

MBE, 17(2): 1020–1040.
DOI: 10.3934/mbe.2020054
Received: 03 May 2019
Accepted: 08 October 2019
Published: 11 November 2019

http://www.aimspress.com/journal/MBE

Research article

Heterogeneous cross-project defect prediction with multiple source

projects based on transfer learning

Xinglong Yin, Lei Liu, Huaxiao Liu* and Qi Wu

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
College of Computer Science and Technology, Jilin University, Changchun 130012, China

* Correspondence: liuhuaxiao@jlu.edu.cn; Tel: +86043185166810; Fax: +86043185166810.

Abstract: Cross-project defect prediction (CPDP) aims to predict the defect proneness of target project
with the defect data of source project. Existing CPDP methods are based on the assumption that source
and target projects should have the same metrics. Heterogeneous cross-project defect prediction
(HCPDP) builds a prediction model using heterogeneous source and target projects. Existing HCPDP
methods just focus on one source project or multiple source projects with the same metrics. These
methods limit the scope of getting the source project. In this paper, we propose Heterogeneous Defect
Prediction with Multiple source projects (HDPM) which can use multiple heterogeneous source
projects for defect prediction. HDPM based on transfer learning which can learn knowledge from one
domain and use it to help with other domain. HDPM constructs a projective matrix between
heterogeneous source and target projects to make the distributions of source and target projects similar.
We conduct experiments on 14 projects from four public datasets and the results show that HDPM can
achieve better performance compared with existing CPDP methods, and outperforms or is comparable
to within-project defect prediction method. The use of multiple heterogeneous source projects for
defect prediction can effectively extend the data acquisition range of defect prediction and make
software defect prediction better applied to software engineering.

Keywords: defect prediction; heterogeneous metrics; multiple heterogeneous source projects;
transfer learning

1. Introduction

Software defect prediction (SDP) is one of the most active research areas in software engineering

1021

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

which predicts defect proneness of new modules using historical defect data [1–4]. If software
developers can perform defect prediction before software release, it can effectively help in reducing
cost of development, shortening production cycle and improving software quality. So far, a number of
software defect prediction methods are based on machine learning technique to build a prediction
model using historical defect data in software dataset [1,5–11]. The defect data usually consists of
software metrics and defect labels. Here, software metrics commonly used for defect prediction are
complexity metrics (such as lines of code, Halstead metrics [12] and McCabe metrics [13]),
object-oriented metrics [14] and process metrics [15], and defect labels are used to record the defect
proneness of the software modules.

Early defect prediction methods predict defect proneness of a new project using historical defect
data from the same project, which is called within-project defect prediction (WPDP) [16–18].
However, WPDP method is not applicable for a new project or a project that only has limited
historical defect data due to lacking of sufficient data to build an accurate prediction model.

To address the limitation of WPDP method, researchers have proposed cross-project defect
prediction (CPDP) [1,5–9], which predicts defects for a new project using historical defect data from
other projects. However, most existing CPDP methods are based on the assumption that source and
target projects should have the same software metrics, while the metrics from different projects are
usually heterogeneous in practice problems. For example, Table 1 shows the public defect datasets
that are widely used in defect prediction including SOFTLAB, NASA, AEEEM and ReLink, which
have 29, 37, 61 and 26 metrics respectively. Although there are some CPDP methods can handle
heterogeneous source and target projects, they only use the common metrics which less exist
between two projects and it is not sufficient to build a prediction model with such small number of
metrics. Such as in Table 2, NASA and ReLink datasets only have 3 common metrics, and NASA
and AEEEM have no common metrics. Therefore, the existing CPDP methods are not applicable for
heterogeneous source and target projects.

Recently, there have researches about heterogeneous cross-project defect prediction
(HCPDP) [10,11], which builds a prediction model using source and target projects with
heterogeneous software metrics. Existing HCPDP methods predict defects using one source
project or multiple source projects with the same metrics. Studies have shown that the
performance of using multiple source projects for defect prediction is better than using only one
source project [11]. But finding multiple projects with exactly the same metrics as source projects is
a challenge. In this paper, we propose Heterogeneous Defect Prediction with Multiple source projects
(HDPM) which can use multiple heterogeneous source projects for defect prediction and it can be an
effective solution for the above issues. The main idea of HDPM is to construct a projective matrix
between heterogeneous source and target projects which converts source project to target project
space, and then use the classifier to predict the defect proneness of target project.

We use transfer learning to obtain projective matrix from multiple projects. Transfer learning is a
method that allowed the domains, tasks, and distributions used in the training data and test data to be
different [6]. When predicting defects in a project, there may be only a small scale of accessible data,
and even no relevant data especially for a new project. In such condition, the predication would
become a difficult task and many existing methods could not achieve good results. Transfer learning
can complete a classification task by using heterogeneous data source in a different feature space or
follow a different data distribution [19], so it can use the data from multiple heterogeneous source
projects to predict defects in the target project. Furthermore, there is a phenomenon in software

1022

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

development that many projects copy the same project [20], which means they may share same library
or documents. This makes transfer learning can be more suitable for applying to the defects
predication of these projects. Specifically, the transfer learning provides a solution for converting
source project to target project space, it can convert different features of heterogeneous projects to
the vectors in the same length, and then those vectors can be used as input of the classifier for the
prediction. Compared to existing CPDP methods, our method can utilize more data so it works well
in defect prediction.

To evaluate the effectiveness of HDPM, we perform an experiment using four public datasets
(SOFTLAB [21], NASA [21,22], AEEEM [23] and ReLink [24]) that contain 14 projects in total.
And we evaluate our approach against CPDP methods including TNB [6], NN-filter [5], TCA+ [1],
CCA+ [11] and WPDP method. The results show that HDPM can achieve better performance of
defect prediction compared with existing CPDP methods, and outperforms or is comparable to
WPDP. And the performance of defect prediction for using multiple source projects outperforms
using one source project.

In this paper, we answer the following two research questions:
RQ1: Is our approach HDPM helpful for heterogeneous cross-project defect prediction?
RQ2: Whether using multiple heterogeneous source projects is applicable to software defect prediction?

The contributions of this paper are concluded as the following two points:
1) We for the first time introduce the transfer learning method Multiple Outlook MAPping
algorithm (MOMAP) into defect prediction for making the distribution of source and target projects
similar, and it makes full use of all the metrics of source and target projects.
2) We give a method to predict defects for one source project, and for the first time use multiple
heterogeneous source projects for defect prediction to extend the data acquisition range based on this
method, making software defect prediction can be better applied to software engineering.

The remainder of this paper is organized as follows: Section 2 reviews the related work of
defect prediction. Section 3 introduces our approach HDPM. Section 4 describes our experimental
setup and the results. The conclusion and future work are presented in Section 5.

Table 1. The number of metrics of four public datasets.

Dataset SOFTLAB NASA AEEEM ReLink

Number of metrics 29 38 61 26

Table 2. The number of common metrics between different datasets.

Dataset A∩Dataset B
SOFTLAB

∩NASA

SOFTLAB

∩AEEEM

SOFTLAB

∩ReLink

Number of common metrics 28 0 3

Dataset A∩Dataset B
NASA∩

AEEEM

NASA∩

ReLink

AEEEM∩

ReLink

Number of common metrics 0 3 0

2. Related work

Software defect prediction is an active area in software engineering. There have been a number

1023

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

of researches on defect prediction [1,5–11,16–18,25–29]. Most of these methods use machine
learning technique and the same project defect data which is called within-project defect prediction
(WPDP). For instance, Flish et al. [16] used support vector machines (SVM) to predict defect-prone
software modules at four NASA datasets. Andreou et al. [17] applied a machine learning technique
called fuzzy decision trees to acquire accurate and reliable costs that involved in software
development. Bettenburg et al. [18] designed MARS that has local consideration and is a hybrid
between global and local models to improve the performance of defect prediction. However, there
are many new projects that have not sufficient historical defect data to build a prediction model.

Some researchers attempt to use unsupervised defect prediction that without requiring source
data. Zhong et al. [25] proposed a clustering and expert based method that applying k-means and
Neural-Gas in defect prediction. Bishnu et al. [26] applied a Quad Tree to find the initial cluster
centers to k-means algorithm for predicting faults in software modules. Abaei et al. [27] proposed
self-organizing map (SOM) to build a prediction model that uses thresholds but not experts for
labeling modules. Nam et al. [28] proposed novel approaches called CLA and CLAMI using the
magnitude of metric values to label an unlabeled dataset. Zhang et al. [29] built a prediction model
using a connectivity-based unsupervised classifier via spectral clustering. Although unsupervised
defect prediction is the best method for defect prediction theoretically for it only uses own data to
predict defects, there exist a limited number of researches on it. One important reason is the ability of
unsupervised learning methods usually underperform supervised ones resulting in the prediction
power of unsupervised classifiers is relatively low.

Other researchers propose a number of cross-project defect prediction (CPDP) or cross-company
defect prediction (CCDP) methods about supervised ones [1,5–9]. Turban et al. [5] proposed the
nearest neighbor (NN) filter which builds a prediction model by source modules that remove
irrelevancies with target modules to avoid the high false-positive rate. Ma et al. [6] proposed
Transfer Naïve Bayes (TNB) which estimates the distribution of target data and transfers
cross-company data information into the weights of source data, and using these weighted data to
build a prediction model. Canfora et al. [7] proposed a novel multi-objective defect prediction
approach using genetic algorithm based on a multi-objective logistic regression model to achieve a
compromise between effectiveness and cost. Similar to the work by Turban, Peter et al. [8]
proposed Peters filter that selects source data via the structure of training data set and test data.
Nam et al. [1] applied a state-of-the-art transfer learning approach called transfer component
analysis (TCA) to make feature distribution similar between source and target projects, and
extended TCA to TCA+ that choosing different normalization for preprocessing to achieve the
best performance. Chen et al. [9] proposed Double Transfer Boosting (DTB) which reshapes the
distribution of cross-company data to fit within-company data using data gravitation method and
eliminates negative instances in CC data using labeled WC data. However, these CPDP or CCDP
methods are based on the assumption that source and target data should have the same software
metrics. When it is hard to find a project that has the same metric with target project, the existing
CPDP or CCDP methods cannot be used in the setting. But there are a number of projects that have
heterogeneous metrics in dataset, so finding a new method for heterogeneous cross-project defect
prediction becomes urgent.

So far, there are researches about heterogeneous cross-project defect prediction (HCPDP) [10,11].
Nam et al. [10] proposed heterogeneous defect prediction (HDP) which conducts metric selection
and metric matching to predict defects across projects with heterogeneous metrics set. Jing et al. [11]

1024

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

proposed a unified metric representation (UMR) and applied canonical correlation analysis (CCA) to
make the data distribution of source and target similar. The main differences between our approach
and existing HCPDP methods are as follows. First, our approach can use multiple heterogeneous
source projects to predict defect which is the first time used in software defect prediction. Second,
our approach uses all the metrics of source and target projects for defect prediction that maintains the
whole information of datasets.

3. Approach

In this section, we describe details on our approach HDPM, which includes one source project
HDPM and multiple heterogeneous source projects HDPM. Compared to predict defects using one
source project, HDPM use multiple heterogeneous source projects to predict a target project. In our
method, the multiple source projects can be completely different, and the target project not could be
related to the source projects.

3.1. Problem formulation and overview

Suppose there are Q labeled source projects and an unlabeled target project, the software
metrics of source and target projects are different, that is, source and target projects are
heterogeneous. The purpose of defect prediction is to use source projects to predict defect proneness

of target project. Let �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 denote Q source projects where 𝑋𝑋𝑠𝑠

(𝑘𝑘) = �𝑥𝑥𝑠𝑠1, 𝑥𝑥𝑠𝑠2,⋯ , 𝑥𝑥𝑠𝑠
𝑁𝑁𝑠𝑠𝑘𝑘 �, and

𝑋𝑋𝑡𝑡 = �𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2,⋯ , 𝑥𝑥𝑡𝑡
𝑁𝑁𝑡𝑡 � denote target project. Here, 𝑥𝑥𝑠𝑠𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ module in 𝑋𝑋𝑠𝑠

(𝑘𝑘) and 𝑥𝑥𝑡𝑡𝑖𝑖

denotes the 𝑖𝑖𝑡𝑡ℎ module in 𝑋𝑋𝑡𝑡 , 𝑁𝑁𝑠𝑠𝑘𝑘 and 𝑁𝑁𝑡𝑡 are the numbers of modules in 𝑋𝑋𝑠𝑠
(𝑘𝑘) and 𝑋𝑋𝑡𝑡 . A module

in source project can be represented as 𝑥𝑥𝑠𝑠𝑖𝑖 = �𝑚𝑚𝑠𝑠
𝑖𝑖1,𝑚𝑚𝑠𝑠

𝑖𝑖2,⋯ ,𝑚𝑚𝑠𝑠
𝑖𝑖𝑑𝑑𝑠𝑠� and a module in target project can

be represented as 𝑥𝑥𝑡𝑡𝑖𝑖 = �𝑚𝑚𝑡𝑡
𝑖𝑖1,𝑚𝑚𝑡𝑡

𝑖𝑖2,⋯ ,𝑚𝑚𝑡𝑡
𝑖𝑖𝑑𝑑𝑡𝑡 �. Here, 𝑚𝑚𝑠𝑠

𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑡𝑡
𝑖𝑖𝑖𝑖 respectively represent 𝑖𝑖𝑡𝑡ℎ metric

value of 𝑥𝑥𝑠𝑠𝑖𝑖 and 𝑥𝑥𝑡𝑡𝑖𝑖 , 𝑑𝑑𝑠𝑠 and 𝑑𝑑𝑡𝑡 are the number of metrics in source and target projects. In general,
the metrics that used in source and target projects are different, namely 𝑑𝑑𝑠𝑠 ≠ 𝑑𝑑𝑡𝑡 .

𝑌𝑌𝑠𝑠
(𝑘𝑘) = �𝑦𝑦𝑠𝑠1, 𝑦𝑦𝑠𝑠2,⋯ ,𝑦𝑦𝑠𝑠

𝑁𝑁𝑠𝑠𝑘𝑘 � represents defect proneness of 𝑘𝑘𝑡𝑡ℎ source project, 𝑦𝑦𝑠𝑠𝑖𝑖 = 1 when 𝑥𝑥𝑠𝑠𝑖𝑖 has

defects and 𝑦𝑦𝑠𝑠𝑖𝑖 = 0 when 𝑥𝑥𝑠𝑠𝑖𝑖 is clean. The defect proneness of target project 𝑌𝑌𝑡𝑡 = �𝑦𝑦𝑡𝑡1,𝑦𝑦𝑡𝑡2,⋯ ,𝑦𝑦𝑡𝑡
𝑁𝑁𝑡𝑡 �

is obtained by our approach HDPM.
The target of HDPM is using transfer learning to obtain projective matrix for predicting defects.

Figure 1 shows the three main phases of HDPM: (1) Firstly, features are extracted from the projects,
and the data from source projects are preprocessed. (2) Then, we obtain the projective matrix by
using the method of PCA and SVD, so that the heterogeneous source projects can be converted to
target project space. (3) Finally, we obtain the normalized vectors of projects based on projective
matrix, and train a classifier to predict the defect proneness of target project.

1025

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

Figure 1. The overview of approach.

3.2. Preprocessing

Typically, the defect data is class-unbalanced data that the number of defective modules in a
project is much less than the number of clean modules. For example, the rate of defects of PC1 in
NASA is only 8.65%. Mahmood et al. [3] proposed the performance of defect prediction is usually
low when the data is unbalanced. That is, as the data becomes more and more balanced, the
performance of defect prediction increases gradually. Therefore, we use random multi-sampling to
preprocess source project, by increasing the number of defective modules to balance the data, so that
all the information of source project can be retained.

Since the values of software metrics vary between different projects, it is necessary to use
normalization to make the metric values of source and target projects in the same range. Normalization
gives all metrics of data an equal weight and is useful for classification algorithms [30]. Similarly, Graf
et al. [31] also confirmed that normalization can improve the performance of defect prediction.
Therefore, we employ min-max normalization method to preprocess source and target projects which
makes metric values range from zero to one. In other words, the minimum and maximum values of
source and target projects are transformed into zero and one, respectively.

Algorithm 1 HDPM Approach
Input: Source project 𝑋𝑋𝑠𝑠, target project 𝑋𝑋𝑡𝑡 and source labels 𝑌𝑌𝑠𝑠.
Output: Target labels 𝑌𝑌𝑡𝑡 .
1. Process class-unbalanced data of source project.
2. Use the min-max normalization to preprocess 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑡𝑡 .
3. Translate the means of each metric of source and target projects to zero, 𝑋𝑋𝑠𝑠� = 𝑋𝑋𝑠𝑠 − 𝜇𝜇𝑠𝑠 and
𝑋𝑋𝑡𝑡� = 𝑋𝑋𝑡𝑡 − 𝜇𝜇𝑡𝑡 .
4. Use PCA to construct the utilization matrices 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 .
5. Use SVD to decompose matrix 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇.
6. Obtain the projective matrix 𝑅𝑅 = 𝑈𝑈𝑉𝑉𝑈𝑈𝑇𝑇.
7. Based on the obtained 𝑋𝑋𝑠𝑠� = 𝑅𝑅𝑋𝑋𝑠𝑠� + 𝜇𝜇𝑡𝑡 and 𝑋𝑋𝑡𝑡 , using the classifier to predict defects of target
project and obtaining the prediction result 𝑌𝑌𝑡𝑡 .

1026

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

3.3. One source project HDPM

After preprocessing, we introduce transfer learning method Multiple Outlook MAPping
algorithm (MOMAP) [32] into defect prediction to make the distributions of source and target
projects similar. By using this method, our approach constructs a projective matrix between
heterogeneous source and target projects, in this way the source projects can be converted into target
project space and the maximum correlations between them are established.

The mapping of source and target projects can be obtained by translation and rotation. The
algorithm of our approach is described in Algorithm 1.

First, we remove the mean of each metric in source and target projects to translate the means to
zero. Assume the means of each metric in source and target data construct the vectors 𝜇𝜇𝑠𝑠 and 𝜇𝜇𝑡𝑡
respectively. The following two equations are used to obtain a new representation of source and
target projects after removing the means of each metrics.

 𝑋𝑋𝑠𝑠� = 𝑋𝑋𝑠𝑠 − 𝜇𝜇𝑠𝑠 (1)
 𝑋𝑋𝑡𝑡� = 𝑋𝑋𝑡𝑡 − 𝜇𝜇𝑡𝑡 (2)

Next, we obtain the projective matrix R using the principal direction of source and target
projects, the rotation matching of source and target projects can be done by solving the following
optimization problem:

 �arg min𝑅𝑅‖𝑅𝑅𝐷𝐷𝑠𝑠 − 𝐷𝐷𝑡𝑡‖𝐹𝐹2

𝑠𝑠. 𝑡𝑡. 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
� (3)

where ‖∙‖𝐹𝐹 is the Frobenius norm that is used to represent distance, 𝑅𝑅 ∈ 𝑅𝑅𝑑𝑑𝑡𝑡×𝑑𝑑𝑠𝑠 is the projective
matrix, 𝐷𝐷𝑠𝑠 ∈ 𝑅𝑅𝑑𝑑𝑠𝑠×ℎ and 𝐷𝐷𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑𝑡𝑡×ℎ are the utilization matrices that are formed by the h principal
directions of source and target projects, here, h ≤ min(𝑑𝑑𝑠𝑠 ,𝑑𝑑𝑡𝑡).

After rotation, source project processed by the projective matrix is added with the means of
target project to make source project transform to target project space finally. Then we can use the
converted source project and target project to train any classifier, such as k-nearest neighbors, SVM
and Naïve Bayes, for defect prediction.

In Eq (3), we use principal directions of source and target projects to obtain the projective matrix.
The principal directions can be obtained by principal component analysis (PCA). The main idea of
PCA is to recombine the original metrics and form a new set of unrelated metrics. The newly formed
metrics can represent the main features of the original data and can better distinguish different types of
modules. Therefore, it is reasonable to obtain the projective matrix through establishing a mapping
relationship between the principal directions of source and target projects. In this paper, we use PCA to
extract the first h principal directions of source and target projects. In addition, we changed the value of
h varies between 2 and 10 in the experiment to get better results [33]. The principal directions of source
and target projects can be obtained by the following steps: We first perform singular value
decomposition (SVD) on source and target projects separately, and then select h eigenvectors
corresponding to the h largest eigenvalues as the first h principal directions.

The expansion of optimization problem in Eq (3) is ‖𝑅𝑅𝐷𝐷𝑠𝑠 − 𝐷𝐷𝑡𝑡‖𝐹𝐹2 = 𝑡𝑡𝑡𝑡(𝐷𝐷𝑠𝑠𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠 −
2𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑡𝑡𝑇𝑇𝐷𝐷𝑡𝑡), here, 𝐷𝐷𝑠𝑠𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡𝑇𝑇𝐷𝐷𝑡𝑡 are constants. So Eq (3) can be transformed to the
following problem:

1027

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

 �arg max𝑅𝑅 𝑡𝑡𝑡𝑡(𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠)
𝑠𝑠. 𝑡𝑡. 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼

� (4)

where 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 consist of h principal directions, that is 𝐷𝐷𝑠𝑠 = [𝑣𝑣𝑠𝑠1,⋯ , 𝑣𝑣𝑠𝑠ℎ] and 𝐷𝐷𝑡𝑡 = [𝑣𝑣𝑡𝑡1,⋯ , 𝑣𝑣𝑡𝑡ℎ]
where 𝑣𝑣𝑠𝑠𝑙𝑙 and 𝑣𝑣𝑡𝑡

𝑙𝑙 (𝑙𝑙 = 1,⋯ , ℎ) are the 𝑙𝑙𝑡𝑡ℎ principal directions of source and target projects,
respectively. Equation (4) can be intuitively transformed to:

 �arg max𝑅𝑅 ∑ 𝑣𝑣𝑡𝑡𝑙𝑙𝑇𝑇𝑅𝑅𝑣𝑣𝑠𝑠𝑙𝑙ℎ
𝑙𝑙=1

𝑠𝑠. 𝑡𝑡. 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
� (5)

Equation (3) is equivalent to minimization of the first h principal directions angles of source and
target projects, and Eq (5) in turn implies maximization of the sum of inner products between the
principal directions of source and target projects. For the solutions of Eq (4) we refer Procrustes
Analysis technique from [34]. We refer Procrustes Analysis technique for solutions of Eq (4) [35].
Since tr(𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠) = 𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇), Eq (4) is equivalent to:

 �𝑎𝑎𝑡𝑡𝑎𝑎max𝑅𝑅 𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇)
𝑠𝑠. 𝑡𝑡. 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼

� (6)

Let 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇 be the singular value decomposition (SVD) of 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇 . Define 𝑉𝑉 = 𝑈𝑈𝑇𝑇𝑅𝑅𝑈𝑈, then,

 tr(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇) = tr(𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇) = tr(𝑉𝑉𝑈𝑈) = ∑ 𝑧𝑧𝑘𝑘𝑘𝑘𝑚𝑚
𝑘𝑘=1 𝜎𝜎𝑘𝑘 ≤ ∑ 𝜎𝜎𝑘𝑘𝑚𝑚

𝑘𝑘=1 (7)

where 𝜎𝜎𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ singular value of 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇.
Since 𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇) can reach its max value when Z = I, we can obtain the projective matrix

𝑅𝑅 = 𝑈𝑈𝑉𝑉𝑈𝑈𝑇𝑇 .

3.4. Multiple heterogeneous source projects HDPM

In this sub-section, we present the algorithm to use multiple source projects �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 for

defect prediction, where multiple source projects can have heterogeneous metrics. We transform all
the source projects to target project space. Similar to Algorithm 1, we first process class-unbalanced

data of source projects and use min-max normalization to preprocess �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 and 𝑋𝑋𝑡𝑡 . Next, we

translate the means of multiple source projects and target project to zero, and then construct the

utilization matrices �𝐷𝐷𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 of source projects and 𝐷𝐷𝑡𝑡 of target project. By the Eq (8), all source

projects are converted to target project space.

 �arg min
�𝑅𝑅(𝑘𝑘)�𝑘𝑘=1

𝑄𝑄 ∑ �𝑅𝑅(𝑘𝑘)𝐷𝐷𝑠𝑠
(𝑘𝑘) − 𝐷𝐷𝑡𝑡�

𝐹𝐹

2𝑄𝑄
𝑘𝑘=1

𝑠𝑠. 𝑡𝑡. 𝑅𝑅(𝑘𝑘)𝑇𝑇𝑅𝑅(𝑘𝑘) = 𝐼𝐼

� (8)

The method of getting projective matrix 𝑅𝑅(𝑘𝑘) is similar to that of R in Algorithm 1. Let

𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑇𝑇 be the singular value decomposition (SVD) of 𝐷𝐷𝑠𝑠
(𝑘𝑘)𝐷𝐷𝑡𝑡𝑇𝑇 , and the projective matrix of

𝑘𝑘𝑡𝑡ℎ source project is 𝑅𝑅(𝑘𝑘) = 𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑇𝑇. The final 𝑘𝑘𝑡𝑡ℎ source project can be represented as:

1028

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

 𝑋𝑋𝑠𝑠
(𝑘𝑘) = (𝑋𝑋𝑠𝑠

(𝑘𝑘) − 𝜇𝜇𝑠𝑠
(𝑘𝑘))𝑅𝑅(𝑘𝑘)𝑇𝑇 + 𝜇𝜇𝑡𝑡 (9)

Finally, we combine all the source projects and use the classifier to build a prediction model to
predict defect proneness of target project.

4. Experiments

In this section, we present the experimental setup in detail to evaluate the performance of our
approach. First, we introduce the benchmark datasets and evaluation methods which are commonly
used in defect prediction. Then, we perform experiments of HDPM with one source project, followed
by the experiment of HDPM with multiple heterogeneous source projects. Last, we would discuss the
value of parameters that are used in the paper.

4.1. Benchmark datasets

In our experiments, we examine 14 projects containing 7511 modules from four public datasets
that are commonly used in defect prediction including SOFTLAB, NASA, AEEEM and ReLink.
Table 3 shows the datasets we used in experiment, and a brief description on each dataset is
presented as follows.

Table 3. Details of dataset used in the experiment.

Dataset Project Number of metrics Number of total modules Percentage of defective modules

SOFTLAB

AR3

AR4

AR5

29

29

29

63

107

36

12.7%

18.69%

22.22%

NASA

CM1

MW1

PC1

37

37

37

327

253

705

12.84%

10.67%

8.65%

AEEEM

EQ

JDT

LC

ML

PDE

61

61

61

61

61

324

997

691

1862

1497

39.81%

20.66%

9.26%

13.16%

13.96%

ReLink

Apache

Safe

ZXing

26

26

26

194

56

399

50.52%

39.29%

29.57%

The SOFTLAB and NASA datasets were collected from a Turkish software company and
numerous NASA contractors, respectively [21]. For the SOFTLAB dataset, we use three projects
AR3, AR4 and AR5 which are embedded controller software in the PROMISE repository. We use
three NASA projects CM1, MW1 and PC1 which have the same metrics in the PROMISE repository.
Shepperd et al. [22] find that the NASA dataset contains conflict and inconsistent cases, therefore,
we use NASA datasets cleaned by them in this study. There are 28 common metrics between NASA

1029

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

and SOFTLAB which are Halstead and McCabe’s cyclomatic complexity metrics.
The AEEEM dataset was collected by D’Ambros et al. [23], and contains 61 metrics that are the

most number of metrics in public defect datasets. The whole metrics include source code metrics,
previous-defect metrics, entropy-of-change metrics, entropy-of-source-code metrics and
churn-of-source-code metrics. The AEEEM dataset has no common metrics with the other three datasets.

The ReLink dataset was collected by Wu et al. [24] to improve the performance of defect
prediction by manually verifying and correcting the dataset to increase its quality. The three projects
that are used in the paper have 26 code complexity metrics which are widely used in defect
prediction. The ReLink dataset has only three common metrics with NASA and SOFTLAB including
lines of code, lines of blank and lines of comment.

4.2. Performance measure

To evaluate the performance of defect prediction, we use recall (pd), false-positive (pf) and
F-measure as evaluation measures because they are commonly used in defect prediction. The
measures are defined as follow: the number of defective modules that are predicted as defective (true
positive, TP); the number of clean modules that are predicted as defective (false positive, FP); the
number of defective modules that are predicted as clean (false negative, FN); the number of clean
modules that are predicted as clean (true negative, TN). The four kinds of defect prediction outcomes
can be more clearly showed in Table 4.

Table 4. Four kinds of defect prediction outcomes.

 Predict as defective Predict as clean
Defective modules TP FN
Clean modules FP TN

Recall: The ratio of modules that are correctly classified as defective to those defective modules.
𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁)⁄

False-positive: The ratio of modules that are wrongly classified as defective to those clean modules.
𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑟𝑟_𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑟𝑟 = 𝐹𝐹𝑇𝑇/(𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑁𝑁)

Precision: The ratio of modules that are correctly classified as defective to those classified
as defective.

𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)⁄
F-measure: A harmonic mean of precision and recall.

F_measure =
2 × 𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 × 𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙
𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙

A good prediction model intends to find out defective modules as much as possible and few
wrongly prediction. So a good prediction model desires to achieve high value of recall and
precision, and low value of false-positive. However, there is a trade-off between recall and
precision and it is difficult to compare the performance of several prediction models by using
only recall or precision. Therefore, we choose F-measure which is a harmonic mean of recall and
precision. The recall, false-positive and F-measure evaluation measures range from 0 to 1.
Obviously, an ideal defect prediction model should have high values of recall and F-measure, and
low value of false-positive.

1030

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

4.3. Experiment design

To evaluate the effectiveness of our approach, we compare HDPM with two cross-company
defect prediction methods including TNB [6] and NN-filter [5], two cross-project defect prediction
methods TCA+ [1] and CCA+ [11], and within-project defect prediction method WPDP. For TCA+,
we use the source code provided by the author. We carefully re-implement TNB, NN-filter and
CCA+ according to their papers. In these compared methods, TNB, NN-filter and TCA+ methods
require the source and target projects should have the same metrics, so we use the common metrics
in heterogeneous source and target projects. NN-filter attempts to select suitable training modules to
construct predictors, and we select 5 nearest neighbors for each target module to construct the
training set. We use K-Nearest Neighbor (KNN) as classifier in our approach, where Euclidean
distance and the top 5 nearest neighbors are set as parameters of KNN.

We design the following two experiments to evaluate our approach:
1) One-to-one HDPM. We use all modules in one project as source project to conduct
heterogeneous cross-project defect prediction. The source and target projects are from different
datasets. For example, EQ→AR4, CM1→JDT, PC1→Apache, etc. The left of “→” represents the
source project and the right of “→” represents the target project.
2) Multiple-to-one HDPM. We use all modules in multiple projects which are from different
datasets as multiple heterogeneous source projects. We use five-fold crossvalidation method to
evaluate our approach: Eighty percent data is used as source projects, while other 20% is used as
target projects for evaluating the performance. The source and target projects are also heterogeneous.
For example, {CM1, Apache, EQ}→AR3, {AR3, Apache, JDT}→CM1, etc.

Since our approach involves a degree of randomness that we process class-unbalanced data of
source project in preprocessing, we run HDPM 100 times of each pair of source and target projects
and add up these experiment results. We set a parameter threshold that will introduce in 4.4.1, if the
number of experiments that predict a module to be defective is larger than the threshold, the module
is predicted to be defective eventually. In 4.4.1, the result shows that our approach can get better
performance of defect prediction when the value of threshold varies from 30 to 45. Therefore, in the
following experiments, we choose threshold to 30 which means if more than 30 percent of the
experiments predict a module to be defective, the module is predicted to be defective eventually.

4.4. One-to-one HDPM

For one-to-one HDPM, we choose one project in a dataset as source project and one project in
another dataset as target project, that is, source and target projects are heterogeneous. Since existing
CCDP or CPDP methods use common metrics in heterogeneous source and target projects, HDPM
can compare with these methods including TNB, NN-filter and TCA+ method when there are
common metrics in source and target projects. For source and target projects with no common
metrics, such as AEEEM and the other three datasets have no common metrics, HDPM can only
compare with CCA+ method.

Table 5 shows the Pd and Pf values of our approach and other compared methods when source
and target projects exist common metrics. Table 7 shows the Pd and Pf values of our approach and
CCA+ method when source and target projects exist no common metrics. In these two tables, the
numbers which are presented with boldface indicate the best results in these methods. The Pd and Pf

1031

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

values in these two tables are the average values calculated from 100 repeated runs. The average Pd
and Pf values of HDPM are 0.65 and 0.07 in Table 5, and the average Pd and Pf values of HDPM are
0.61 and 0.09 in Table 7. From Tables 5 and 7, we can see that HDPM can obtain better Pd and Pf
values compared with TNB, NN-filter and TCA+ in most prediction scenes, and is similar to CCA+.
The average values of Pd and Pf are similar in Tables 5 and 7 whether there are common metrics in
source and target projects.

Table 5. Pd and Pf values of one-to-one HDPM with common metrics.

Source→

Target
Measure HDPM TNB

NN-

filter
TCA+ CCA+

Source→

Target
Measure HDPM TNB

NN-

filter
TCA+ CCA+

CM1→

AR4

Pd 0.72 0.74 0.58 0.60 0.70 Apache→

MW1

Pd 0.59 0.26 0.14 0.40 0.44

Pf 0.01 0.65 0.09 0.32 0.01 Pf 0.06 0.20 0.10 0.19 0.21

AR4→

CM1

Pd 0.70 0.76 0.15 0.59 0.78 PC1→

Safe

Pd 0.78 0.61 0.54 0.13 0.83

Pf 0.02 0.52 0.02 0.40 0.03 Pf 0.01 0.55 0.20 0.08 0.25

PC1→

AR4

Pd 0.68 0.50 0.60 0.30 0.60 Safe→

PC1

Pd 0.59 0.70 0.12 0.54 0.72

Pf 0.02 0.36 0.23 0.36 0.00 Pf 0.27 0.47 0.10 0.38 0.08

AR4→

PC1

Pd 0.66 0.65 0.40 0.47 0.85 CM1→

Apache

Pd 0.64 0.52 0.60 0.60 0.68

Pf 0.00 0.21 0.15 0.23 0.04 Pf 0.02 0.41 0.28 0.35 0.10

MW1→

AR4

Pd 0.55 0.50 0.75 0.32 0.60 AR3→

Apache

Pd 0.71 0.53 0.75 0.17 0.92

Pf 0.15 0.38 0.18 0.10 0.02 Pf 0.04 0.47 0.62 0.07 0.50

PC1→

AR3

Pd 0.73 0.75 0.75 0.37 0.75 Apache→

AR3

Pd 0.75 0.12 0.25 0.37 0.75

Pf 0.02 0.21 0.10 0.16 0.01 Pf 0.02 0.10 0.17 0.14 0.30

PC1→

AR5

Pd 0.60 0.50 1.00 0.37 0.62 AR4→

ZXing

Pd 0.42 0.23 0.11 0.47 0.48

Pf 0.03 0.37 0.25 0.03 0.00 Pf 0.05 0.21 0.16 0.36 0.23

CM1→

ZXing

Pd 0.55 0.42 0.50 0.50 0.46 ZXing→

AR4

Pd 0.68 0.27 0.26 0.20 0.75

Pf 0.01 0.31 0.28 0.25 0.25 Pf 0.15 0.24 0.07 0.13 0.24

ZXing→

CM1

Pd 0.64 0.45 0.45 0.55 0.56 AR5→

Safe

Pd 0.72 0.42 0.53 0.37 0.65

Pf 0.01 0.24 0.13 0.21 0.25 Pf 0.29 0.30 0.42 0.19 0.24

MW1→

Apache

Pd 0.63 0.42 0.35 0.38 0.72 Safe→

AR5

Pd 0.64 0.22 0.35 0.47 0.66

Pf 0.10 0.15 0.22 0.26 0.35 Pf 0.05 0.12 0.19 0.16 0.18

Average
Pd 0.65 0.48 0.46 0.41 0.67 - - - - - - -

Pf 0.07 0.32 0.20 0.22 0.16 - - - - - - -

Table 6 shows the F-measure values of HDPM, TNB, NN-filter, TCA+ and CCA+ method
when source and target projects exist common metrics, and Table 8 shows the F-measure values
when source and target projects exist no common metrics. Both of these tables are the average values
calculated 100 repeated runs. The average F-measure value of HDPM is 0.63 in Table 6, and the
average F-measure values of HDPM is 0.61 in Table 8. From Tables 6 and 8, we can see that HDPM
can obtain better F-measure values in most cases compared with existing CPDP methods. The reason
is that our approach uses all the metrics for defect prediction rather than just common metrics, so
HDPM can retain all the information of source and target projects. When comparing Table 6 with
Table 8, the performance of our approach is not affected significantly whether the source and target
projects have common metrics. The reason is that we use principle directions of source and target
projects to construct the projective matrix that the principle directions recombine all the metrics to

1032

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

make them irrelevant and can represent the main information of source and target projects, so HDPM
is not affected by the number of common metrics. Above all, we can conclude that HDPM is helpful
for HCPDP and can achieve better performance for one-to-one HDPM.

We perform the Wilcoxon rank-sum test [35] at a confidence level of 95% to statistically
analyze the F-measure results in Tables 4 and 6, and the p-values are shown in the last row of Tables
4 and 6. As the p-values are all below 0.05, it illustrates that HDPM can significantly improve the
existing CPDP methods.

Table 6. F-measure values of one-to-one HDPM with common metrics.

Source→Target HDPM TNB NN-filter TCA+ CCA+ Source→Target HDPM TNB NN-filter TCA+ CCA+

CM1→AR4 0.67 0.33 0.60 0.40 0.80 Apache→MW1 0.57 0.34 0.27 0.43 0.27

AR4→CM1 0.56 0.29 0.24 0.28 0.78 PC1→Safe 0.80 0.48 0.60 0.22 0.73

PC1→AR4 0.70 0.33 0.55 0.37 0.75 Safe→PC1 0.50 0.21 0.11 0.19 0.56

AR4→PC1 0.58 0.34 0.27 0.23 0.74 CM1→Apache 0.70 0.54 0.65 0.62 0.76

MW1→AR4 0.48 0.32 0.59 0.38 0.70 AR3→Apache 0.53 0.53 0.63 0.28 0.32

PC1→AR3 0.68 0.31 0.61 0.46 0.80 Apache→AR3 0.78 0.14 0.21 0.31 0.38

PC1→AR5 0.62 0.36 0.50 0.51 0.76 AR4→ZXing 0.57 0.26 0.15 0.40 0.47

CM1→ZXing 0.61 0.49 0.44 0.53 0.54 ZXing→AR4 0.76 0.23 0.33 0.22 0.52

Zxing→CM1 0.69 0.31 0.30 0.40 0.39 AR5→Safe 0.46 0.33 0.47 0.31 0.47

MW1→Apache 0.70 0.30 0.51 0.33 0.69 Safe→AR5 0.70 0.20 0.38 0.32 0.55

Average 0.63 0.33 0.42 0.36 0.60 P-values - 3.3e-7 2.2e-4 7.2e-7 0.0017

4.5. Multiple-to-one HDPM

For multiple-to-one HDPM, the experiments were conducted on a 32-bit window machine with
Intel Core2 Duo E8400 3.0 GHz and 3.0 GB memory. We run the code on MATLAB. We select one
project from SOFTLAB, NASA, AEEEM and ReLink datasets, respectively, and three of them as
heterogeneous source projects and the other project as target project. Since the source projects are
heterogeneous among themselves and they are also heterogeneous with target project, there are no
common metrics in source and target projects, therefore, HDPM can only compare with
within-project method (target→target) for multiple heterogeneous source projects.

Table 9 shows the Pd and Pf values of HDPM and WPDP method when using multiple
heterogeneous source projects. Table 10 shows the F-measure values of HDPM and WPDP method.
The Pd, Pf and F-measure values of these tables are the average values calculated from 100 repeated
runs, and the numbers which are presented with boldface indicate the best results. The average Pd
and Pf values of HDPM are 0.70 and 0.09 and the average F-measure values of HDPM is 0.71. From
Tables 9 and 10, we can see that HDPM can obtain better performance of defect prediction compared
with WPDP method. The p-value is 6.5 × 10−8 which indicates HDPM makes a statistically
significant improvement in comparison with WPDP method. As compared with one-to-one HDPM,
the Pd and F-measure values are increased by about 10% and the Pf value is similar. The reason is
that using multiple heterogeneous source projects contains more useful information and can build a
more accurate prediction model than using only one source project, so defect prediction for multiple
heterogeneous source projects outperforms one source project. Above all, we can conclude that using

1033

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

multiple heterogeneous source projects is applicable to HCPDP and extend the data acquisition range
of defect prediction and make software defect prediction better applied to software engineering.

Table 7. Pd and Pf values of one-to-one HDPM with no common metrics.

Source→Target Measure HDPM CCA+ Source→Target Measure HDPM CCA+ Source→Target Measure HDPM CCA+

EQ→AR5
Pd 0.73 0.66

MW1→EQ
Pd 0.56 0.62

JDT→ZXing
Pd 0.61 0.68

Pf 0.09 0.18 Pf 0.22 0.22 Pf 0.07 0.43

AR5→EQ
Pd 0.59 0.62

LC→CM1
Pd 0.58 0.56

ZXing→JDT
Pd 0.67 0.69

Pf 0.28 0.22 Pf 0.02 0.25 Pf 0.00 0.17

ML→AR4
Pd 0.61 0.66

CM1→LC
Pd 0.67 0.60

LC→Safe
Pd 0.63 0.65

Pf 0.02 0.23 Pf 0.00 0.20 Pf 0.27 0.24

AR4→ML
Pd 0.53 0.58

JDT→PC1
Pd 0.73 0.86

Safe→LC
Pd 0.64 0.70

Pf 0.02 0.20 Pf 0.10 0.29 Pf 0.20 0.20

PDE→AR4
Pd 0.51 0.66

PC1→JDT
Pd 0.50 0.69

PDE→ZXing
Pd 0.67 0.68

Pf 0.15 0.23 Pf 0.10 0.17 Pf 0.03 0.43

AR4→PDE
Pd 0.52 0.77

EQ→Safe
Pd 0.55 0.65

ZXing→PDE
Pd 0.70 0.77

Pf 0.04 0.33 Pf 0.05 0.24 Pf 0.03 0.33

EQ→MW1
Pd 0.50 0.44

Safe→EQ
Pd 0.67 0.62

Average
Pd 0.61 0.63

Pf 0.13 0.21 Pf 0.01 0.22 Pf 0.09 0.25

Table 8. F-measure values of one-to-one HDPM with no common metrics.

Source→Target HDPM CCA+ Source→Target HDPM CCA+ Source→Target HDPM CCA+

EQ→AR5 0.79 0.55 MW1→EQ 0.80 0.66 JDT→ZXing 0.49 0.47

AR5→EQ 0.51 0.66 LC→CM1 0.59 0.39 ZXing→JDT 0.78 0.67

ML→AR4 0.72 0.59 CM1→LC 0.67 0.45 LC→Safe 0.72 0.63

AR4→ML 0.49 0.37 JDT→PC1 0.56 0.51 Safe→LC 0.30 0.45

PDE→AR4 0.60 0.56 PC1→JDT 0.67 0.54 PDE→ZXing 0.57 0.49

AR4→PDE 0.60 0.42 EQ→Safe 0.59 0.63 ZXing→PDE 0.59 0.47

EQ→MW1 0.64 0.27 Safe→EQ 0.55 0.66 - - -

Average 0.61 0.52 P-value - 0.0159 - - -

4.6. Impact of parameters

In the experiments of our approach, there are two parameters may have an effect on the
performance of defect prediction, one is threshold, the other is the number of repeated runs. In this
section, we would discuss the effect of these parameters.

4.6.1. Impact of threshold

In our experiment setup, we run HDPM 100 times and add up these experiment results. When
there are more than threshold experiments predict a module to be defective, the module is predicted
to be defective eventually. Here, we would like to investigate what value of threshold can achieve
better performance of defect prediction. We take threshold between 10 and 70 and record the

1034

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

F-measure values. Figure 1 shows the boxplot of F-measure when taking different value of threshold.
From Figure 2, we can see our approach can get better performance of defect prediction when the
value of threshold varies from 30 to 45. That is, our approach can get better performance when
30−45% of the experiments predict a module to be defective and the module is predicted to be
defective eventually. While the value of threshold is too low or too high, most of modules are
predicted as defective or clean in the experiment, making the experiment results inaccuracy.

Table 9. Pd and Pf values of multiple-to-one HDPM.

Source→Target Measure HDPM
WPDP

(Target→Target)
Source→Target Measure HDPM

WPDP

(Target→Target)

{CM1, Apache,

LC}→AR3

Pd 0.71 0.38
{CM1, AR4, ML}→Safe

Pd 0.79 0.65

Pf 0.01 0.14 Pf 0.11 0.24

{MW1, ZXing,

EQ}→AR3

Pd 0.75 0.38
{MW1, AR3, EQ}→Safe

Pd 0.61 0.65

Pf 0.22 0.14 Pf 0.01 0.24

{MW1, Apache,

PDE}→AR4

Pd 0.61 0.66
{MW1,AR4,LC}→ZXing

Pd 0.65 0.68

Pf 0.21 0.23 Pf 0.04 0.43

{PC1, ZXing,

EQ}→AR4

Pd 0.75 0.66
{PC1, AR3, EQ}→ZXing

Pd 0.67 0.68

Pf 0.03 0.23 Pf 0.17 0.43

{CM1, ZXing,

ML}→AR5

Pd 0.69 0.66 {AR3, MW1,

ZXing}→EQ

Pd 0.77 0.75

Pf 0.21 0.18 Pf 0.19 0.37

{PC1, Apache,

PDE}→AR5

Pd 0.74 0.66
{AR4, CM1, Safe}→EQ

Pd 0.68 0.75

Pf 0.15 0.18 Pf 0.02 0.37

{AR3, Apache,

JDT}→CM1

Pd 0.69 0.74 {AR4, CM1,

ZXing}→JDT

Pd 0.67 0.69

Pf 0.01 0.37 Pf 0.01 0.17

{AR4, ZXing,

PDE}→CM1

Pd 0.80 0.74 {AR5, MW1,

Apache}→JDT

Pd 0.65 0.69

Pf 0.02 0.37 Pf 0.14 0.17

{AR3, Safe,

JDT}→MW1

Pd 0.70 0.44
{AR3, PC1, Safe}→LC

Pd 0.61 0.71

Pf 0.06 0.21 Pf 0.22 0.19

{AR5, ZXing,

ML}→MW1

Pd 0.76 0.44 {AR4, MW1,

Apache}→LC

Pd 0.73 0.71

Pf 0.16 0.21 Pf 0.02 0.19

{AR4, Safe,

JDT}→PC1

Pd 0.73 0.86 {AR3, PC1,

ZXing}→ML

Pd 0.71 0.58

Pf 0.02 0.29 Pf 0.01 0.20

{AR5, Apache,

JDT}→PC1

Pd 0.73 0.86
{AR4, MW1, Safe}→ML

Pd 0.70 0.58

Pf 0.06 0.29 Pf 0.01 0.20

{CM1, AR3,

JDT}→Apache

Pd 0.65 0.67 {AR3, MW1,

Safe}→PDE

Pd 0.65 0.77

Pf 0.08 0.31 Pf 0.11 0.33

{PC1, AR4,

PDE}→Apache

Pd 0.67 0.67 {AR4, CM1,

Apache}→PDE

Pd 0.76 0.77

Pf 0.11 0.31 Pf 0.04 0.33

Average Pd 0.70 0.66 - Pf 0.09 0.26

4.6.2. Impact of different number of repeated runs

To deal with the randomness of our approach, that is using random sampling to process
class-unbalanced data of source project, we repeated the experiment 100 times. Here, we would

1035

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

like to investigate whether the performance of our approach will be affected if we run HDPM with
different number of repeated runs. We run HDPM 10–100 times in 40 pairs of heterogeneous
source and target projects, and Figure 3 shows F-measure values with different number of repeated
runs. We can see that the performance of HDPM is basically stable for different number of repeated
runs, and the average F-measure values vary from 0.6083 to 0.6327. Thus, we can conclude that
different number of repeated runs has limited impact on the performance of our approach.

Table 10. F-measure values of multiple-to-one HDPM.

Source→Target HDPM
WPDP

(Target→Target)
Source→Target HDPM

WPDP

(Target→Target)

{CM1, Apache, LC}→AR3 0.81 0.31 {CM1, AR4, ML}→Safe 0.61 0.63

{MW1, ZXing, EQ}→AR3 0.66 0.31 {MW1, AR3, EQ}→Safe 0.75 0.63

{MW1, Apache, PDE}→AR4 0.69 0.49 {MW1,AR4,LC}→ZXing 0.54 0.50

{PC1, ZXing, EQ}→AR4 0.79 0.49 {PC1, AR3, EQ}→ZXing 0.69 0.50

{CM1, ZXing, ML}→AR5 0.57 0.55 {AR3, MW1, ZXing}→EQ 0.87 0.65

{PC1, Apache, PDE}→AR5 0.64 0.55 {AR4, CM1, Safe}→EQ 0.82 0.65

{AR3, Apache, JDT}→CM1 0.62 0.38 {AR4, CM1, ZXing}→JDT 0.64 0.59

{AR4, ZXing, PDE}→CM1 0.88 0.38 {AR5, MW1, Apache}→JDT 0.78 0.59

{AR3, Safe, JDT}→MW1 0.69 0.27 {AR3, PC1, Safe}→LC 0.67 0.44

{AR5, ZXing, ML}→MW1 0.65 0.27 {AR4, MW1, Apache}→LC 0.70 0.44

{AR4, Safe, JDT}→PC1 0.80 0.41 {AR3, PC1, ZXing}→ML 0.83 0.40

{AR5, Apache, JDT}→PC1 0.73 0.41 {AR4, MW1, Safe}→ML 0.66 0.40

{CM1, AR3, JDT}→Apache 0.75 0.68 {AR3, MW1, Safe}→PDE 0.62 0.40

{PC1, AR4, PDE}→Apache 0.68 0.68 {AR4, CM1, Apache}→PDE 0.84 0.40

Average 0.71 0.49 P-value - 6.5× 10-8

Figure 2. The boxplot of F-measure values of threshold from 10 to 70.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 15 20 25 30 35 40 45 50 55 60 65 70
threshold

F-
m

ea
su

re

1036

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

(a) (b)

(c) (d)

Figure 3. F-measure for HDPM with different number of repeated runs.

4.7. Answers to research questions

RQ1. Is our approach HDPM helpful for heterogeneous cross-project defect prediction?

From Tables 5 and 6 which source and target projects have common metrics, the Pd values of
HDPM vary from 0.42 to 0.78 and the F-measure values of HDPM vary from 0.46 to 0.80. The
average Pd and F-measure of HDPM are 0.65 and 0.63, respectively. From Tables 7 and 8 which
source and target projects have no common metrics, the Pd and F-measure values of HDPM vary
from 0.50 to 0.73 and 0.30 to 0.80. The average Pd and F-measure of HDPM are both 0.61. The
p-value of Tables 4 and 6 are all below 0.05. Thus, we can conclude that our approach is helpful for
heterogeneous cross-project defect prediction.

The existing CPDP methods can only use common metrics and achieve unsatisfactory results
when source and target projects contain few common metrics. However, our approach makes full
use of all the metrics of source and target projects, and can achieve better performance of defect
prediction at most times compared with existing CPDP methods. And HDPM can obtain
comparable or even better prediction results compared with within-project defect prediction. The
performance of HDPM is similar whether there are common metrics in source and target projects
or not. The p-values indicate HDPM can make a statistically significant improvement in
comparison with other methods.

RQ2. Whether using multiple heterogeneous source projects is applicable to software defect prediction?

As we for the first time use multiple heterogeneous source projects to predict defects, we also
investigate whether using multiple heterogeneous source projects is applicable to HCPDP. From
Table 9, the Pd and Pf values of HDPM vary from 0.61 to 0.80 and 0.01 to 0.22, and the average

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9
F

-
m

e
a

s
u

r
e

Number of r epeat ed r uns

Apache-MW1
PC1-Safe
Safe-PC1
CM1-Apache
AR3-Apache
Apache-AR3
AR4-ZXing
ZXing-AR4
AR5-Safe
Safe-AR5

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
-

m
e

a
s

u
r

e

Number of r epeat ed r uns

CM1-AR4
AR4-CM1
PC1-AR4
AR4-PC1
MW1-AR4
PC1-AR3
PC1-AR5
CM1-ZXing
ZXing-CM1
MW1-Apache

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
-

m
e

a
s

u
r

e

Number of r epeat ed r uns

EQ-AR5
AR5-EQ
ML-AR4
AR4-ML
PDE-AR4
AR4-PDE
EQ-MW1
MW1-EQ
LC-CM1
CM1-LC

10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
-

m
e

a
s

u
r

e
Number of r epeat ed r uns

JDT-PC1
PC1-JDT
EQ-Safe
Safe-EQ
JDT-ZXing
ZXing-JDT
LC-Safe
Safe-LC
PDE-ZXing
ZXing-PDE

1037

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

Pd and Pf of HDPM are 0.70 and 0.09. From Table 10, the F-measure values of HDPM vary from
0.54 to 0.88 and the average F-measure is 0.71. We can see that our approach outperforms
within-project defect prediction at most times. The average Pd and F-measure of multiple-to-one
HDPM outperforms one-to-one HDPM by 11.11 and 14.52%, respectively. The p-value of Table 8
is 6.5 × 10−8 which is less than 0.05. It indicates that the performance of defect prediction of
multiple-to-one HDPM is better than one-to-one HDPM. In addition, all the experiments can get
the results in several minutes, and this indicates that the time efficiency of our method is
acceptable. Therefore, we can conclude that using multiple heterogeneous source projects is
applicable to HCPDP and extend the data acquisition range of defect prediction and make software
defect prediction better applied to software engineering.

4.8. Threats to validity

Although the experiment achieved good results, the generalizability of our results may be
limited since the scale of the dataset in the experiment is still small. However, we have analyzed 14
projects from 4 different public defect datasets (SOFTLAB, NASA, ReLink and AEEEM)
containing a total of 7511 modules, and the data is from publish defect datasets which are well
represented, so it can verify the effectiveness of the method at some extent. In the future, we plan
to analyze even more defect data to reduce this threat, especially the data from commercial
software projects.

We evaluated our approach in recall, false-positive and F-measure that are commonly used
performance measures in defect prediction. However, there are other measures that can be used in defect
prediction, such as area under curve (AUC), and G-means which are also comprehensive measures.

For the four compared methods TNB, NN-filter, TCA+ and CCA+, we got the program code of
TCA+ from the author, and we carefully implement TNB, NN-filter and CCA+ by following their
papers. It may affect the accuracy of the experiment.

5. Conclusion

In this paper, we propose Heterogeneous Defect Prediction with Multiple source projects
(HDPM) which can use multiple heterogeneous source projects for defect prediction to solve
heterogeneous cross-project defect prediction (HCPDP) problem. HDPM constructs the projective
matrix which can transfer source project to target project space, making the distributions of source
and target projects are similar. Our approach is applicable for heterogeneous cross-project defect
prediction and for the first time to use multiple heterogeneous source projects in software defect
prediction, making software defect prediction better applied to software engineering. The results of
our experiments show that HDPM can achieve better performance of defect prediction than existing
CPDP methods, and can obtain comparable or even better prediction results compared with WPDP
method. In addition, the performance of defect prediction for multiple-to-one HDPM outperforms
one-to-one HDPM.

In the future, we plan to evaluate HDPM with more datasets to validate the generalization of our
approach, and try other transfer learning methods and classifiers to improve the performance of
defect prediction further.

1038

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

Acknowledgements

The presented research is partly funded by the National Key Research and Development
Program of China (2017YFB1003103).

Conflict of Interest

The authors declared that they have no conflicts of interest to this work.

References

1. J. Nam, S. J. Pan and S. Kim, Transfer defect learning, 2013 35th International Conference on
Software Engineering (ICSE), 2013, 382–391. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/6606584.

2. X. Y. Jing, S. Ying, Z. W. Zhang, et al., Dictionary learning based software defect prediction,
Proceedings of the 36th International Conference on Software Engineering, ACM, 2014,
414–423. Available from: https://dl_acm.xilesou.top/citation.cfm?id=2568320.

3. Z. Mahmood, D. Bowes, P. C. R. Lane, et al., What is the Impact of Imbalance on Software
Defect Prediction Performance?, Proceedings of the 11th International Conference on
Predictive Models and Data Analytics in Software Engineering, ACM, 2015. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=2810150.

4. C. Tantithamthavorn, Towards a better understanding of the impact of experimental components
on defect prediction modeling, 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), 2016, 867–870. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/7883423.

5. B. Turhan, T. Menzies, A. B. Bener, et al., On the relative value of cross-company and
within-company data for defect prediction, Empirical Software Eng., 14 (2009), 540–578.

6. Y. Ma, G. Luo, X. Zeng, et al., Transfer learning for cross-company software defect prediction,
Inf. Software Technol., 54 (2012), 248–256.

7. G. Canfora, A. De Lucia, M. Di Penta, et al., Multi-objective cross-project defect prediction,
2013 IEEE Sixth International Conference on Software Testing, Verification and Validation,
2013, 252–261. Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/6569737.

8. F. Peters, T. Menzies and A. Marcus, Better cross company defect prediction, Proceedings of the
10th Working Conference on Mining Software Repositories, 2013, 409–418. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=2487161.

9. L. Chen, B. Fang, Z. Shang, et al., Negative samples reduction in cross-company software
defects prediction, Inf. Software Technol., 62 (2015), 67–77.

10. J. Nam and S. Kim, Heterogeneous defect prediction, Proceedings of the 2015 10th joint
meeting on foundations of software engineering, ACM, 2015, 508–519. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=2786814.

11. X. Jing, F. Wu, X. Dong, et al., Heterogeneous cross-company defect prediction by unified
metric representation and CCA-based transfer learning, Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ACM, 2015, 496–507. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=2786813.

1039

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

12. M. H. Halstead, Elements of Software Science, Elsevier Science, New York, 1977.
13. T. J. McCabe, A complexity measure, IEEE Trans. Software Eng., 4 (1976), 308–320.
14. S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented design, IEEE Trans.

Software Eng., 20 (1994), 476–493.
15. T. L. Graves, A. F. Karr, J. S. Marron, et al., Predicting fault incidence using software change

history, IEEE Trans. Software Eng., 26 (2000), 653–661.
16. K. O. Elish and M. O. Elish, Predicting defect-prone software modules using support vector

machines, J. Syst. Software, 81 (2008), 649–660.
17. A. S. Andreou and E. Papatheocharous, Software cost estimation using fuzzy decision trees,

2008 23rd IEEE/ACM International Conference on Automated Software Engineering, 2008,
371–374. Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/4639344.

18. N. Bettenburg, M. Nagappan and A. E. Hassan, Think locally, act globally: Improving defect
and effort prediction models, 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR), 2012, 60–69. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/6224300.

19. S. J. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Trans. Knowl. Data Eng., 22
(2010), 1345–1359.

20. H. F. Chang and A. Mockus, Constructing universal version history, Proceedings of the 2006
international workshop on Mining software repositories, 2006, 76–79. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=1138002.

21. T. Menzies, B. Caglayan, E. Kocaguneli, et al., The promise repository of empirical software
engineering data, 2012 (2012).

22. M. Shepperd, Q. Song, Z. Sun, et al., Data quality: Some comments on the NASA software
defect datasets, IEEE Trans. Software Eng., 39 (2013), 1208–1215.

23. M. D'Ambros, M. Lanza, R. Robbes, An extensive comparison of bug prediction approaches,
2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), 2010,
31–41. Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/5463279.

24. R. Wu, H. Zhang, S. Kim, et al., Relink: Recovering links between bugs and changes,
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ACM, 2011, 15–25. Available from:
https://dl_acm.xilesou.top/citation.cfm?id=2025120.

25. S. Zhong, T. M. Khoshgoftaar and N. Seliya, Unsupervised Learning for Expert-Based Software
Quality Estimation, HASE, 2004, 149–155. Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1471&rep=rep1&type=pdf.

26. P. S. Bishnu and V. Bhattacherjee, Software fault prediction using quad tree-based k-means
clustering algorithm, IEEE Trans. Knowl. Data Eng., 24 (2012), 1146–1150.

27. G. Abaei, Z. Rezaei and A. Selamat, Fault prediction by utilizing self-organizing Map and
Threshold, 2013 IEEE International Conference on Control System, Computing and
Engineering, 2013, 465–470. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/6720010.

28. J. Nam and S. Kim, CLAMI: Defect Prediction on Unlabeled Datasets (T), 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015,
452–463. Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/7372033.

1040

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1020–1040.

29. F. Zhang, Q. Zheng, Y. Zou, et al., Cross-project defect prediction using a connectivity-based
unsupervised classifier, Proceedings of the 38th International Conference on Software
Engineering, ACM, 2016, 309–320.

30. J. Han, J. Pei and M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2012.
31. A. B. A. Graf and S. Borer, Normalization in support vector machines, Joint Pattern Recognition

Symposium, Springer, Berlin, Heidelberg, 2001, 277–282.
32. M. Harel and S. Mannor, Learning from multiple outlooks, arXiv preprint arXiv1005.0027,

2010.
33. L. Yang, L. P. Jing, J. Yu, et al., Heterogeneous transductive transfer learning algorithm, J.

Software, 26 (2015), 2762–2780 (in Chinese).
34. J. C. Gower and G. B. Dijksterhuis, Procrustes problems, Oxford University Press on Demand,

2004.
35. F. Wilcoxon, Individual comparisons by ranking methods, Breakthroughs in Statistics, Springer

Series in Statistics (Perspectives in Statistics), Springer, New York, 1992, 196–202.

©2020 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

