed by [14].
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2. The spatio-temporal imitation game for vaccination

To model the impact of human responses to VAEs on the overall dynamics of vaccine uptake in the
new-born babies, we follow [12–14] and assume that vaccination is a binary decision problem, i.e., one
for which only two, mutually exclusive, strategies are played by parents: ”‘vaccinator”’ (strategy 1),
and ”‘non-vaccinator”’ (strategy 2). Let us consequently denote by P(x, t) and A(x, t) the fractions
of vaccination decision makers (e.g., parents of children eligible for vaccination) at location x and
time t that follow, respectively, strategy 1 and 2. The previously cited models of IGD [12–14] all
relied on the concept of payoff. However, many evolutionary game models belong to the class of urn
models [38], a remarkably wide family that includes both chemical kinetics models as well as classical
ME models. Thus, we follow here [5, 15, 31], where the vaccination IGD was derived as a model of
’double contagion’ of ideas between the two involved groups namely, the group playing the ’vaccinator’
strategy and the one playing the ’non-vaccinator’ strategy).

Thus, by extending to the present spatio-temporal setting the IGD in [5,31], we obtain the following
family of models:

∂tP = D∇2P + ϑ(Mi)AP − α(Mse)AP, (2.1)
∂tA = D∇2A − ϑ(Mi)AP + α(Mse)AP,

where t > 0, x ∈ Ω, with Ω a bounded subset of Rn, n = 1, 2. If n = 1, then we assume that Ω = [−L, L],
L > 0, while, if n = 2, then we assume that its boundary is sufficiently smooth.

In particular, ϑ(Mi) and α(Mse) represent the strategy-specific ’transmission rates’ following social
contacts with individuals playing the other strategy. They are assumed to be non-decreasing functions
of the variables Mi and Mse. The latter are information indices summarizing the available information
about the (current or past) state of the infection (Mi) and of VAEs (Mse), respectively, that are used by
parents to formulate evaluations of related risks.

Assuming a stationary population and normalizing w.r.t. its steady state, since A = 1 − P, system
(2.1) yields:

∂tP = D∇2P + P(1 − P)(ϑ(Mi) − α(Mse)). (2.2)

As for the key quantities Mi and Mse , given our focus on situations where the infection has been
eliminated, we assume that the perceived risk related to infection is constant:

ϑ(Mi(I)) = ϑ0 (2.3)

The previous formulation mimics the situation where the infection is absent, so the corresponding
perceived risk is prevalence–independent. We assume that ϑ0 > 0 to reflect a non–null perceived
risk of infection even in the absence of infection. This can be justified by the continued activity of
an active public health system that aims to keep a high degree of population awareness on the risk of
reintroduction which is perceived as homogeneous throughout the entire space. Moreover, we assumed
that the perceived risk of VAEs depends on information on vaccine side effects occurring both locally
but also non-locally, as follows:

α(Mse(P)) = α0 + α1P + α2J(P), (2.4)
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where
J(P) =

∫
Ω

φ(x − y)P(y, t)dy, (2.5)

where function φ(x) is non-negative with ∫
Ω

φ(x)dx = 1. (2.6)

and even:
φ(x) = φ(−x), for all x ∈ Ω. (2.7)

To sum up, the perceived risk of VAEs α(Mse), has three components: (i) a baseline value α0

possibly constant over space, mirroring a true underlying risk of VAEs, (ii) a strictly local component
α1P, possibly reflecting local deviations in vaccine coverage and ensuing deviations in the local
number of VAEs, and (iii) a non-local component α2J(P) tuning risk perceptions arising from
differences in VAEs at different geographic sites, according to a suitable spatial information kernel. In
particular, the functional J(P) describes two mathematically equivalent scenarios, where individuals
located at position x can: i) receive information concerning the value of P at the space point y with a
weight/attenuation φ(x − y); ii) receive full spatial information but, in taking their decisions, they
assign a weight φ(x − y) to P(y, t).

Setting ϑ∗ = ϑ0 − α0 > 0, brings to the following model

∂tP = D∇2P + P(1 − P)(ϑ∗ − α1P − α2J(P)), (2.8)

with x ∈ Ω and t > 0.
Let l be a characteristic length of the domain Ω; to mathematically simplify the analysis, the model

is reformulated in terms of the following variables:

t∗ = ϑ∗t, x∗ = xl−1, D∗ = Dϑ−1
∗ l−2,

α∗1 = α1ϑ
−1
∗ , α

∗
2 = α2ϑ

−1
∗ , (2.9)

where we assumed 1/ϑ∗ is time unit. The set derived from Ω by adimensionalization will be denoted
as Ω∗.

Thus, the model (2.8) becomes (for the sake of simplicity we omit the stars):

∂tP = D∇2P + P(1 − P)(1 − α1P − α2J(P)), (2.10)

with x ∈ Ω and t > 0.
Moreover, by imposing Neumann boundary conditions:

∂xP = 0, on ∂Ω, if Ω ⊂ R, or ∂nP = 0, on ∂Ω, if Ω ⊂ R2, (2.11)

where n is the outer normal vector with respect to ∂Ω.
In the case in which the characteristic size of Ω is very large (for example in one dimension, L � 1),

then we can redefine Ω as Ω = (−L, L) and (as if we operated the limit L → +∞) assume that the
domain is unbounded, i.e., Ω = Rn, n = 1, 2.
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3. The Fisher-Kolmogorov model as a particular case of (2.10)

In the special case where people do not take into account the spatial variation in VAEs, i.e.,
α(Mse(P)) = α0, model (2.10) reduces to the well-known Fisher-Kolmogorov equation

∂tP = D∇2P + P(1 − P), (3.1)

introduced in [39,41]. The FK equation (3.1) in our case describes the spread (via traveling waves [22])
of the idealized case P = 1, where all people is in favor of the vaccination and the ’recession’ of the
case P = 0, where no subjects are in favor of vaccination.

4. Modelling risk perceptions: global vs local vs non-local information

Arguably, the behavior of (2.10) critically depends on the specific functional form of the spatial
information kernel φ(x). We list a number of relevant forms.

The simplest case is when the available information is purely local, that is

φ(x) = δ(x),

where δ(x) is the Dirac function. Then, Eq (2.10) reads as:

∂tP = D∇2P + P(1 − P)(1 − αP), (4.1)

where, with slight abuse of notation, we set

α = α1 + α2.

As argued in the introduction, by far the most important specific form for φ(x) is the constant one,
namely

φ(x) =
1

µ(Ω)
,

where µ(Ω) is the measure of Ω; thus, the non–local term (2.5) yields:

J(P) =
1

µ(Ω)

∫
Ω

P(y, t)dt. (4.2)

This specific form models the noteworthy scenario where people are exposed to a global (average)
information e.g., by the media (including the internet) and the Public Health system, about the current
state of vaccine-side effects coming from the whole domain Ω. The resulting model is:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

1
µ(Ω)

∫
Ω

P(y, t)dt
)
. (4.3)

Another important scenario is when the information about VAEs comes from the whole Ω but it is
either attenuated with the distance (this was possibly true for diseases in historical epochs) or it is the
individual receiving the information that pays lesser and lesser weight depending on the distance.
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Two reasonable functional forms that might well represent this scenario are:
i) Gaussian decay

φ1(x) = Cge−ax2
,

where a > 0 and 1/
√

a is the characteristic attenuation length. In Rn (n = 1, 2) the normalization
constant Cg is:

Cg =

(a
π

) n
2
.

In this case, model (2.10) becomes:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

Cge−a(x−y)2
P(y, t)dy

)
.

ii) Exponential decay,
φ2(x) = Cee−a|x|,

where a > 0 and in Rn (n = 1, 2) the constant Ce reads as follows

Ce =
a
2
, in R, and Ce =

a2

2π
, in R2.

In this case, model (2.10) becomes:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

Cee−a|x−y|P(y, t)dy
)
.

Another important class of spatial kernels is represented by non–local kernels with bounded support,
i.e., that are null beyond a given distance. An example is:

φ3(x) = CN

(
1 −

∣∣∣∣∣ x
N

∣∣∣∣∣2) Hev(N − |x|)

where Hev(.) is the Heaviside function and

CN =
3

4N
, in R, and CN =

2
πN2 , in R2.

In this case, model (2.10) becomes:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

CN

(
1 −

∣∣∣∣∣ x − y
N

∣∣∣∣∣2) Hev(N − |x − y|)P(y, t)dy
)
.

Another example in R is

φ4(x) =
1

2h
Hev(h − |x|),

and in R2

φ4(x) = (1/(πh2))Hev(h − |x|).

In this case, model (2.10) becomes:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

(1/(πh2))Hev(h − |x − y|)P(y, t)dy
)
.
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As it is to be expected, the Fourier transform will be important in the mathematical analysis of the
problem in study.

We use the following definition of Fourier transform for a generic function f (x) : Rn −→ R (n =

1, 2):

f̃ (ξ) =

∫
Rn

f (x)e−iξxdx, (4.4)

where ξ is the Fourier’s vector, ξx = ξ1x in R or ξx = ξ1x1 + ξ2x2 in R2. Here and further down ξ2 = ξ2
1

in R or ξ2 = ξ2
1 + ξ2

2 in R2.
We have that:

φ̃1(ξ) = e−
ξ2
4a , in Rn, n = 1, 2;

φ̃2(ξ) =

(
a2

a2 + ξ2

)(n+1)/2

, in Rn, n = 1, 2;

φ̃3(ξ) =
3

N3ξ3
(sin[Nξ] − Nξ cos[Nξ]) , in R;

φ̃4(ξ) =
1
hξ

sin(hξ), in R.

5. Properties of the spatially homogeneous model

We briefly summarize the results in [13], concerning the behavior of the spatially homogenous
model corresponding to (4.1). This is described by the ordinary differential equation (ODE)

P′(t) = P(1 − P)(1 − αP). (5.1)

A first equilibrium P0 = 0 corresponds to the no vaccination scenario where no parent is favorable to
immunization. This non-vaccinator equilibrium, NVE is always unstable. If 1 < α, then there exists a
non-trivial behavioral equilibrium

P2 =
1
α
, (5.2)

that is globally attractive in (0,1). We term P2 a behavioral equilibrium (BE) because its level is tuned
by the balance between the parents’ perceptions of risks based on the handling of available information.
Finally, there is a pure vaccinator equilibrium, PVE P1 = 1 [12, 13], corresponding to the unrealistic
scenario where all parents are favorable to immunization. The PVE is unstable if 1 < α, and globally
attractive if 0 ≤ α ≤ 1.

Arguably, in the case of an infection that has been eliminated one expects that at least in an initial
phase it holds P2 > pC where pC = 1 − 1/R0 is the critical vaccination threshold allowing infection
elimination, and R0 is the basic reproduction number of infection. However, this does not need to be
true at subsequent times, and this is why it is important for the public health system to monitor the
evolution of VAEs and related information. Finally, if α = 0 then the model reduces to the well-known
logistic model (see also next section).
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6. Stability analysis of homogeneous steady state

The equilibria of the ODE model (5.1) described in Section 5 are also homogenous equilibria of the
spatially structured model (4.1). In this section we will investigate their stability, focusing primarily
on the behavioral equilibrium P2 defined in (5.2), since the other two equilibria (P0 = 0, i.e., no
vaccinators, and P1 = 1, i.e., all vaccinators) do not correspond to realistic situations.

We will explore multiple relevant cases depending on: i) the nature of the information used to make
the vaccination decision: local, global or non–local i.e., on the structure of the spatial information
kernel; ii) the nature of Ω: bounded vs non-bounded.

6.1. Local information

Under purely local information i.e., Eq (4.1) with boundary condition (2.11), the structure of the
local stability of the homogeneous equilibria is similar to the one characteristic of the ODE model
(5.1). We proved the following:

Theorem 1. The non-vaccinator equilibrium P0 is always unstable.
If α > 1, the behavioral equilibrium P2 is locally asymptotically stable (LAS) and the PVE P1 is

unstable. Moreover, if Ω is bounded then P2 is also globally asymptotically stable (GAS).
If 0 ≤ α ≤ 1, P2 is not an admissible equilibrium and the PVE P1 is LAS. Moreover, if Ωis bounded

then P1 is also globally asymptotically stable (GAS).

We report the proof for the non-trivial parts. If Ω is bounded, from the linearized equation around
the behavioral equilibrium P2 = 1/α,

∂tw = D∇2w − (1 − P2)w, (6.1)

it follows that the the m–th eigenvalue is given by:

λm = −Dξ2
m − (1 − P2) < 0, (6.2)

where νm = −ξ2
m is the m–th eigenvalue of the heat equation with Neumann conditions (2.11) in Ω. For

example, if Ω = [−L, L], then ξm = mπ/L, m ∈ N.
Similarly, if Ω is unbounded, then by applying the Fourier’s Transform (4.4), we obtain the

following expression for the spectrum:

λ(ξ) = −Dξ2 − (1 − P2) < 0. (6.3)

Formulas (6.2) and (6.3) will be useful to assess the impact of the local vs non-local vs global structure
of information on our system.

The global stability of P2 and P1, respectively, can both be demonstrated by adopting as Liapunov
functional the free energy:

Li(t) =

∫
Ω

(
D|∇P|2 + U(P)

)
dx, (6.4)

where U(P) is the ’potential’ (associated to the ’force’ P(1 − P)(1 − αP)), given by:

U(P) = −

∫
(P(1 − P)(1 − αP)) dP.

from which the claim easily follows.
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6.2. Global information

Under global information i.e., when people are exposed to the average information on VAEs coming
from the whole domain (note this scenario only concerns the case where Ω is bounded):

J(P) = 〈P(x, t)〉 =
1

µ(Ω)

∫
Ω

P(y, t)dy.

the model (2.10) becomes:

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

1
µ(Ω)

∫
Ω

P(y, t)dy
)
, (6.5)

with Neumann conditions (2.11).
The linearized equation at P2 = 1/α reads as follows

∂tw = D∇2w − P2(1 − P2)
(
α1w + α2

1
µ(Ω)

∫
Ω

w(y, t)dy
)
. (6.6)

Setting w(x) = cos(ξmx) as eigenfunction, it is straightforward to show that the m–th corresponding
eigenvalue is given by

λ̃0 = −(1 − P2) < 0, if m = 0, λ̃m = −Dξ2
m − α1P2 (1 − P2) < 0, if m ≤ 1. (6.7)

Thus P2 is LAS.
Interestingly, if m = 0, referring to (6.2) and (6.7), then λ0 = λ̃0. On the contrary, if m ≥ 1,

comparing eigenvalues in (6.2) and (6.7), we can deduce that λ̃m > λm: therefore eigenvalues in (6.7)
are ’less negative’ than their counterparts for the local information model in (6.2). This indicates a
slower convergence to P2 in Eq (6.5) compared to Eq (4.1) for all modes m ≥ 1.

As for the NVE P0 = 0, the eigenvalues obey

λ̃m = −Dξ2
m + 1,

i.e., at least the mode 0 is unstable. Moreover, the linearized equation of (6.5) around the PVE P1 = 1
gives the eigenvalues:

λ̃m = −Dξ2
m + α − 1.

Thus P1 is unstable, unless the unlikely event 0 ≤ α ≤ 1 holds, implyig the LAS of P1.

6.3. Non–local information

At variance with the global information scenario, under non-local information it is necessary to
distinguish the case where Ω is unbounded from the one where it is bounded.

6.3.1. Stability of homogeneous equilibria: Ω unbounded

As noted above, assuming that L � 1, we can study the following equation deduced from (2.10)

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

φ(x − y)P(y, t)dy
)

(6.8)
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with x ∈ Ω = Rn, n = 1, 2, t > 0 and Neumann condition (2.11) on the boundary (i.e., at infinity).
The associated linearized equation at a generic homogeneous steady state P∗ is:

∂tw = D∇2w + [(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗)] w − α2P∗(1 − P∗)
∫

Ω

φ(x − y)w(y, t)dy. (6.9)

The associated eigenvalue problem has the form:

D∇2W + [(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗)] W − α2P∗(1 − P∗)
∫

Ω

φ(x − y)W(y)dy = λW. (6.10)

Let us now focus on the case of primary interest here namely when P∗ is given by the behavioral
equilibrium i.e., P2 defined in (5.2). This yields:

D∇2W − P2 (1 − P2) (α1W + α2J(W)) = λW. (6.11)

We consider the linearized operator L on L2(Rn) (n=1,2), such that

LW := −D∇2W + P2 (1 − P2) (α1W + α2J(W)) . (6.12)

The spectrum of this operator is denoted by σ(L). The eigenvalue problem

LW = λW

is called spectrally stable if σ(L) ⊂ [0,+∞) and spectrally unstable if there exists λ < 0 | λ ∈ σ(L).
Moreover, σ(L) is spectrally stable iff the operator L is positive, i.e., (LW,W) > 0 for any W. Let us
introduce the function

Φ(ξ) = Dξ2 + P2 (1 − P2) (α1 + α2φ̃(ξ)).

where φ̃(ξ) is the Fourier transform (defined in formula (4.4)) of φ(x), which is real since we assumed
symmetric φ(x).
Noting that

φ̃(0) =

∫
Ω

φ(y)dy = 1, (6.13)

we can state the following:
i) function Φ(ξ) evaluated at ξ = 0 is always positive, i.e.,

Φ(0) = P2 (1 − P2) (α1 + α2) = 1 − P2 > 0;

ii) for any given continuous and bounded function φ̃, Φ(ξ) becomes strictly positive if D is sufficiently
large. Thus, for sufficiently large values of the diffusion coefficient the behavioral equilibrium P2 will
be stable irrespective of the shape of the spatial information kernel.

On the contrary, if φ(x) has bounded support, then its Fourier transform can take negative values
that can destabilize P2.

We now consider the special cases of the spatial information kernel φ(x) considered in Section 4.
If φ(x) = φ1(x) = Cge−ax2

then function Φ takes the form:

Φ(ξ) = Dξ2 +
1
α

(
1 −

1
α

) (
α1 + α2e−

ξ2
4a

)
. (6.14)
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Figure 1. Representation of function Φ(ξ) in the event φ(x) = φ3(x) with α1 = 0, α2 = 1.2
and N = 10. Here D = 10−7 in (a) and D = 1 in (b).

As the latter expression is strictly positive, the behavioral equilibrium P2 is always locally stable.
Similarly, under the exponential tent kernel φ(x) = φ2(x) = Cee−a|x|, x ∈ Rn (n = 1 or 2):

Φ(ξ) = Dξ2 +
1
α

(
1 −

1
α

) α1 + α2

(
a2

a2 + ξ2

)(n+1)/2 . (6.15)

Therefore, also in this case function Φ(ξ) is strictly positive and P2 is locally asymptotically stable.
These two examples suggest that kernels that are non-null over the whole space, and have a realistic

shape (i.e., are decreasing in the distance from the current site), always promote the local stability of
the behavioral equilibrium P2.

To analyse the effects of the two proposed kernels with bounded support, we will only consider, for
sake of notation simplicity, the case Ω = R.

Under the kernel φ(x) = φ3(x) = CN(N2 − x2)Hev(N − |x|), with N > 0, function Φ is as follows:

Φ(ξ) = Dξ2 +
1
α

(
1 −

1
α

) (
α1 + α2

3
N3ξ3

(sin[Nξ] − Nξ cos[Nξ])
)
. (6.16)

Depending on N and on the other parameters, Φ(ξ) can be strictly positive or can change sign. As noted
before, Φ(0) = 1 − 1/α > 0. Also in this case, if ξ is large enough, the function Φ(ξ) is positive and
the equilibrium P2 is locally stable. When the diffusion coefficient is large enough, the local stability
in ensured. The instability can appear if D is small enough and if the ratio ρ = α2/α1 is large enough.

This type of behavior is illustrated in the Figure 1 in the particular case in which α1 = 0.
We finally consider φ(x) = φ4(x) = 1/(2h)Hev(h− |x|), with h > 0. The function Φ(ξ) reads as follows:

Φ(ξ) = Dξ2 +
1
α

(
1 −

1
α

) (
α1 + α2

sin[hξ]
hξ

)
. (6.17)

Depending on h and the other parameters, this function can be strictly positive or can change sign.
Moreover, Φ(ξ) is positive for |ξ| sufficiently large. If the diffusion coefficient is large, then Φ(ξ) is
positive for all ξ, and the behavioral equilibrium P2 is locally stable. The instability can appear if D is
small enough and ρ = α2/α1 is large enough.
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Figure 2. Representation of function Φ(ξ) in the event φ(x) = φ4(x) with parameters listed
in Figure 1 and h = 10.

A possible form of function Φ(ξ) is given in Figure 2, in the special case in which α1 = 0.
So we may say that in the examined examples, the stability of P2 depends on whether or not the
support of φ(x) is bounded. If it is bounded, then P2 can become unstable depending on the
parameters characterizing the kernel φ(x), i.e., on the features of the kernel. In this case some
spatially heterogeneous solutions can appear.

Proceeding as above, it is an easy matter to show that replacing P∗ = P0 = 0 (the ’no-vaccinators’
scenario) in eigenvalue problem (6.10), we obtain instability (since Φ(ξ) = Dξ2−1); moreover if α > 1
(that correspond to biological existence of P2), also P1 = 1 is unstable:

Φ(ξ) = Dξ2 + 1 − α. (6.18)

In the unlikely event that α ≤ 1, instead, the all-vaccinator homogeneous equilibrium P1 = 1 is LAS.
In Figure 3 an illustration of stability analysis of equilibrium P2 is given for Eq (6.8). The Eq (2.10)

is simulated with the step function φ4(x) = 1/(2h)Hev(h− |x|) as kernel. Choosing a small perturbation
as initial data, in Figure 3(a), the solution evolves in time approaching to the stable equilibrium P2;
while in Figure 3(b) the loss of stability of the constant equilibrium point P2 and the convergence to
a periodic spatial structure is shown. The numerical results confirm the analytical ones: in the case
where D is sufficiently large and the step h small, P2 is LAS, if D is small and h increases, we see
convergence to non-constant structures.

6.3.2. Stability of uniform equilibria: Ω bounded

Assuming now that Ω is bounded, we obtain the following equation from (2.10)

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

φ(x − y)P(y, t)dy
)
, (6.19)

with t > 0, x ∈ Ω and Neumann conditions (2.11).
For the sake of notation simplicity we will consider here Ω = [−L, L]. The eigenvalues problem

obtained as a result of the linearization about a generic steady state P∗ is given by the equality

DW ′′ + [(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗)] W − α2P∗(1 − P∗)
∫ L

−L
φ(x − y)W(y)dy = λW. (6.20)
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Figure 3. Illustration of stability character of equilibrium P2 in Eq (2.10), with φ(x) = φ4(x).
In (a) α1 = 0.6, α2 = 0.7, D = 100 and h = 3. In (a) α1 = 0.9, α2 = 1.7, D = 0.6 and h = 7

Since for both the NVE and the PVE equilibria P∗ = P0 = 0 and P∗ = P1 = 1 the non–local term
disappears, the resulting local stability analysis is straightforward and it is omitted. Therefore, we will
only focus on the behavioral equilibrium P2 = 1/α.

Here, we make some assumptions. We will suppose that the function φ(x) is defined on the whole
axis and that it is periodic with the period 2L:

φ(x + 2Lm) = φ(x), −L ≤ x ≤ L, m = ±1,±2, ... (6.21)

Taking P∗ = P2, brings to the eigenvalue problem

DW ′′ − P2(1 − P2)
(
α1W + α2

∫ L

−L
φ(x − y)W(y)dy

)
= λW,

in the form
w(x) = cos (ξmx) , ξm =

mπ
L
, m = 0, 1, 2, ...

Note that the boundary conditions (2.11) are satisfied. Taking into account that function φ is periodic
and even, we obtain ∫ L

−L
φ(x − y) cos (ξmy) dy = cos (ξmx)

∫ L

−L
φ(z) cos (ξmz) dz.

Thus, we have that the m–th eigenvalue reads as follows:

λ∗m = −Dξ2
m − P2 (1 − P2) (α1 + α2φm), (6.22)

where

φm =

∫ L

−L
φ(z) cos (ξmz) dz. (6.23)
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We note that λ∗m is negative for m = 0 and for m sufficiently large, while it can be positive for some
intermediate values of m depending on the function φ and on the values of parameters, similarly to
what we observed in the continuous spectrum analysis.

Let us now consider φ(x) = φ3(x) = (1/(2h))Hev(h − |x|), 0 < h < L. Then

φm =
1
ξmh

sin (ξmh) . (6.24)

Consider the functions

Φm(h) = −Dξ2
m − P2 (1 − P2)

(
α1 + α2

1
ξmh

sin (ξmh)
)
, m = 1, 2, ...

If Φm(h) is a positive function, then the corresponding eigenvalue λ∗m is also positive. Let us find
the conditions on parameters when the maximal eigenvalue is zero (stability boundary). From the
conditions

Φm(h) = 0, Φ
′

m(h) = 0,

where prime denotes the derivative with respect to h, we obtain

ν = tan ν, m2P2(1 − P2)
(
α1 +

α2

ν
sin ν

)
= 0, (6.25)

where ν = ξmh. The first relation in (6.25) allows us to find ν, and the second relation determines the
stability boundary.

7. Bifurcation analysis for nonlocal information in case of bounded Ω

In the case of nonlocal information and bounded one-dimensional Ω, it is possible to carry out the
bifurcation analysis (a.k.a. weakly nonlinear analysis) for Eq (6.19) under the assumption that D is the
bifurcation parameter [40].

The stationary non-homogenous solutions of the model solve

DP′′ + P(1 − P)
(
1 − α1P − α2

∫ L

−L
φ(x − y)P(y, t)dy

)
= 0, (7.1)

with P′(−L) = P′(L) = 0 and assuming that conditions (6.21) for the kernel φ(x) hold.
The equilibrium state P(x) = P2 = 1/α is a solution of (7.1), independently from the values assumed

by D.
If D crosses a bifurcation value D0, a simple real eigenvalue of the linearized problem crosses zero.

In order to study this bifurcation, we look for solutions of (7.1) in the form of the expansion

P(x) = P2 + εp1(x) + ε2 p2(x) + ...

where ε is a small parameter. We set

D = D0 + εD1 + ε2D2 + ...
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Substituting these expansions into Eq (7.1) and equating the terms in ε1, we get

D0 p′′1 (x) − α1P2(1 − P2)p1(x) − α2P2(1 − P2)
∫ L

−L
φ(x − y)p1(y)dy = 0, (7.2)

with p1(−L) = p1(L) = 0. This problem coincides with eigenvalue problem (6.20) with P∗ = P2 and
λ = 0. Hence the value D0 should be chosen in such a way that this eigenvalue problem has a zero
eigenvalue, p1(x) = cos (ξmx) is the corresponding eigenfunction, with m an integer, m , 0.

Next, we equate the terms with ε2:

D0 p′′2 (x) − α1P2(1 − P2)p2(x) − α2P2(1 − P2)
∫ L

−L
φ(x − y)p2(y)dy = f , (7.3)

where p2(−L) = p2(L) = 0 and

f = −D1 p′′1 (x) + (1 + α1 − 3α1P2 − α2P2) p1(x)2 + α2 (1 − 2P2) p1(x)
∫ L

−L
φ(x − y)p1(y)dy =

=
(
−D1 + 1−2P2

P2(1−P2) D0 p1(x)
)

p′′1 (x) + (1 + α1 − 3α1P2 − α2P2 + α1(2P2 − 1)) p2
1(x).

In order to obtain solvability conditions for problem (7.3), let us note that problem (7.2) is self-adjoint
since the kernel φ is an even function. Indeed, it can be directly verified that∫ L

−L
v(x)(LP)(x)dx =

∫ L

−L
P(x)(Lv)(x)dx,

whereL is the operator which corresponds to the left-hand side of (7.2) and which acts on C2 functions
satisfying the boundary conditions. Hence problem (7.3) is solvable if and only if∫ L

−L
f (x)p1(x)dx = 0.

Therefore

D1 =
D0(1 − 2P2)
P2(1 − P2)

∫ L

−L
p3

1(x)dx∫ L

−L
p2

1(x)dx
= 0,

and
p2(x) = A (1 + B cos (2ξmx)) ,

where

A =
D0ξ

2
m(2P2 − 1)

2P2(P2 − 1)2 , B =
(1 − P2)

4D0ξ2
m + P2(1 − P2)(α1 + α2φ2m)

.

The terms with ε3 give the problem

D0 p′′3 (x) − α1P2(1 − P2)p3(x) − α2P2(1 − P2)
∫ L

−L
φ(x − y)p3(y)dy = f1, (7.4)

where

f1 = −D2 p′′1 − α1 p3
1 + (2 + 2α1 − 6α1P2 − 2α2P2)p1(x)p2(x) + α2

[
(1 − 2P2)p2(x) − p2

1(x)
]

∫ L

−L
φ(x − y)p1(y)dy + α2(1 − 2P2)p1(x)

∫ L

−L
φ(x − y)p2(y)dy

=

(
−D2 + D0

(1−2P2)p2(x)
P2(1−P2) − D0

3P2
2−3P2+1

P2
2(1−P2)2 p1(x)2

)
p′′1 + D0

1−2P2
P2(1−P2) p1(x)p′′2 .
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From the solvability condition ∫ −L

L
f1(x)p1(x)dx = 0,

we obtain

D2 = D0
4A(2 + 5B)P3

2 − 3[3 + 2A(2 + 5B)]P2
2 + [9 + 2A(2 + 5B)]P2 − 3

4P2
2(1 − P2)2

.

If D2 , 0, then from the expansion for D we obtain

ε = ±

√
D − D0

D2
,

and up to the second-order terms,

P(x) = P2 + εP1(x) + ε2P2(x). (7.5)

The bifurcation is supercritical (D > D0) for D2 > 0 and P2 > 1
2 . The bifurcation is subcritical

(D < D0) if the ratio (2P2 − 1)/D2 is negative.

8. Traveling waves and generalized traveling waves

Preliminarily, we recall that in Section 2 we pointed out that in case of constant rate of transfer from
the strategy ’vaccine’ to the strategy ’no–vaccine’ (α(Mse) = α0) our model is equivalent to the most
prototypical equation generating traveling waves, the Fisher-Kolmogorov equation (3.1). However,
this case can more be considered as pathological than a realistic scenario.

In this section, we look in non-pathological cases (from the epidemiological viewpoint) for the onset
of possible traveling waves [22, 43], i.e., heteroclinic connections between two equilibria.

In this section, we restrict the analysis to the case in which the domain Ω is one-dimensional and
unbounded, i.e., Ω = R.

8.1. Local information

Wave solutions for Eq (4.1)

∂tP = ∇2P + P(1 − P)(1 − αP),

are function of the form P(x − ct) = p(z) bounded on the whole axis and twice continuously
differentiable. The constant c is a speed of the wave, z = x − ct is the moving coordinate frame and

lim
x→±∞

P(x) = P± (8.1)

with P− unstable and P+ stable equilibrium point. After substitution of variable z in Eq (4.1), we obtain
the following ordinary differential equation:

Dp′′ + cp′ + p(1 − p)(1 − αp) = 0. (8.2)

It is known that, a necessary condition for the existence of the solution is that the P− must have an
unstable (departing) manifold and P+ a stable (incoming) manifold. After stability analysis, and
following [44], we obtain the following result:
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Figure 4. Traveling wave for Eq (4.1) with α1 = 0.6, α2 = 0.7, D = 2 and c = 2
√

2.

Theorem 2. If α > 1, there exists a constant c(1) = 2
√

D such that ∀ c ∈ [c(1),+∞[, there exists a
traveling wave solution of velocity c connecting equilibrium P2 = 1/α and equilibrium P0 = 0, i.e., a
function P(x− ct), solution of Eq (8.2) on the real line ]−∞,+∞[ and satisfying Eq (8.1) with P− = P2

and P+ = P0. This solution is monotone decreasing and the derivatives P′′(z) and P′(z) tend to zero
as x→ ±∞. Moreover, a traveling wave solution of velocity c connecting equilibria P1 and P0 cannot
exist.

We recall that for bounded Ω we had shown that the spatially homogenous equilibrium P2 is GAS.
In the above theorem it is shown, roughly speaking, that the TW are such that the scenario where the
value P = P2 spreads until it invades all the space.
The case 0 < α < 1 has here some further mathematical interest, since the equation can be read as a
modification of the Fisher-Kolmogorov equation.

Theorem 3. If 0 < α < 1, there exists a constant c(1) such that ∀ c ∈ [c(1),+∞[, there exists a traveling
wave solution of velocity c connecting equilibrium P1 = 1 and equilibrium P0 = 0, i.e., a function
P(x − ct), solution of Eq (8.2) on the real line ] − ∞,+∞[ and satisfying Eq (8.1) with P− = P1 and
P+ = P0. This solution is monotone decreasing and the derivatives P′′(z) and P′(z) tend to zero as
x→ ±∞.

Traveling wave solutions for the Eq (4.1) are shown in Figure 4 in the case in which α > 1. They
connect the constant state P2 at −∞ and the constant state P0 at +∞ , with the minimal speed c = c(1) =

2
√

D.

8.2. Non–local information

In previous sections, we proved that, in the case of non–local information, the spatially
homogeneous equilibrium solution P2 = 1/α can lose its stability. Then some spatial structures can

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1090–1131.



1109

bifurcate from it. Therefore, instead of traveling waves connecting P0 and P2, we can expect the
existence of some other solutions connecting P0 at +∞ with some structures at −∞. Such solutions
are called generalized traveling waves (GTW) and were first introduced in [45] for reaction-diffusion
systems. Such solutions can be characterized by two main properties:
(1) They exist for all t ∈ R. Moreover, under some conditions, such solution can be unique and stable.
(2) They are propagating solutions, which can be explained as follows: let q be a constant,
P+ < q < P−. For each t fixed consider the equation P(x, t) = q with respect to x. Denote by m+

q (t) its

maximal solution (if it exists) and by m−q (t) its minimal solution. If
m±q (t)

t → c as t → ∞, then we say
that this solution propagates with the speed c. Thus, GTW are global propagating solutions.

Thus, we want to study GTW solution for the equation

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫ ∞

−∞

φ(x − y)P(y, t)dy
)
. (8.3)

where Ω is unbounded.
Consider the Cauchy problem for the equation

∂tP = D∇2P + c
∂P
∂x

+ P(1 − P)
(
1 − α1P − α2

∫ ∞

−∞

φ(x − y)P(y, t)dy
)
, (8.4)

with c ≥ 2
√

D a given constant. Assume that the initial condition P(x, 0) = P0(x) is non-negative
and less than 1. Then the solution P(x, t) exists and is also non-negative and less than 1 for all t ≥ 0.
Consider

J(x, t) ≡
∫ ∞

−∞

φ(x − y)P(y, t)dy ≥ 0.

Hence
d(x, t) ≡ 1 − α1P − α2J(x, t) ≤ 1.

Equation (8.4) becomes

∂tP = D∇2P + c
∂P
∂x

+ P(1 − P)d(x, t). (8.5)

Consider also the equation

∂tv = D∇2v + c
∂v
∂x

+ v(1 − v). (8.6)

The following result holds:

Lemma 4. If c ≥ 2
√

D, there exists a stationary solution vc(x) of (8.6) such that

P(x, 0) < vc(x), x ∈ R ⇒ P(x, t) < vc(x), x ∈ R, t > 0. (8.7)

Proof. Denoting z = v − P and taking the difference of Eqs (8.6) and (8.5), we obtain

∂tz = D∇2z + c
∂z
∂x

+ z(1 − v − P) + P(1 − P) (1 − d(x, t)) . (8.8)

Since the last term in the right-hand side of Eq (8.8) is non-negative, then from the inequality z(x, 0) > 0
for all x ∈ R, it follows that z(x, t) > 0 for all t > 0 and x ∈ R. Hence,

P(x, 0) < v(x, 0), x ∈ R ⇒ P(x, t) < v(x, t), x ∈ R, t > 0. (8.9)
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Stationary solutions of Eq (8.6) correspond to traveling waves for the KPP-equation [39, 41]. If c ≥
2
√

D, then they are monotone in space and stable, while for 0 < c < 2
√

D they are non-monotone and
unstable [41, 44]. These waves have limits at infinity: v(−∞) = 1, v(+∞) = 0.
Denoting by vc(x) a stationary solution of Eq (8.6) for c ≥ 2

√
D, the claim is proved. �

Thus, we obtain an estimate from above of the solution of the Cauchy problem associated to (8.5).
We now estimate it from below. From the inequality (8.9),

J(x, t) ≤
∫ +∞

−∞

φ(x − y)vc(y)dy ≡ K(x). (8.10)

We assume w < 1: consider the equation

∂tw = D∇2w + c
∂w
∂x

+ w(1 − w)(1 − α1vc − α2K(x)). (8.11)

Denoting s = P − w and taking the difference between Eqs (8.5) and (8.11), we obtain

∂ts = D∇2s+c
∂s
∂x

+s(1−P−w)(1−α1vc−α2J(x))+α1P(1−P)(vc−P)+α2P(1−P)(K(x)−J(x, t)). (8.12)

Since the last two terms in the right-hand side of this equation are non-negative, then

w(x, 0) ≤ P(x, 0), x ∈ R, ⇒ w(x, t) ≤ P(x, t), x ∈ R, t > 0. (8.13)

The following result holds:

Lemma 5. If c ≥ 2
√

D, there exists a stationary solution wc(x) of (8.11) such that wc(x0) = 0 for some
x0, wc(x) > 0 for x > x0, wc(x) < 0 for x < x0 and wc(x) ∼ vc(x), when x→ ∞

Proof. We look for stationary solution of Eq (8.11), i.e.,

Dw′′ + cw′ + w(1 − w)(1 − α1vc − α2K(x)) = 0. (8.14)

Since vc and K(x) tend to zero when x→ ∞, then 1−α1vc−α2K(x) is close to 1 in some right half-axis.
Then, for c ≥ 2

√
D, solutions of (8.14) are close to functions vc(x) when x→ ∞.

We prove the existence of a solution which has a zero. Denote g(x) = 1 − α1vc − α2K(x) and let
I = (−∞, ω) be the interval where g(x) < 0: then any non-zero solution of (8.14) has at most one zero
in I. Indeed, let w(x) be solution of (8.14) and x0 one of its zeros. Put

W(x) = e
c
D (x−x0)w(x)w′(x), x ∈ I. (8.15)

Taking into account Eq (8.14), we have

W ′(x) = e
c
D (x−x0)

(
(w′)2 −

w2

D
(1 − w)g(x)

)
≥ 0. (8.16)

So W is non-decreasing on I. If W has another zero x1 ∈ I, then W(x) = 0 on [x0, x1]. Thus w is
constant on [x0, x1], namely w = 0 (from (8.14)) on [x0, x1] and consequently on I. The contradiction
shows that w has at most one zero in I.
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Since w(x) converges to zero when x → ∞, there exists x∗ large enough such that we can assume
that Eq (8.14) becomes:

Dw′′ + cw′ + g(x)w = 0. (8.17)

Let c > 2
√

D. Since g(x) → 1 at infinity, there exist two linearly independent solutions of Eq (8.17)
given by [42]

w1(x) ∼ e−λ1 x, w2(x) ∼ e−λ2 x, (8.18)

where λ1 and λ2 are solution of the algebraic equation

Dλ2 − cλ + 1 = 0.

If λ1 > λ2, then the general solution of (8.17) can be written as

w(x) = k1w1(x) + k2w2(x), x ∈ R,

where k1 and k2 are real constants. We can choose k1 < 0 and k2 > 0 such that w(x) has an only zero x0

and w(x) < 0 for x < x0, w(x) > 0 for x > x0. In addition, w(x) behaves as vc(x) if c > 2
√

D: so that,
we can have the estimation w(x) ≤ P(x, 0) ≤ vc(x) for the initial condition.
If c = 2

√
D, then λ1 = λ2. Then the qualitative behavior of the solutions of Eq (8.17) as x → ∞ is

determined by
w(x) = w1(x) (k1 + k2x) , (8.19)

with k1 and k2 real constants. We can choose k1 < 0 and k2 > 0 such that w(x) has an only zero x0 and
w(x) < 0 for x < x0, w(x) > 0 for x > x0. This result can be achieved choosing both the constants
k1 and k2 positive. In addition, w(x) behaves as vc(x) if c = 2

√
D: so that, we can have the estimation

w(x) ≤ P(x, 0) ≤ vc(x) for the initial condition. �

Lemma 6. Let z1(x) = max(0,wc(x)), and z2(x) = vc(x). If

z1(x) < P0(x) < z2(x), x ∈ R

then the solution of the Cauchy problem for Eq (8.4) with the initial condition P0(x) satisfies the
estimate

z1(x) < P(x, t) < z2(x), x ∈ R

for all t > 0.

Theorem 7. There exist positive GTW solutions of Eq (8.3) for all c ≥ 2
√

D. Positive GTW converging
to zero as x→ ∞ do not exist for c < 2

√
D.

Proof. The existence of GTWs for all c ≥ 2
√

D follows from the previous lemma. Indeed, consider
solution of Eq (8.3) in the form P(x, t) = P(x − ct, t). Then

∂tP = D∇2P + c∇P + P(1 − P)
(
1 − α1P − α2

∫ ∞

−∞

φ(x − y)P(y, t)dy
)
. (8.20)

It follows from Lemma 3 that there exists an ω-limit solution Pc(x, t) of Eq (8.20) such that

z1(x) ≤ Pc(x, t) ≤ z2(x), (8.21)
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for all t ∈ R. In order to construct this solution, consider the solution P(x, t) of Eq (8.20) with an initial
condition P0(x) which satisfies the inequality z1(x) ≤ P0(x) ≤ z2(x) for all x. Let tn → ∞ as n → ∞.
Consider next solutions Pn(x, t) with the initial conditions P0

n = P(x, tn). Obviously, each of them is
defined for t > −tn. A locally convergent subsequence of the sequence of functions Pn(x, t) is a solution
of Eq (8.20) defined for all t ∈ R. It satisfies inequality (8.21). It can be easily verified that it is a GTW
with the speed c.

Suppose now that there exists a positive GTW Pc(x, t), converging to 0 as x → ∞, with a speed
c < 2

√
D. Then Pc(x − ct, t) satisfies Eq (8.20). Let us take c < c0 < 2

√
D and consider the equation

DP′′ + c0P′ + P(1 − P) = 0. (8.22)

It has a solution P0(x) that is non-monotone and unstable [41]. Moreover, when x tends to infinity, then

P0(x) ∼ exp(−c0x/2) sin(ax), where a =

√
D|c2

0/4 − 1|. Therefore, equation

∂tP = D∇2P + c∇P + P(1 − P), (8.23)

has a solution P∗(x, t) = εP0(x − (c0 − c)t), where ε is a positive constant. Let x = N1 and x = N2 be
two consecutive zeros of the function P0(x) such that P0(x) is positive between them. Then P∗(x, t) is
a solution of the boundary value problem for Eq (8.23) in the domain

N1 + (c0 − c)t ≤ x ≤ N2 + (c0 − c)t

with the zero boundary conditions. For ε small enough, similarly to (8.9) we can obtain the inequality

P∗(x, t) < Pc(x − ct, t), N1 + (c0 − c)t ≤ x ≤ N2 + (c0 − c)t. (8.24)

If ma(t) is the maximal solution of the equation

Pc(x, t) = a, 0 < a < max
N1+(c0−c)t≤x≤N2+(c0−c)t

P∗(x, t), (8.25)

then
lim
t→∞

ma(t)
t
≥ c0. (8.26)

Since c0 > c and Pc(x, t) converges to zero as x→ ∞, then the last inequality contradicts the assumption
that Pc(x, t) is a GTW with the speed c.

This contradiction proves the theorem. �

8.2.1. Numerical simulations

In Figure 5 we present the results of numerical simulations of Eq (2.10) in one space dimensions.
The kernel is the function φ4(x). If the support of φ is sufficiently small, then there is a classical
traveling wave propagating with a constant speed. Figure 5(a) shows the solution P(x, t) of Eq (2.10)
with the initial condition which has a bounded support. The solution represents two waves propagating
in the opposite directions. It is interesting to note that the wave is not monotone with respect to x.
If we increase the support of the function φ, then the homogeneous in space stationary solution P2

loses its stability and a periodic in space structure appears. In this case we observe propagation of a
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(a) (b)

(c) (d)

Figure 5. Propagation of waves (a) and periodic wave (b)-(c)-(d) for Eq (2.10). Solution
P(x, t) as a function of two variables. Here α1 = 1.1, α2 = 13.1, D = 1. Moreover h = 7 in
(a), h = 13 in (b), h = 14 in (c) and h = 16 in (d).

periodic wave (Figure 5(b)-(c)). Figure 5(d) shows the solution P(x, t) with the exponentially decaying
initial conditions. Therefore, depending on the values of parameters equation (2.10) can have solutions
of different types. For all other parameters fixed, usual traveling waves (with a constant speed and
profile) are observed for sufficiently small values of h. Periodic traveling waves exist for sufficiently
large h. Transition from simple to periodic waves occurs due to the essential spectrum crossing the
imaginary axis. The stationary solution homogeneous in space P2 loses its stability resulting in the
appearance of a stationary periodic solution. The traveling wave connects the constant value P0 for
x = +∞ with this periodic solution for x −→ −∞ . The waves in (a)-(b)-(c) (in which the initial data
has a bounded support) move at their minimal speed c = 2

√
D = 2 and this speed does not depends

on h; while, the speed of the wave (d) is greater than the minimal speed c > 2
√

D and depends on
h. Though we consider in numerical simulations a finite interval, if it is sufficiently large, then the
solution can approach the corresponding GTW.
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9. The role of the memory of past information

Here we assume that the information is not only spatially and but also temporally non–local: the
subjects take their decisions not only on the information on the current state of the system but also on
the past states. In other words, we include the memory of the subjects concerning the past information
about vaccine side-effects. We consider in this section the 1D unbounded domain, i.e., Ω = R.

These assumptions yield:

α(Mse(P)) = α0 + α1

∫ +∞

0
W(τ)P(x, t − τ)dτ + α2

∫
Ω

∫ +∞

0
φ(x − y)W(τ)P(y, t − τ)dτdy, (9.1)

with W(τ) a delaying kernel, i.e., a positive function such that
∫ +∞

0
W(τ)dτ = 1. Using scaling (2.9),

we obtain:

∂tP = D∇2P + P(1 − P)
(
1 − α1

∫ +∞

0
W(τ)P(x, t − τ)dτ − α2

∫
Ω

∫ +∞

0
φ(x − y)W(τ)P(y, t − τ)dτdy

)
, (9.2)

with t > 0, x ∈ Ω.
Here we will focus on the so called acquisition–fading kernel (AFK) [46]:

W(τ) =
bd

d − b

(
e−bτ − e−dτ

)
, (9.3)

with 0 < b < d. This memory kernel, which is such that W(0) = 0 (i.e., absence of information of the
current state of the process), models the process of temporal acquisition of information (with a rapid
timescale 1/d) followed by a fading of the memory (with a ’slow’ timescale 1/b).

By applying the linear chain trick (see the Appendix) one gets the following equivalent system:

∂tP = D∇2P + P(1 − P)(1 − α1M − α2J(M)),
∂tZ = b(P − Z), (9.4)
∂tM = d(Z − M).

9.1. Stability of stationary solutions

Model (9.4) is remindful of systems generating complex self-organized patterns in biochemistry and
in population biology [22, 47], since only one of the involved state densities is endowed of diffusion.
The aim of this section is to investigate the possible bifurcation from the homogenous equilibria of
(9.4) of such self-organized structures.

It is easy to verify that model (9.4) admits the following homogeneous in space stationary solutions

E0 = (0, 0, 0), E1 = (1, 1, 1),

E2 =

(
1
α
,

1
α
,

1
α

)
.

Also here we will focus on E2. Considering the case where Ω is unbounded and linearizing (9.4) at E2

yields the following eigenvalue problem:

D∇2P −
1
α

(
1 −

1
α

)
(α1M + α2J(M)) = λP, (9.5)
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b(P − Z) = λZ, (9.6)
d(Z − M) = λM, (9.7)

whose essential spectrum is given by:

−Dξ2P̃ −
1
α

(
1 −

1
α

) (
α1M̃ + α2M̃φ̃(ξ)

)
− λP̃ = 0, (9.8)

M̃ =
bd

(λ + b)(λ + d)
P̃ (9.9)

Thus, one obtains the following ξ-family of λ polynomials

q(λ, ξ) = λ3 + a2(ξ)λ2 + a1(ξ)λ + a0(ξ) = 0, (9.10)

where
a2(ξ) = b + d + Dξ2 > 0,

a1(ξ) = bd + Dξ2(b + d) > 0,

a0(ξ) =
bd
α2

[
Dξ2α2 + (α − 1)(α1 + α2φ̃)

]
.

Thus E2 is stable iff a0(ξ) > 0 and

H1(ξ) = a2(ξ)a1(ξ) − a0(ξ) > 0,

that is:

H1(ξ) =
1
α2

{
(d + b)D2ξ4α2 + (b + d)2Dξ2α2 + bd

[
(b + d)α2 − (α − 1)(α1 + α2φ̃)

]}
> 0. (9.11)

We recall that a change of sign of H1 in non-spatial systems is associated to the onset of a Hopf
bifurcation, a change of sign in a spatiotemporal context give rise to a Hopf-Turing bifurcation [48]
and finally the only change of sign of a0(ξ) would give rise to a ’pure’ Turing bifurcation [48, 49].

In this context it is important to distinguish instabilities that genuinely involve the spatio–temporal
model form those that would have been also found in the non–spatial model (NSM). As regards the
NSM, we observe that

a0|D=0,φ̃=1 =
bd
α

(α − 1) > 0.

Thus, for Routh-Hurwitz criterion to be satisfied by the NSM, it must be:

HNS M
1 = H1|D=0,φ̃=1 =

bd
α

[α(b + d − 1) + 1] > 0.

Thus:
i) if b + d > 1 − 1/α, then HNS M

1 > 0 and the equilibrium of the the NSM is LAS;
ii) if b + d < 1 − 1/α then HNS M

1 < 0 and the equilibrium of the NSM is unstable via Hopf bifurcation.
The above result on HNS M

1 actually implies that H1(ξ) > 0. Indeed from (9.11), we have that H1(ξ)
is composed by three addenda: (d + b)D2ξ4 > 0, (b + d)2Dξ2 > 0 and

bd
α2

[
(b + d)α2 − (α − 1)(α1 + α2φ̃)

]
=
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=
bd
α2

[
(b + d − 1)α2 + α − (α − 1)α2(−1 + φ̃)

]
=

=
bd
α2 (α − 1)

[
α

α − 1
(1 + (b + d − 1)α) + α2(1 − φ̃)

]
> 0.

So no Turing-Hopf bifurcation can be generated if the equilibrium of the NSM is LAS.
Thus, apparently the only route to instability at E2 is via changes of sign of a0(ξ). However it is easy

matter to verify that the condition a0(ξ) > 0 is nothing else that the LAS condition of the intermediate
equilibrium P2 = 1/α defined in (5.2) of our model (2.10) without memory.

Summarizing, we may state that the introduction of temporal non-locality via the AFK does not
make E2 unstable unless:
i) b + d ≥ 1 − 1/α, i.e., the NSM is unstabilized at E2 by the memory effect;
ii) there exist ξ such that a0(ξ) < 0, i.e., the original model without memory is unstable.

The above analysis, with simple changes, can also be repeated in the case of local and of global
information.

In the Figure 6 we give an illustration of the stability character of the state of equilibrium E2 for the
system (9.4), with φ(x) = φ4(x), choosing a small perturbation as initial data. In Figure 6(a) we see that
the solutions evolve in time to reach the stable equilibrium E2, while in Figure 6(b) the stability is lost
and we see the convergence to a periodic spatial structure. This depends on the diffusion coefficient D,
the ratio ρ = α2/α1 and the parameter h.
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initial data

(a) (b)

Figure 6. Illustration of stability analysis of equilibrium E2 for system (9.4) with φ(x) =

φ4(x). In (a), the parameters used are those listed in the Figure 3(a) with b = 1, d = 2; in (b)
we have α1 = 0.7, α2 = 1.2, h = 7.7, D = 0.1, b = 3 and d = 5.

Even if the presence of GTW has not been proved analytically for the system (9.4), in Figure 7 we
provide an example of possible GTW in the case of system (9.4). The kernel φ(x) is the function φ4(x)
and the initial data decays exponentially. We focus our attention on delay parameters b and d. If b and
d are small enough, then spatial periodic structures appear, while increasing the value of b and d, this
kind of structure disappear.

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1090–1131.



1117

(a) (b)

(c) (d)

Figure 7. Propagation of waves for Eq (9.4). Solution P(x, t) as a function of two variables.
Here the values of parameters are as in Figure 5 with h = 7. Moreover b = 0.1, d = 0.2 in
(a), b = 0.1, d = 0.78 in (b), b = 0.36, d = 0.78 in (c) and b = 0.8, d = 1 in (d).

9.2. Traveling wave with local information

Now, we describe wave solutions for Eq (9.4), setting the Dirac delta δ(x) as kernel, i.e., solutions
of the following system

∂tP = D∇2P + P(1 − P)(1 − αM),
∂tZ = b(P − Z), (9.12)
∂tM = d(Z − M).

Let E = (P,Z,M)T be the variable vector of system (9.12) such that

lim
x→±∞

E(x) = E± (9.13)
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Figure 8. traveling wave solution for system (9.4) with φ(x) = δ(x): here the parameter used
are those listed in Figure 4 with b = 3 and d = 4. Waves travel at minimal speed c = 2

√
D.

with E− unstable and E+ stable equilibrium state. After substitution of the wave variable z = x − ct in
model (9.12), we obtain the following system of ordinary differential equations:

Dp′′ + cp′ + p(1 − p)(1 − αm) = 0,
cω′ + b(p − ω) = 0, (9.14)
cm′ + d(ω − m) = 0,

where P(x − ct) = p(z), Z(x − ct) = ω(z) and M(x − ct) = m(z). When α < 1, recall that E0 is unstable
and E1 is stable with respect to the system (9.4). Thus, the following result holds [44]:

Theorem 8. If 0 < α < 1, there exists a traveling wave solution of velocity c ∀ c ∈ [c(1),+∞[,
connecting equilibrium E1 and equilibrium E0, i.e., a vector function E(x − ct), solution of system
(9.14) on the real line ] −∞,+∞[ and satisfying Eq (9.13) with E− = E1 and E+ = E0.

If α > 1, then equilibrium E1 becomes unstable while equilibrium E2 is stable with respect to model
(9.4). Therefore, it can affirmed that [44]:

Theorem 9. If α > 1, there exists a traveling wave solution of velocity c ∀ c ∈ [c(1),+∞[, connecting
equilibrium E2 and equilibrium E0, i.e., a vector function E(x − ct), solution of system (9.14) on the
real line ] − ∞,+∞[ and satisfying Eq (9.13) with E− = E2 and E+ = E0; moreover, traveling wave
solution between E1 to E0 cannot exist.

In Figure 8, we show traveling wave solution for system (9.4) with minimal speed c = c(1) = 2
√

D,
connecting the equilibrium E2 at −∞ and equilibrium E0 at +∞.
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10. Vaccine awareness campaigns: Stability Analysis of Homogeneous Steady States

A relevant task of a Public Health System (PHS) is that of investing to continuously sustain the
vaccine uptake in the population. In the scenario we considered, namely prevention of an infection
which has been eliminated, this is particularly important. Indeed, in such a case parents are scarcely
motivated to vaccinate due to the low perceived risk, which is mirrored by the fact that ϑ(Mi) = ϑ0.

The action of the PHS in enacting vaccine awareness campaigns was modelled in [14] by amending
the basic imitation dynamics of strategies. Briefly, they assumed that the action by the PHS allows a
steadily positive flux γA switching per time unit from the Non-vaccinator to the Vaccinator strategy.

Extending the above ideas [5, 14, 15, 31] to the present spatiotemporal setting yields the model:

∂tP = D∇2P + ϑ(Mi)AP − α(Mse)AP + γA,

∂tA = D∇2A − ϑ(Mi)AP + α(Mse)AP − γA,
(10.1)

where γ is a positive constant.
Keeping expressions (2.3) and (2.4), using A = 1 − P and scaling as (2.9), from (10.1) we obtain:

∂tP = D∇2P + P(1 − P)(1 − α1P − α2J(P)) + γ(1 − P), (10.2)

with t > 0, x ∈ Ω and Neumann condition (2.11).
A first effect of public action can immediately be seen: the NVE P0 = 0 is no more an equilibrium

point.
Moreover, system (10.2) has two spatially homogenous equilibria, namely the PVE P1 = 1 and the

equilibrium Pγ ∈ (1/α, 1) where Pγ is the solution of:

γ = αP2 − P,

i.e.,

Pγ =
1 +

√
1 + 4αγ
2α

. (10.3)

It is easy to verify that:
i) if 0 < γ < (α − 1) then Pγ ∈ (1/α, 1); i.e., Pγ is epidemiologically meaningful;
ii) it is d/dγPγ > 0;
iii) it is Pγ = P2 = 1/α, if γ = 0. The previous results show that the new behavioral equilibrium Pγ,
which replaces the ’old’ equilibrium P2, allows a higher vaccine uptake than P2 thanks to the univocal
effect of public intervention.

11. A preliminary simulation of the impact of Public Health System Action

Before investigating the effects of the awareness intervention by the PHS on the stability of the
equilibria of (10.2) (and its dependence on the distinct hypotheses on the spatial information kernel),
here we illustrate, by means of a simulation, how a Public Health System intervention to favour
vaccination can impact on the behavior of the system. We assume that subjects make their decisions
by taking into the account their memory. In particular we choose the scenario depicted in the in the
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panel (a) of Figure 7 a GTW whose features are deeply influenced by the temporal non–locality. We
assume that initially there is no public health intervention, which starts at about two third of the
simulation interval and grows up to a maximal value γMax:

γ(t) =
γMax

50
Hev(t − 100). (11.1)

Thus, we simulate the equation:

∂tP = D∇2P + P(1 − P)
(
1 − α1

∫ +∞

0
W(τ)P(x, t − τ)dτ − α2

∫
Ω

∫ +∞

0
φ(x − y)W(τ)P(y, t − τ)dτdy

)
+ γ(t)(1 − P), (11.2)

where W(τ) is the delay function defined in (9.3) and γ(t) the function defined in (11.1). Figures 9 and
10 (view from the top) show that initially the GTW pattern coexists with a rapidly increasing uniform
pattern. This pattern relatively soon destroys the GTW and, any case, it immediately increases the
minimum value attained by the GTW.

11.1. Local information

Under purely local information (i.e., φ(x) = δ(x)), Eq (10.2) becomes:

∂tP = ∇2P + P(1 − P)(1 − αP) + γ(1 − P). (11.3)

Proceeding as in the case without vaccine awareness campaign, the following global stability results
hold:

Theorem 10. If α > 1 and γ ∈ (0, α − 1) then Pγ is globally stable (and P1 is unstable).
If α > 1 and γ ≥ α − 1 then P1 is globally stable.
In the trivial case where 0 ≤ α ≤ 1 then P1 is globally stable independently of γ ≥ 0.

The previous results straightforwardly extend to the present spatially structured case the findings
in [14], showing that the behavioral equilibrium Pγ is always GAS whenever it exists, while when it
disappears the PVE inherits its global stability. As for possible heteroclinic connections between Pγ

and P1, introducing the traveling variable z = x − ct, the following negative result is established:

Theorem 11. There are no monotone decreasing traveling wave solutions for Eq (11.3) connecting
equilibrium P1 at equilibrium Pγ with positive speed.

11.2. Non–local information

11.2.1. The case of Ω unbounded

As noted above, assuming that L � 1, we have the following equation

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫ ∞

−∞

φ(x − y)P(y, t)dy
)

+ γ(1 − P) (11.4)

with x ∈ Ω = R, t > 0 and Neumann condition (2.11).
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(a) Pγ = 0.25 (b) Pγ = 0.5

(c) Pγ = 0.75 (d) Pγ = 0.9

Figure 9. Solution P(x, t) as a function of two variables for Eq (9.3) . Here α1 = 1.1,
α2 = 13.1, D = 1, h = 7, b = 0.1 and d = 0.2. Moreover γMax = 0.6375 in (a), γMax = 3.05
in (b), γMax = 7.2375 in (c) and γMax = 10.602 in (d).

The associated linearized equation at a generic homogeneous steady state P∗ reads

∂tw = D∇2w+
[
(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗) − γ

]
w−α2P∗(1−P∗)

∫ ∞

−∞

φ(x−y)w(y, t)dy (11.5)

and the related eigenvalue problem has the form:

D∇2W +
[
(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗) − γ

]
W−α2P∗(1−P∗)

∫ ∞

−∞

φ(x−y)W(y)dy = λW. (11.6)

If P∗ = Pγ, then we obtain the following eigenvalue

ν(ξ) = −Dξ2 + (1 − 2Pγ)(1 − αPγ) − α1Pγ(1 − Pγ) − γ − α2Pγ(1 − Pγ)φ̃(ξ). (11.7)

To determine the sign of
χγ = (1 − 2Pγ)(1 − αPγ) − γ,
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(a) Pγ = 0.25 (b) Pγ = 0.5

(c) Pγ = 0.75 (d) Pγ = 0.9

Figure 10. Density plots corresponding to Figure 9.

it is useful to take into the account that
αP2

γ = γ + Pγ,

yielding
χγ = 1 − αPγ + γ,

i.e.,

χγ =
1 + 2γ −

√
1 + 4αγ

2
.

It is easy to show that if γ < α − 1 then χ < 0. Thus, eigenvalues (11.7) become

ν(ξ) = −Dξ2 + χγ − Pγ(1 − Pγ)
(
α1 + α2φ̃(ξ)

)
. (11.8)

Therefore, we have demonstrated the following results:
i) since χγ < 0, for both φ(x) = φ1(x) = Cge−ax2

and φ(x) = φ2(x) = Cee−a|x| it is

ν(ξ) < 0,
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so that Pγ is LAS;
ii) for φ(ξ) = φ3(x) = CN(1−(|x|/N)2)Hev(N−|x|) and φ(ξ) = φ4(x) = (1/2h)Hev(h−|x|) the equilibrium
Pγ can be unstable.
Moreover, if P∗ = P1 = 1, consider the eigenvalue problem (11.6), then we obtain

ν(ξ) = −Dξ2 + α − 1 − γ.

If γ > α − 1, then ν(ξ) is negative for any ξ and equilibrium P1 is LAS.

11.2.2. The case of bounded Ω

Assuming that the set Ω is bounded, we obtain the following equation from (10.2):

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

∫
Ω

φ(x − y)P(y, t)dy
)

+ γ(1 − P) (11.9)

and Neumann conditions (2.11).
We will consider here Ω = [−L, L].

The eigenvalues problem associated at the linearization about a generic steady state P∗ is given by

DW ′′+
[
(1 − 2P∗)(1 − αP∗) − α1P∗(1 − P∗) − γ

]
W −α2P∗(1−P∗)

∫ L

−L
φ(x− y)W(y)dy = λW. (11.10)

Since for the equilibrium P1 = 1 the nonlocal term disappears, the ensuing local stability analisys is
straightforward and it is omitted. Thus we will only focus on the equilibrium Pγ.

Assuming that the kernel φ(x) satisfy conditions (6.21) and (2.7) i.e., function φ is periodic with
period 2L, even and normalized, if P∗ = Pγ, we look for solution of the following eigenvalue problem

DW ′′ +
[
χγ − α1Pγ(1 − Pγ)

]
W − α2Pγ(1 − Pγ)

∫ L

−L
φ(x − y)W(y)dy = λW,

in the form

w(x) = cos (ξmx) , ξm =
mπ
L
, m = 0, 1, 2, ...

Then the boundary conditions are satisfied. Taking into account that the function φ is periodic and
even, the m–th eigenvalue reads as follows:

νm = −Dξ2
m + [χγ − α1P2 (1 − P2)] − α2Pγ(1 − Pγ)φm, (11.11)

where φm is defined in (6.23). We note that νm is negative for m = 0 and for m sufficiently large.
If φm is a positive function, then the corresponding eigenvalue νm is also positive. If the kernel φ has

a bounded support, then, depending on the parameters, the corresponding eigenvalues can be negative
and stability is lost.
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11.3. Global information

In case of global information,

∂tP = D∇2P + P(1 − P)
(
1 − α1P − α2

1
µ(Ω)

∫
Ω

P(y, t)dy
)

+ γ(1 − P) (11.12)

with x ∈ Ω = R, t > 0 and Neumann condition (2.11), it is trivial to show that Pγ is LAS. Indeed,
setting W(x) = cos(ξmx) as eigenfunction of the problem:

DW ′′ +
[
χγ − α1Pγ(1 − Pγ)

]
W − α2Pγ(1 − Pγ)

1
µ(Ω)

∫
Ω

W(y)dy = λW,

we get the following eigenvalues:

ν̃0 = χγ − αPγ(1 − Pγ) < 0,

ν̃m = −Dξ2
m + χγ − α1Pγ(1 − Pγ) < 0.

12. Comparison with the Theory of Diffusion of the innovations

In this section we aim at highlighting similarities and key differences between our models (2.1) and
(10.1) and the Theory of Innovation Diffusion (TID) by Mahajan and others [32, 34]. For the sake of
the notation simplicity we mainly consider non-spatial models.

The TID models focus on the dynamics of the adoption of innovation. Defining Y(t) as the fraction
of adopters of the innovation at time t, and U(t) = 1 − Y(t) the fraction of ’non–adopters’ the basic
family of models is the following:

Y ′ = g(t)(1 − Y), (12.1)

where g(t) > 0, which was initially interpreted as an ’hazard of adoption’ [36], has later been compared
by Capasso and Zonno to the force of infection of epidemic models [33], with whom it has striking
analogies. Thus, we will call it ’Force of Innovation Adoption’ (FIA).

The positivity of the FIA g(t) has an important consequence for our comparison: all specific
models belonging to the family (12.1) are such that Y(t) → 1−, i.e., there is a unique equilibrium
point, which can be termed ’all adopters’. As a consequence, assuming Y = P, all possible analogies
with our family of models is limited to the unrealistic cases where the ’all vaccinators’ equilibrium is
GAS. For example, the family of models (12.1) for g(t) = γ corresponds to our model in the trivial
case where there is no contagion of ideas. The positivity of g(t) and its interpretation as a ’force’ of
infection also stress the key difference between the family of models we investigated here and the
family of model (12.1): in the scenario we investigated there is a double contagion of ideas, i.e., a
double flux: i) from A to P; ii) from P to A. On the contrary, the family (12.1) implies an
uni–directional contagion of ideas. This is a direct consequence of the deeply different nature of the
underlying ’social processes’. However, it is of interest to investigate formal analogies between the
two theories. The specific instances of imitation game-like equations of TID [32, 34] are obtained
phenomenologically by assuming that g(t) is an analytical function of Y [34]:

g(t) = a0 + a1Y(t) +

+∞∑
j=2

a jY j(t) (12.2)
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where ak ≥ 0 can also be function of time [33, 35]. For example, assuming that the non–linear terms
are null, g(t) = a0 + a1Y(t), yields the most popular popular model of the TID: the Bass model [34,36],
which reads as follows:

Y ′ = a1Y(1 − Y) + a0(1 − Y). (12.3)

The non–negativity of the coefficients ak would preclude formal analogies with our models.
However, maintaining the constraint of positivity of the FIA g(t) > 0 but relaxing for k ≥ 2 the
hypothesis that ak ≥ 0 yields the following g(t) that allows a formal analogy with some models of the
family of models considered in this work:

g(t) = Y(t) (θ0 − α(Y(t))) (12.4)

with, however, the following sharp constraint (α(Y) is non–decreasing):

θ0 − α(1) ≥ 0

that again leads to the global stability of the ’all adopters’ (’all vaccinators’) model.
The important case of linear–affine α(y) can be expressed within the frame of the TDI family of

models as follows:
g(t) = γ + (θ0 − α0)Y − α1Y2 (12.5)

Note that this generalized framework is such that: i) can be framed with the epidemiological theory
by Capasso where forces of infection can also be non–monotone [6], which can also be applied to
diffusion of information [33]; ii) it remains a formal model of a uni-dimensional flow.

Namely, a FIA g(t) of the type (12.4) can be read in terms of TID as an initially beneficial effect
of the product qualities, possibly followed, for larger Y , by a partial mitigation of the ’enthusiasm’ for
the product due to the spread of information of its possible (real of presumed) defects. Thus, a reduced
FIA is observed.

As far as the space is concerned, let us first consider the Fisher-Kolgomorov–like model (3.1),
for which the equilibrium ’all vaccinators’ is GAS. If we further assume α0 = 0 then we have a
unidirectional flux from the group ’non-vaccinators’ to the group ’vaccinators’. In such a case our
model (3.1) is equivalent to the Mahajan spatiotemporal model of Innovation Diffusion [34].

More interestingly, in [33, 35] Capasso proposed, in the framework of an SIR-like diffusion of
innovation model, a family of non-local models of the FIA. This family of models is non-locally
depending on the adopters, again in the context of a uni-directional flux. In our case, instead, we have
two fluxes and it is the force of infections from the adopters towards non–adopters that is non–local.

13. Discussion and concluding remarks

The role played by the spatial structure of information used by vaccination decision makers is a
main topic of behavioral epidemiology. In this work we have investigated, within a spatial framework
based on classical diffusion, the effects of three different structures of information ((i) purely ’local’
information, ’local’ plus a ’global’, country-wide, average information, (iii) a mix of local and non-
local information) on the dynamics of vaccine uptake in absence of the infection. As a consequence,
given the background of low incentive to immunization, the dynamics of VAEs emerge as the key
determinants of vaccination decisions and collective coverage. This possibly represents a main case
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of the current public health landscape in modern industrialized countries, where a number of vaccine
preventable infectious disease were successfully eliminated ’locally’ (think e.g., to polio which was
locally eliminated long ago in most Europe), but infection re-emergence must be prevented by means
of large vaccine coverage.

We focused our analyses on the pattern and properties - namely stability, bifurcation, existence
of classical and generalized traveling waves, effects of temporal delays, and the effects of awareness
campaigns by the Public Health System - of the key space-homogeneous equilibrium solutions, that
we termed the ’behavioral equilibria’.

Our main results were as follows.
As regards the stability properties of the behavioral equilibrium, these show a nice interplay between

the form of the spatial information kernel and the nature of the spatial domain (bounded vs unbounded).
Under “purely local information” the BE is always LAS (and GAS) whenever it exists. Under ’local
and global’ information the BE is always LAS whenever it exists. However, convergence is slower than
in the case of purely local information. Under ’mixed’ information results are more articulated. For
unbounded domains stability will prevails independently of the shape of the spatial information kernel
under large values of the diffusion coefficients. In particular kernels that are strictly decreasing in the
distance from the local position are always stabilising independently of the spatial kernel. However,
bounded-support kernels (e.g., strictly positive up to some threshold distance and zero thereafter) can
yield instability at low levels of the diffusion coefficient when the strength of non-local information
tend to prevail on local one.

Interestingly, the instability caused by the presence of non–local information can generate
generalized traveling waves characterised by more or less pronounced oscillations as well as other not
static spatial patterns. The onset of these traveling waves depends on the interplay between behavioral
parameters and the structure of the spatial kernel. This means that the fraction of individuals
favourable to vaccination can show oscillations. Then we investigated the case where agents also use
past - and not only current - information about VAEs in forming their perceptions of risk. We showed
that in the realistic case where this temporal non-locality is modelled by the acquisition–fading kernel
no further specific instability can arise w.r.t. the non–spatial scenario.

However, the presence of information memories can remarkably impact on the ’shape’ of the
generalised traveling waves. Indeed, for certain combination of the characteristic times of the memory
kernel , the spatial oscillations internal to the propagating front are so that, at each time, there are
large zones where the proportion favorable to vaccination is close to zero. This can compromise the
herd immunity of the population.

Remarkably, instabilities and emergence of generalised traveling waves are cleared out soon after
the start of vaccine awareness campaigns enacted by the public health system, in line with the intuitions
supplied in [14].

We briefly mention that the above illustrated mathematical behaviors could also be read, from
theoretical physics viewpoint, as phase changes and phase transitions (PTs), an increasingly important
concept in ME [50, 51]. Indeed, on the one hand in general the kinetic of PTs is most often
characterized by traveling waves [52–54]. On the other hand, all imitation games (as our model)
where individual switch between two mutually exclusive strategies have some analogy with the
well-known Ising model [55]. In our case, one can ’read’ P(x, t) ≈ 1 as a phase rich in pro–vaccine
subjects (an ’ordered’ phase) and P(x, t) ≈ 0 as a phase poor in pro–vaccine subjects
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(a ’disordered phase’).
Finally, we highlighted fundamental differences and some analogies between the phenomena in

study and those investigated by the Theory of Innovation Diffusion. Basically in classical TID
models, there is a uni–directional contagion of ideas between ’non-adopters’ and ’adopters’. As a
consequence all classical models of TID predicts global stability of the full adoption of the
innovation. This correspond to the pathological case where P = 1 is Globally Asymptotically Stable.

This work obviously has a number of limitations.
A key limitation of this study is the hypothesis that at the macroscale the agents’ mobility can be

approximated by classical diffusion i.e., by random walk around geographic space. This is a coarse
approximation, thus our model is essentially a benchmark for providing clear-cut baseline results.
They will have to be validated against more robust hypotheses. Indeed, real patterns of mobility of
human individuals are complex [56] and can introduce remarkable implications for infection patterns,
such as unexpected phase transitions [57]. A promising recent route is to model human mobility
as a superdiffusive process [58–61]. Superdiffusion allows a potentially more realistic and flexible
representation of human spatial mobility while, at the same time, remaining analytically tractable.
Thus superdiffusion is a natural candidate for future extensions of the present work. In particular,
Brockmann and Hufnagel [62] have modelled a double chemical reaction leading to equations similar
to a classical imitation game in case of superdiffusive mobility of molecules and we plan to follow their
approach in a follow-up work.

A second limitation of this study lies in the specific case-study, namely a vaccination scenario in the
absence of the infection. As mentioned in the introduction, this case is a central. However, it is equally
important the scenario where the disease is continuously re–introduced. This, for example, is the case
of measles, which has caused sizable epidemics in recent years [8, 9, 63]. Further forthcoming work
will therefore be devoted to the study of the spatio-temporal interplay between the vaccine opinion
dynamics and infection spread.
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11. R. Löfstedt, Risk management in post-trust societies, Palgrave–McMillan, 2005.

12. C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. Lond. B Biol. Sci.,
272 (2005), 1669–1675.

13. A. d’Onofrio, P. Manfredi and P. Poletti, The impact of vaccine side effects on the natural history
of immunization programmes: an imitation–game approach, J. Theor. Biol., 273 (2011), 63–71.

14. A. d’Onofrio, P. Manfredi and P. Poletti, The interplay of public intervention and private choices
in determining the outcome of vaccination programmes, PLoS ONE, 7 (2012), e45653.

15. B. Buonomo, G. Carbone and A. d’Onofrio, Effect of seasonality on the dynamics of an imitation–
based vaccination model with public health intervention, Math. Biosci. Eng., 15 (2018), 299–321.

16. D. G. Kendall, Mathematical models of the spread of infection, Math. Comput. Sci. Biol. Med.
(1965), 213–225.

17. N. T. J. Bailey, The simulation of stochastic epidemics in two dimensions, Proc. Fifth Berkeley
Symp. Math. Statist. Prob., 4 (1967), 237–257.

18. D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, Nonlinear Diffusion,
14 (1977), 1–23.

19. V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl.
Math., 35 (1978), 274–284.

20. F. Hoppensteadt, Mathematical Theories of Populations: Deomgraphics, Genetics, and
Epidemics, Siam, 1975.

21. H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal patterns in ecology and
epidemiology: theory, models, and simulation, Chapman and Hall/CRC, 2007.

22. J. D. Murray, Mathematical biology II. Spatial models and biomedical applications, Springer-
Verlag New York Incorporated New York, 2001.

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1090–1131.



1129

23. S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts,
Spatial Ecol., (2009), 293–316.

24. J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726.

25. A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-
diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533–552.

26. P. Magal, G. F. Webb and Y. Wu, On the Basic Reproduction Number of Reaction-Diffusion
Epidemic Models, SIAM J. Appl. Math., 79 (2019), 284–304.

27. P. Magal, G. F. Webb and Y. Wu, Spatial spread of epidemic diseases in geographical settings:
seasonal influenza epidemics in Puerto Rico, arXiv preprint arXiv:1801.01856 (2018).

28. W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, et al., A vector–host epidemic model with spatial
structure and age of infection, Nonlinear Anal-Real., 41 (2018), 692–705.

29. L. Zhao, Z. C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model
with constant recruitment, J. Math. Biol., 77 (2018), 1871–1915.

30. S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, Math. Life Sci. Med.,
(2007), 97–122.

31. B. Buonomo, P. Manfredi and A. d’Onofrio, Optimal time-profiles of public health intervention to
shape voluntary vaccination for childhood diseases, J. Math. Biol., 78 (2019), 1089–1113.

32. R. Peres, E. Muller and V. Mahajan, Innovation diffusion and new product growth models: A
critical review and research directions, Int. J. Res. Market., 27 (2010), 91–106.

33. V. Capasso and M. Zonno, Mathematical Models for the Diffusion of Innovations, Proc. Fourth
Eur. Conference Math. Industry, (1991), 225–233.

34. V. Mahajan and R. A. Peterson, Models for innovation diffusion, Sage Publications Inc, 1985.

35. V. Capasso, A. Di Liddo and L. Maddalena, A nonlinear model for the geographical spread of
innovations, Dyn. Syst Appl., 3 (1994), 207–220.

36. F. M. Bass, A new product growth for model consumer durables, Manag. Sci., 15 (1969), 215–227.

37. S. Funk, E. Gilad, C. Watkins, et al., The spread of awareness and its impact on epidemic
outbreaks, Proc. Natl. Acad. Sci., 106 (2009), 6872–6877.

38. E. Frey, Evolutionary game theory: Theoretical concepts and applications to microbial
communities, Physica A, 389 (2010), 4265–4298.

39. R. A. Fisher, The wave of advance of advantageous genes, Annals Eugenics, 7 (1937), 355–369.

40. V. Volpert, Elliptic Partial Differential Equations: Volume 2: Reaction-Diffusion Equations, 104,
Springer, 2014.

41. A. N. Kolmogorov, I. N. Petrovsky and N. S. Piskunov, Étude de l’équation de la diffusion avec
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APPENDIX: reduction to two differential equations of the information model with memory

Here, it is shown that the integro–differential information model (9.2) is equivalent to the differential
system (9.4) with the delaying kernel W(τ) defined in (9.3). First, consider the function

Z(x, t) = be−bt
∫ t

−∞

ebτP(x, τ)dτ, (A-1)

which is clearly the solution of the following linear differential equation:

∂tZ + bZ = bP. (A-2)

Given W(τ) defined in (9.3), consider

M(x, t) =

∫ t

−∞

W(t − τ)P(x, τ)dτ, (A-3)

i.e.,

M(x, t) =
bd

d − b

(
e−bt

∫ t

−∞

ebτP(x, τ)dτ − e−dt
∫ t

−∞

edτP(x, τ)dτ
)
. (A-4)

Therefore,

∂tM + dM = dbe−bt
∫ t

−∞

ebτP(x, τ)dτ, (A-5)

i.e.,
∂tM + dM = dZ. (A-6)

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1090–1131.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The spatio-temporal imitation game for vaccination
	The Fisher-Kolmogorov model as a particular case of (2.10)
	Modelling risk perceptions: global vs local vs non-local information
	Properties of the spatially homogeneous model
	Stability analysis of homogeneous steady state
	Local information
	Global information
	Non–local information
	Stability of homogeneous equilibria:  unbounded
	Stability of uniform equilibria:  bounded


	Bifurcation analysis for nonlocal information in case of bounded 
	Traveling waves and generalized traveling waves
	Local information
	Non–local information
	Numerical simulations


	The role of the memory of past information
	Stability of stationary solutions
	Traveling wave with local information

	Vaccine awareness campaigns: Stability Analysis of Homogeneous Steady States
	A preliminary simulation of the impact of Public Health System Action
	Local information
	Non–local information
	The case of  unbounded
	The case of bounded 

	Global information

	Comparison with the Theory of Diffusion of the innovations
	Discussion and concluding remarks

