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Abstract: Cross-project defect prediction (CPDP) aims to predict the defect proneness of target project 
with the defect data of source project. Existing CPDP methods are based on the assumption that source 
and target projects should have the same metrics. Heterogeneous cross-project defect prediction 
(HCPDP) builds a prediction model using heterogeneous source and target projects. Existing HCPDP 
methods just focus on one source project or multiple source projects with the same metrics. These 
methods limit the scope of getting the source project. In this paper, we propose Heterogeneous Defect 
Prediction with Multiple source projects (HDPM) which can use multiple heterogeneous source 
projects for defect prediction. HDPM based on transfer learning which can learn knowledge from one 
domain and use it to help with other domain. HDPM constructs a projective matrix between 
heterogeneous source and target projects to make the distributions of source and target projects similar. 
We conduct experiments on 14 projects from four public datasets and the results show that HDPM can 
achieve better performance compared with existing CPDP methods, and outperforms or is comparable 
to within-project defect prediction method. The use of multiple heterogeneous source projects for 
defect prediction can effectively extend the data acquisition range of defect prediction and make 
software defect prediction better applied to software engineering. 

Keywords: defect prediction; heterogeneous metrics; multiple heterogeneous source projects; 
transfer learning 
 

1. Introduction  

Software defect prediction (SDP) is one of the most active research areas in software engineering 
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which predicts defect proneness of new modules using historical defect data [1–4]. If software 
developers can perform defect prediction before software release, it can effectively help in reducing 
cost of development, shortening production cycle and improving software quality. So far, a number of 
software defect prediction methods are based on machine learning technique to build a prediction 
model using historical defect data in software dataset [1,5–11]. The defect data usually consists of 
software metrics and defect labels. Here, software metrics commonly used for defect prediction are 
complexity metrics (such as lines of code, Halstead metrics [12] and McCabe metrics [13]), 
object-oriented metrics [14] and process metrics [15], and defect labels are used to record the defect 
proneness of the software modules. 

Early defect prediction methods predict defect proneness of a new project using historical defect 
data from the same project, which is called within-project defect prediction (WPDP) [16–18]. 
However, WPDP method is not applicable for a new project or a project that only has limited 
historical defect data due to lacking of sufficient data to build an accurate prediction model. 

To address the limitation of WPDP method, researchers have proposed cross-project defect 
prediction (CPDP) [1,5–9], which predicts defects for a new project using historical defect data from 
other projects. However, most existing CPDP methods are based on the assumption that source and 
target projects should have the same software metrics, while the metrics from different projects are 
usually heterogeneous in practice problems. For example, Table 1 shows the public defect datasets 
that are widely used in defect prediction including SOFTLAB, NASA, AEEEM and ReLink, which 
have 29, 37, 61 and 26 metrics respectively. Although there are some CPDP methods can handle 
heterogeneous source and target projects, they only use the common metrics which less exist 
between two projects and it is not sufficient to build a prediction model with such small number of 
metrics. Such as in Table 2, NASA and ReLink datasets only have 3 common metrics, and NASA 
and AEEEM have no common metrics. Therefore, the existing CPDP methods are not applicable for 
heterogeneous source and target projects. 

Recently, there have researches about heterogeneous cross-project defect prediction 
(HCPDP) [10,11], which builds a prediction model using source and target projects with 
heterogeneous software metrics. Existing HCPDP methods predict defects using one source 
project or multiple source projects with the same metrics. Studies have shown that the 
performance of using multiple source projects for defect prediction is better than using only one 
source project [11]. But finding multiple projects with exactly the same metrics as source projects is 
a challenge. In this paper, we propose Heterogeneous Defect Prediction with Multiple source projects 
(HDPM) which can use multiple heterogeneous source projects for defect prediction and it can be an 
effective solution for the above issues. The main idea of HDPM is to construct a projective matrix 
between heterogeneous source and target projects which converts source project to target project 
space, and then use the classifier to predict the defect proneness of target project.  

We use transfer learning to obtain projective matrix from multiple projects. Transfer learning is a 
method that allowed the domains, tasks, and distributions used in the training data and test data to be 
different [6]. When predicting defects in a project, there may be only a small scale of accessible data, 
and even no relevant data especially for a new project. In such condition, the predication would 
become a difficult task and many existing methods could not achieve good results. Transfer learning 
can complete a classification task by using heterogeneous data source in a different feature space or 
follow a different data distribution [19], so it can use the data from multiple heterogeneous source 
projects to predict defects in the target project. Furthermore, there is a phenomenon in software 



1022 

Mathematical Biosciences and Engineering  Volume 17, Issue 2, 1020–1040. 

development that many projects copy the same project [20], which means they may share same library 
or documents. This makes transfer learning can be more suitable for applying to the defects 
predication of these projects. Specifically, the transfer learning provides a solution for converting 
source project to target project space, it can convert different features of heterogeneous projects to 
the vectors in the same length, and then those vectors can be used as input of the classifier for the 
prediction. Compared to existing CPDP methods, our method can utilize more data so it works well 
in defect prediction. 

To evaluate the effectiveness of HDPM, we perform an experiment using four public datasets 
(SOFTLAB [21], NASA [21,22], AEEEM [23] and ReLink [24]) that contain 14 projects in total. 
And we evaluate our approach against CPDP methods including TNB [6], NN-filter [5], TCA+ [1], 
CCA+ [11] and WPDP method. The results show that HDPM can achieve better performance of 
defect prediction compared with existing CPDP methods, and outperforms or is comparable to 
WPDP. And the performance of defect prediction for using multiple source projects outperforms 
using one source project. 

In this paper, we answer the following two research questions: 
RQ1: Is our approach HDPM helpful for heterogeneous cross-project defect prediction? 
RQ2: Whether using multiple heterogeneous source projects is applicable to software defect prediction? 

The contributions of this paper are concluded as the following two points: 
1) We for the first time introduce the transfer learning method Multiple Outlook MAPping 
algorithm (MOMAP) into defect prediction for making the distribution of source and target projects 
similar, and it makes full use of all the metrics of source and target projects.  
2) We give a method to predict defects for one source project, and for the first time use multiple 
heterogeneous source projects for defect prediction to extend the data acquisition range based on this 
method, making software defect prediction can be better applied to software engineering. 

The remainder of this paper is organized as follows: Section 2 reviews the related work of 
defect prediction. Section 3 introduces our approach HDPM. Section 4 describes our experimental 
setup and the results. The conclusion and future work are presented in Section 5. 

Table 1. The number of metrics of four public datasets. 

Dataset SOFTLAB NASA AEEEM ReLink 

Number of metrics 29 38 61 26 

Table 2. The number of common metrics between different datasets. 

Dataset A∩Dataset B 
SOFTLAB 

∩NASA 

SOFTLAB 

∩AEEEM 

SOFTLAB 

∩ReLink 

Number of common metrics 28 0 3 

Dataset A∩Dataset B 
NASA∩ 

AEEEM 

NASA∩ 

ReLink 

AEEEM∩ 

ReLink 

Number of common metrics 0 3 0 

2. Related work 

Software defect prediction is an active area in software engineering. There have been a number 
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of researches on defect prediction [1,5–11,16–18,25–29]. Most of these methods use machine 
learning technique and the same project defect data which is called within-project defect prediction 
(WPDP). For instance, Flish et al. [16] used support vector machines (SVM) to predict defect-prone 
software modules at four NASA datasets. Andreou et al. [17] applied a machine learning technique 
called fuzzy decision trees to acquire accurate and reliable costs that involved in software 
development. Bettenburg et al. [18] designed MARS that has local consideration and is a hybrid 
between global and local models to improve the performance of defect prediction. However, there 
are many new projects that have not sufficient historical defect data to build a prediction model. 

Some researchers attempt to use unsupervised defect prediction that without requiring source 
data. Zhong et al. [25] proposed a clustering and expert based method that applying k-means and 
Neural-Gas in defect prediction. Bishnu et al. [26] applied a Quad Tree to find the initial cluster 
centers to k-means algorithm for predicting faults in software modules. Abaei et al. [27] proposed 
self-organizing map (SOM) to build a prediction model that uses thresholds but not experts for 
labeling modules. Nam et al. [28] proposed novel approaches called CLA and CLAMI using the 
magnitude of metric values to label an unlabeled dataset. Zhang et al. [29] built a prediction model 
using a connectivity-based unsupervised classifier via spectral clustering. Although unsupervised 
defect prediction is the best method for defect prediction theoretically for it only uses own data to 
predict defects, there exist a limited number of researches on it. One important reason is the ability of 
unsupervised learning methods usually underperform supervised ones resulting in the prediction 
power of unsupervised classifiers is relatively low. 

Other researchers propose a number of cross-project defect prediction (CPDP) or cross-company 
defect prediction (CCDP) methods about supervised ones [1,5–9]. Turban et al. [5] proposed the 
nearest neighbor (NN) filter which builds a prediction model by source modules that remove 
irrelevancies with target modules to avoid the high false-positive rate. Ma et al. [6] proposed 
Transfer Naïve Bayes (TNB) which estimates the distribution of target data and transfers 
cross-company data information into the weights of source data, and using these weighted data to 
build a prediction model. Canfora et al. [7] proposed a novel multi-objective defect prediction 
approach using genetic algorithm based on a multi-objective logistic regression model to achieve a 
compromise between effectiveness and cost. Similar to the work by Turban, Peter et al. [8] 
proposed Peters filter that selects source data via the structure of training data set and test data. 
Nam et al. [1] applied a state-of-the-art transfer learning approach called transfer component 
analysis (TCA) to make feature distribution similar between source and target projects, and 
extended TCA to TCA+ that choosing different normalization for preprocessing to achieve the 
best performance. Chen et al. [9] proposed Double Transfer Boosting (DTB) which reshapes the 
distribution of cross-company data to fit within-company data using data gravitation method and 
eliminates negative instances in CC data using labeled WC data. However, these CPDP or CCDP 
methods are based on the assumption that source and target data should have the same software 
metrics. When it is hard to find a project that has the same metric with target project, the existing 
CPDP or CCDP methods cannot be used in the setting. But there are a number of projects that have 
heterogeneous metrics in dataset, so finding a new method for heterogeneous cross-project defect 
prediction becomes urgent. 

So far, there are researches about heterogeneous cross-project defect prediction (HCPDP) [10,11]. 
Nam et al. [10] proposed heterogeneous defect prediction (HDP) which conducts metric selection 
and metric matching to predict defects across projects with heterogeneous metrics set. Jing et al. [11] 
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proposed a unified metric representation (UMR) and applied canonical correlation analysis (CCA) to 
make the data distribution of source and target similar. The main differences between our approach 
and existing HCPDP methods are as follows. First, our approach can use multiple heterogeneous 
source projects to predict defect which is the first time used in software defect prediction. Second, 
our approach uses all the metrics of source and target projects for defect prediction that maintains the 
whole information of datasets. 

3. Approach 

In this section, we describe details on our approach HDPM, which includes one source project 
HDPM and multiple heterogeneous source projects HDPM. Compared to predict defects using one 
source project, HDPM use multiple heterogeneous source projects to predict a target project. In our 
method, the multiple source projects can be completely different, and the target project not could be 
related to the source projects. 

3.1. Problem formulation and overview 

Suppose there are Q labeled source projects and an unlabeled target project, the software 
metrics of source and target projects are different, that is, source and target projects are 
heterogeneous. The purpose of defect prediction is to use source projects to predict defect proneness 

of target project. Let �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 denote Q source projects where 𝑋𝑋𝑠𝑠

(𝑘𝑘) = �𝑥𝑥𝑠𝑠1, 𝑥𝑥𝑠𝑠2,⋯ , 𝑥𝑥𝑠𝑠
𝑁𝑁𝑠𝑠𝑘𝑘 �, and 

𝑋𝑋𝑡𝑡 = �𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2,⋯ , 𝑥𝑥𝑡𝑡
𝑁𝑁𝑡𝑡 �  denote target project. Here, 𝑥𝑥𝑠𝑠𝑖𝑖  denotes the 𝑖𝑖𝑡𝑡ℎ  module in 𝑋𝑋𝑠𝑠

(𝑘𝑘)  and 𝑥𝑥𝑡𝑡𝑖𝑖  

denotes the 𝑖𝑖𝑡𝑡ℎ  module in 𝑋𝑋𝑡𝑡 , 𝑁𝑁𝑠𝑠𝑘𝑘  and 𝑁𝑁𝑡𝑡  are the numbers of modules in 𝑋𝑋𝑠𝑠
(𝑘𝑘) and 𝑋𝑋𝑡𝑡 . A module 

in source project can be represented as 𝑥𝑥𝑠𝑠𝑖𝑖 = �𝑚𝑚𝑠𝑠
𝑖𝑖1,𝑚𝑚𝑠𝑠

𝑖𝑖2,⋯ ,𝑚𝑚𝑠𝑠
𝑖𝑖𝑑𝑑𝑠𝑠� and a module in target project can 

be represented as 𝑥𝑥𝑡𝑡𝑖𝑖 = �𝑚𝑚𝑡𝑡
𝑖𝑖1,𝑚𝑚𝑡𝑡

𝑖𝑖2,⋯ ,𝑚𝑚𝑡𝑡
𝑖𝑖𝑑𝑑𝑡𝑡 �. Here, 𝑚𝑚𝑠𝑠

𝑖𝑖𝑖𝑖  and 𝑚𝑚𝑡𝑡
𝑖𝑖𝑖𝑖  respectively represent 𝑖𝑖𝑡𝑡ℎ  metric 

value of 𝑥𝑥𝑠𝑠𝑖𝑖  and 𝑥𝑥𝑡𝑡𝑖𝑖 , 𝑑𝑑𝑠𝑠 and 𝑑𝑑𝑡𝑡  are the number of metrics in source and target projects. In general, 
the metrics that used in source and target projects are different, namely 𝑑𝑑𝑠𝑠 ≠ 𝑑𝑑𝑡𝑡 . 

𝑌𝑌𝑠𝑠
(𝑘𝑘) = �𝑦𝑦𝑠𝑠1, 𝑦𝑦𝑠𝑠2,⋯ ,𝑦𝑦𝑠𝑠

𝑁𝑁𝑠𝑠𝑘𝑘 � represents defect proneness of 𝑘𝑘𝑡𝑡ℎ  source project, 𝑦𝑦𝑠𝑠𝑖𝑖 = 1 when 𝑥𝑥𝑠𝑠𝑖𝑖  has 

defects and 𝑦𝑦𝑠𝑠𝑖𝑖 = 0 when 𝑥𝑥𝑠𝑠𝑖𝑖  is clean. The defect proneness of target project 𝑌𝑌𝑡𝑡 = �𝑦𝑦𝑡𝑡1,𝑦𝑦𝑡𝑡2,⋯ ,𝑦𝑦𝑡𝑡
𝑁𝑁𝑡𝑡 � 

is obtained by our approach HDPM. 
The target of HDPM is using transfer learning to obtain projective matrix for predicting defects. 

Figure 1 shows the three main phases of HDPM: (1) Firstly, features are extracted from the projects, 
and the data from source projects are preprocessed. (2) Then, we obtain the projective matrix by 
using the method of PCA and SVD, so that the heterogeneous source projects can be converted to 
target project space. (3) Finally, we obtain the normalized vectors of projects based on projective 
matrix, and train a classifier to predict the defect proneness of target project. 
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Figure 1. The overview of approach. 

3.2. Preprocessing 

Typically, the defect data is class-unbalanced data that the number of defective modules in a 
project is much less than the number of clean modules. For example, the rate of defects of PC1 in 
NASA is only 8.65%. Mahmood et al. [3] proposed the performance of defect prediction is usually 
low when the data is unbalanced. That is, as the data becomes more and more balanced, the 
performance of defect prediction increases gradually. Therefore, we use random multi-sampling to 
preprocess source project, by increasing the number of defective modules to balance the data, so that 
all the information of source project can be retained.  

Since the values of software metrics vary between different projects, it is necessary to use 
normalization to make the metric values of source and target projects in the same range. Normalization 
gives all metrics of data an equal weight and is useful for classification algorithms [30]. Similarly, Graf 
et al. [31] also confirmed that normalization can improve the performance of defect prediction. 
Therefore, we employ min-max normalization method to preprocess source and target projects which 
makes metric values range from zero to one. In other words, the minimum and maximum values of 
source and target projects are transformed into zero and one, respectively. 

Algorithm 1 HDPM Approach 
Input: Source project 𝑋𝑋𝑠𝑠, target project 𝑋𝑋𝑡𝑡  and source labels 𝑌𝑌𝑠𝑠. 
Output: Target labels 𝑌𝑌𝑡𝑡 . 
1. Process class-unbalanced data of source project. 
2. Use the min-max normalization to preprocess 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑡𝑡 . 
3. Translate the means of each metric of source and target projects to zero, 𝑋𝑋𝑠𝑠� = 𝑋𝑋𝑠𝑠 − 𝜇𝜇𝑠𝑠 and  
𝑋𝑋𝑡𝑡� = 𝑋𝑋𝑡𝑡 − 𝜇𝜇𝑡𝑡 . 
4. Use PCA to construct the utilization matrices 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 . 
5. Use SVD to decompose matrix 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇. 
6. Obtain the projective matrix 𝑅𝑅 = 𝑈𝑈𝑉𝑉𝑈𝑈𝑇𝑇. 
7. Based on the obtained 𝑋𝑋𝑠𝑠� = 𝑅𝑅𝑋𝑋𝑠𝑠� + 𝜇𝜇𝑡𝑡  and 𝑋𝑋𝑡𝑡 , using the classifier to predict defects of target 
project and obtaining the prediction result 𝑌𝑌𝑡𝑡 . 
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3.3. One source project HDPM 

After preprocessing, we introduce transfer learning method Multiple Outlook MAPping 
algorithm (MOMAP) [32] into defect prediction to make the distributions of source and target 
projects similar. By using this method, our approach constructs a projective matrix between 
heterogeneous source and target projects, in this way the source projects can be converted into target 
project space and the maximum correlations between them are established. 

The mapping of source and target projects can be obtained by translation and rotation. The 
algorithm of our approach is described in Algorithm 1. 

First, we remove the mean of each metric in source and target projects to translate the means to 
zero. Assume the means of each metric in source and target data construct the vectors 𝜇𝜇𝑠𝑠 and 𝜇𝜇𝑡𝑡  
respectively. The following two equations are used to obtain a new representation of source and 
target projects after removing the means of each metrics. 

 𝑋𝑋𝑠𝑠� = 𝑋𝑋𝑠𝑠 − 𝜇𝜇𝑠𝑠 (1) 
  𝑋𝑋𝑡𝑡� = 𝑋𝑋𝑡𝑡 − 𝜇𝜇𝑡𝑡  (2) 

Next, we obtain the projective matrix R using the principal direction of source and target 
projects, the rotation matching of source and target projects can be done by solving the following 
optimization problem: 

 �arg min𝑅𝑅‖𝑅𝑅𝐷𝐷𝑠𝑠 − 𝐷𝐷𝑡𝑡‖𝐹𝐹2

𝑠𝑠. 𝑡𝑡.  𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
�  (3) 

where ‖∙‖𝐹𝐹  is the Frobenius norm that is used to represent distance, 𝑅𝑅 ∈ 𝑅𝑅𝑑𝑑𝑡𝑡×𝑑𝑑𝑠𝑠  is the projective 
matrix, 𝐷𝐷𝑠𝑠 ∈ 𝑅𝑅𝑑𝑑𝑠𝑠×ℎ  and 𝐷𝐷𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑𝑡𝑡×ℎ  are the utilization matrices that are formed by the h principal 
directions of source and target projects, here, h ≤ min(𝑑𝑑𝑠𝑠 ,𝑑𝑑𝑡𝑡). 

After rotation, source project processed by the projective matrix is added with the means of 
target project to make source project transform to target project space finally. Then we can use the 
converted source project and target project to train any classifier, such as k-nearest neighbors, SVM 
and Naïve Bayes, for defect prediction. 

In Eq (3), we use principal directions of source and target projects to obtain the projective matrix. 
The principal directions can be obtained by principal component analysis (PCA). The main idea of 
PCA is to recombine the original metrics and form a new set of unrelated metrics. The newly formed 
metrics can represent the main features of the original data and can better distinguish different types of 
modules. Therefore, it is reasonable to obtain the projective matrix through establishing a mapping 
relationship between the principal directions of source and target projects. In this paper, we use PCA to 
extract the first h principal directions of source and target projects. In addition, we changed the value of 
h varies between 2 and 10 in the experiment to get better results [33]. The principal directions of source 
and target projects can be obtained by the following steps: We first perform singular value 
decomposition (SVD) on source and target projects separately, and then select h eigenvectors 
corresponding to the h largest eigenvalues as the first h principal directions.  

The expansion of optimization problem in Eq (3) is ‖𝑅𝑅𝐷𝐷𝑠𝑠 − 𝐷𝐷𝑡𝑡‖𝐹𝐹2 = 𝑡𝑡𝑡𝑡(𝐷𝐷𝑠𝑠𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠 −
2𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑡𝑡𝑇𝑇𝐷𝐷𝑡𝑡), here, 𝐷𝐷𝑠𝑠𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠  and 𝐷𝐷𝑡𝑡𝑇𝑇𝐷𝐷𝑡𝑡  are constants. So Eq (3) can be transformed to the 
following problem: 
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 �arg max𝑅𝑅 𝑡𝑡𝑡𝑡(𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠)
𝑠𝑠. 𝑡𝑡.  𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼

� (4) 

where 𝐷𝐷𝑠𝑠  and 𝐷𝐷𝑡𝑡  consist of h principal directions, that is 𝐷𝐷𝑠𝑠 = [𝑣𝑣𝑠𝑠1,⋯ , 𝑣𝑣𝑠𝑠ℎ ] and 𝐷𝐷𝑡𝑡 = [𝑣𝑣𝑡𝑡1,⋯ , 𝑣𝑣𝑡𝑡ℎ ] 
where 𝑣𝑣𝑠𝑠𝑙𝑙  and 𝑣𝑣𝑡𝑡   

𝑙𝑙 (𝑙𝑙 = 1,⋯ , ℎ)  are the 𝑙𝑙𝑡𝑡ℎ  principal directions of source and target projects, 
respectively. Equation (4) can be intuitively transformed to: 

 �arg max𝑅𝑅 ∑ 𝑣𝑣𝑡𝑡𝑙𝑙𝑇𝑇𝑅𝑅𝑣𝑣𝑠𝑠𝑙𝑙ℎ
𝑙𝑙=1

𝑠𝑠. 𝑡𝑡.  𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
� (5) 

Equation (3) is equivalent to minimization of the first h principal directions angles of source and 
target projects, and Eq (5) in turn implies maximization of the sum of inner products between the 
principal directions of source and target projects. For the solutions of Eq (4) we refer Procrustes 
Analysis technique from [34]. We refer Procrustes Analysis technique for solutions of Eq (4) [35]. 
Since tr(𝐷𝐷𝑡𝑡𝑇𝑇𝑅𝑅𝐷𝐷𝑠𝑠) = 𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇), Eq (4) is equivalent to: 

 �𝑎𝑎𝑡𝑡𝑎𝑎max𝑅𝑅 𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇)
𝑠𝑠. 𝑡𝑡.  𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼

� (6) 

Let 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇 be the singular value decomposition (SVD) of 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇 . Define 𝑉𝑉 = 𝑈𝑈𝑇𝑇𝑅𝑅𝑈𝑈, then, 

 tr(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇) = tr(𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇) = tr(𝑉𝑉𝑈𝑈) = ∑ 𝑧𝑧𝑘𝑘𝑘𝑘𝑚𝑚
𝑘𝑘=1 𝜎𝜎𝑘𝑘 ≤ ∑ 𝜎𝜎𝑘𝑘𝑚𝑚

𝑘𝑘=1  (7) 

where 𝜎𝜎𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  singular value of 𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇.  
Since  𝑡𝑡𝑡𝑡(𝑅𝑅𝐷𝐷𝑠𝑠𝐷𝐷𝑡𝑡𝑇𝑇) can reach its max value when Z = I, we can obtain the projective matrix 

𝑅𝑅 = 𝑈𝑈𝑉𝑉𝑈𝑈𝑇𝑇 . 

3.4. Multiple heterogeneous source projects HDPM 

In this sub-section, we present the algorithm to use multiple source projects �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 for 

defect prediction, where multiple source projects can have heterogeneous metrics. We transform all 
the source projects to target project space. Similar to Algorithm 1, we first process class-unbalanced 

data of source projects and use min-max normalization to preprocess �𝑋𝑋𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 and 𝑋𝑋𝑡𝑡 . Next, we 

translate the means of multiple source projects and target project to zero, and then construct the 

utilization matrices �𝐷𝐷𝑠𝑠
(𝑘𝑘)�

𝑘𝑘=1

𝑄𝑄
 of source projects and 𝐷𝐷𝑡𝑡  of target project. By the Eq (8), all source 

projects are converted to target project space. 

 �arg min
�𝑅𝑅(𝑘𝑘)�𝑘𝑘=1

𝑄𝑄 ∑ �𝑅𝑅(𝑘𝑘)𝐷𝐷𝑠𝑠
(𝑘𝑘) − 𝐷𝐷𝑡𝑡�

𝐹𝐹

2𝑄𝑄
𝑘𝑘=1

𝑠𝑠. 𝑡𝑡.  𝑅𝑅(𝑘𝑘)𝑇𝑇𝑅𝑅(𝑘𝑘) = 𝐼𝐼

� (8) 

The method of getting projective matrix 𝑅𝑅(𝑘𝑘) is similar to that of R in Algorithm 1. Let 

𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑇𝑇 be the singular value decomposition (SVD) of 𝐷𝐷𝑠𝑠
(𝑘𝑘)𝐷𝐷𝑡𝑡𝑇𝑇 , and the projective matrix of 

𝑘𝑘𝑡𝑡ℎ  source project is 𝑅𝑅(𝑘𝑘) = 𝑈𝑈(𝑘𝑘)𝑈𝑈(𝑘𝑘)𝑇𝑇. The final 𝑘𝑘𝑡𝑡ℎ  source project can be represented as: 
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 𝑋𝑋𝑠𝑠
(𝑘𝑘) = (𝑋𝑋𝑠𝑠

(𝑘𝑘) − 𝜇𝜇𝑠𝑠
(𝑘𝑘))𝑅𝑅(𝑘𝑘)𝑇𝑇 + 𝜇𝜇𝑡𝑡  (9) 

Finally, we combine all the source projects and use the classifier to build a prediction model to 
predict defect proneness of target project. 

4. Experiments 

In this section, we present the experimental setup in detail to evaluate the performance of our 
approach. First, we introduce the benchmark datasets and evaluation methods which are commonly 
used in defect prediction. Then, we perform experiments of HDPM with one source project, followed 
by the experiment of HDPM with multiple heterogeneous source projects. Last, we would discuss the 
value of parameters that are used in the paper. 

4.1. Benchmark datasets 

In our experiments, we examine 14 projects containing 7511 modules from four public datasets 
that are commonly used in defect prediction including SOFTLAB, NASA, AEEEM and ReLink. 
Table 3 shows the datasets we used in experiment, and a brief description on each dataset is 
presented as follows. 

Table 3. Details of dataset used in the experiment. 

Dataset Project Number of metrics Number of total modules Percentage of defective modules 

SOFTLAB 

AR3 

AR4 

AR5 

29 

29 

29 

63 

107 

36 

12.7% 

18.69% 

22.22% 

NASA 

CM1 

MW1 

PC1 

37 

37 

37 

327 

253 

705 

12.84% 

10.67% 

8.65% 

AEEEM 

EQ 

JDT 

LC 

ML 

PDE 

61 

61 

61 

61 

61 

324 

997 

691 

1862 

1497 

39.81% 

20.66% 

9.26% 

13.16% 

13.96% 

ReLink 

Apache 

Safe 

ZXing 

26 

26 

26 

194 

56 

399 

50.52% 

39.29% 

29.57% 

The SOFTLAB and NASA datasets were collected from a Turkish software company and 
numerous NASA contractors, respectively [21]. For the SOFTLAB dataset, we use three projects 
AR3, AR4 and AR5 which are embedded controller software in the PROMISE repository. We use 
three NASA projects CM1, MW1 and PC1 which have the same metrics in the PROMISE repository. 
Shepperd et al. [22] find that the NASA dataset contains conflict and inconsistent cases, therefore, 
we use NASA datasets cleaned by them in this study. There are 28 common metrics between NASA 
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and SOFTLAB which are Halstead and McCabe’s cyclomatic complexity metrics. 
The AEEEM dataset was collected by D’Ambros et al. [23], and contains 61 metrics that are the 

most number of metrics in public defect datasets. The whole metrics include source code metrics, 
previous-defect metrics, entropy-of-change metrics, entropy-of-source-code metrics and 
churn-of-source-code metrics. The AEEEM dataset has no common metrics with the other three datasets. 

The ReLink dataset was collected by Wu et al. [24] to improve the performance of defect 
prediction by manually verifying and correcting the dataset to increase its quality. The three projects 
that are used in the paper have 26 code complexity metrics which are widely used in defect 
prediction. The ReLink dataset has only three common metrics with NASA and SOFTLAB including 
lines of code, lines of blank and lines of comment. 

4.2. Performance measure 

To evaluate the performance of defect prediction, we use recall (pd), false-positive (pf) and 
F-measure as evaluation measures because they are commonly used in defect prediction. The 
measures are defined as follow: the number of defective modules that are predicted as defective (true 
positive, TP); the number of clean modules that are predicted as defective (false positive, FP); the 
number of defective modules that are predicted as clean (false negative, FN); the number of clean 
modules that are predicted as clean (true negative, TN). The four kinds of defect prediction outcomes 
can be more clearly showed in Table 4. 

Table 4. Four kinds of defect prediction outcomes. 

 Predict as defective Predict as clean 
Defective modules TP FN 
Clean modules FP TN 

Recall: The ratio of modules that are correctly classified as defective to those defective modules. 
𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁)⁄  

False-positive: The ratio of modules that are wrongly classified as defective to those clean modules. 
𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑟𝑟_𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑟𝑟 = 𝐹𝐹𝑇𝑇/(𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑁𝑁) 

Precision: The ratio of modules that are correctly classified as defective to those classified 
as defective. 

𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)⁄  
F-measure: A harmonic mean of precision and recall. 

F_measure =
2 × 𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 × 𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙
𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙

 

A good prediction model intends to find out defective modules as much as possible and few 
wrongly prediction. So a good prediction model desires to achieve high value of recall and 
precision, and low value of false-positive. However, there is a trade-off between recall and 
precision and it is difficult to compare the performance of several prediction models by using 
only recall or precision. Therefore, we choose F-measure which is a harmonic mean of recall and 
precision. The recall, false-positive and F-measure evaluation measures range from 0 to 1. 
Obviously, an ideal defect prediction model should have high values of recall and F-measure, and 
low value of false-positive. 
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4.3. Experiment design 

To evaluate the effectiveness of our approach, we compare HDPM with two cross-company 
defect prediction methods including TNB [6] and NN-filter [5], two cross-project defect prediction 
methods TCA+ [1] and CCA+ [11], and within-project defect prediction method WPDP. For TCA+, 
we use the source code provided by the author. We carefully re-implement TNB, NN-filter and 
CCA+ according to their papers. In these compared methods, TNB, NN-filter and TCA+ methods 
require the source and target projects should have the same metrics, so we use the common metrics 
in heterogeneous source and target projects. NN-filter attempts to select suitable training modules to 
construct predictors, and we select 5 nearest neighbors for each target module to construct the 
training set. We use K-Nearest Neighbor (KNN) as classifier in our approach, where Euclidean 
distance and the top 5 nearest neighbors are set as parameters of KNN. 

We design the following two experiments to evaluate our approach: 
1) One-to-one HDPM. We use all modules in one project as source project to conduct 
heterogeneous cross-project defect prediction. The source and target projects are from different 
datasets. For example, EQ→AR4, CM1→JDT, PC1→Apache, etc. The left of “→” represents the 
source project and the right of “→” represents the target project. 
2) Multiple-to-one HDPM. We use all modules in multiple projects which are from different 
datasets as multiple heterogeneous source projects. We use five-fold crossvalidation method to 
evaluate our approach: Eighty percent data is used as source projects, while other 20% is used as 
target projects for evaluating the performance. The source and target projects are also heterogeneous. 
For example, {CM1, Apache, EQ}→AR3, {AR3, Apache, JDT}→CM1, etc. 

Since our approach involves a degree of randomness that we process class-unbalanced data of 
source project in preprocessing, we run HDPM 100 times of each pair of source and target projects 
and add up these experiment results. We set a parameter threshold that will introduce in 4.4.1, if the 
number of experiments that predict a module to be defective is larger than the threshold, the module 
is predicted to be defective eventually. In 4.4.1, the result shows that our approach can get better 
performance of defect prediction when the value of threshold varies from 30 to 45. Therefore, in the 
following experiments, we choose threshold to 30 which means if more than 30 percent of the 
experiments predict a module to be defective, the module is predicted to be defective eventually. 

4.4. One-to-one HDPM 

For one-to-one HDPM, we choose one project in a dataset as source project and one project in 
another dataset as target project, that is, source and target projects are heterogeneous. Since existing 
CCDP or CPDP methods use common metrics in heterogeneous source and target projects, HDPM 
can compare with these methods including TNB, NN-filter and TCA+ method when there are 
common metrics in source and target projects. For source and target projects with no common 
metrics, such as AEEEM and the other three datasets have no common metrics, HDPM can only 
compare with CCA+ method. 

Table 5 shows the Pd and Pf values of our approach and other compared methods when source 
and target projects exist common metrics. Table 7 shows the Pd and Pf values of our approach and 
CCA+ method when source and target projects exist no common metrics. In these two tables, the 
numbers which are presented with boldface indicate the best results in these methods. The Pd and Pf 
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values in these two tables are the average values calculated from 100 repeated runs. The average Pd 
and Pf values of HDPM are 0.65 and 0.07 in Table 5, and the average Pd and Pf values of HDPM are 
0.61 and 0.09 in Table 7. From Tables 5 and 7, we can see that HDPM can obtain better Pd and Pf 
values compared with TNB, NN-filter and TCA+ in most prediction scenes, and is similar to CCA+. 
The average values of Pd and Pf are similar in Tables 5 and 7 whether there are common metrics in 
source and target projects.  

Table 5. Pd and Pf values of one-to-one HDPM with common metrics. 

Source→ 

Target 
Measure HDPM TNB 

NN- 

filter 
TCA+ CCA+ 

Source→ 

Target 
Measure HDPM TNB 

NN- 

filter 
TCA+ CCA+ 

CM1→ 

AR4 

Pd 0.72 0.74 0.58 0.60 0.70 Apache→ 

MW1 

Pd 0.59 0.26 0.14 0.40 0.44 

Pf 0.01 0.65 0.09 0.32 0.01 Pf 0.06 0.20 0.10 0.19 0.21 

AR4→ 

CM1 

Pd 0.70 0.76 0.15 0.59 0.78 PC1→ 

Safe 

Pd 0.78 0.61 0.54 0.13 0.83 

Pf 0.02 0.52 0.02 0.40 0.03 Pf 0.01 0.55 0.20 0.08 0.25 

PC1→ 

AR4 

Pd 0.68 0.50 0.60 0.30 0.60 Safe→ 

PC1 

Pd 0.59 0.70 0.12 0.54 0.72 

Pf 0.02 0.36 0.23 0.36 0.00 Pf 0.27 0.47 0.10 0.38 0.08 

AR4→ 

PC1 

Pd 0.66 0.65 0.40 0.47 0.85 CM1→ 

Apache 

Pd 0.64 0.52 0.60 0.60 0.68 

Pf 0.00 0.21 0.15 0.23 0.04 Pf 0.02 0.41 0.28 0.35 0.10 

MW1→ 

AR4 

Pd 0.55 0.50 0.75 0.32 0.60 AR3→ 

Apache 

Pd 0.71 0.53 0.75 0.17 0.92 

Pf 0.15 0.38 0.18 0.10 0.02 Pf 0.04 0.47 0.62 0.07 0.50 

PC1→ 

AR3 

Pd 0.73 0.75 0.75 0.37 0.75 Apache→ 

AR3 

Pd 0.75 0.12 0.25 0.37 0.75 

Pf 0.02 0.21 0.10 0.16 0.01 Pf 0.02 0.10 0.17 0.14 0.30 

PC1→ 

AR5 

Pd 0.60 0.50 1.00 0.37 0.62 AR4→ 

ZXing 

Pd 0.42 0.23 0.11 0.47 0.48 

Pf 0.03 0.37 0.25 0.03 0.00 Pf 0.05 0.21 0.16 0.36 0.23 

CM1→ 

ZXing 

Pd 0.55 0.42 0.50 0.50 0.46 ZXing→ 

AR4 

Pd 0.68 0.27 0.26 0.20 0.75 

Pf 0.01 0.31 0.28 0.25 0.25 Pf 0.15 0.24 0.07 0.13 0.24 

ZXing→ 

CM1 

Pd 0.64 0.45 0.45 0.55 0.56 AR5→ 

Safe 

Pd 0.72 0.42 0.53 0.37 0.65 

Pf 0.01 0.24 0.13 0.21 0.25 Pf 0.29 0.30 0.42 0.19 0.24 

MW1→ 

Apache 

Pd 0.63 0.42 0.35 0.38 0.72 Safe→ 

AR5 

Pd 0.64 0.22 0.35 0.47 0.66 

Pf 0.10 0.15 0.22 0.26 0.35 Pf 0.05 0.12 0.19 0.16 0.18 

Average 
Pd 0.65 0.48 0.46 0.41 0.67 - - - - - - - 

Pf 0.07 0.32 0.20 0.22 0.16 - - - - - - - 

Table 6 shows the F-measure values of HDPM, TNB, NN-filter, TCA+ and CCA+ method 
when source and target projects exist common metrics, and Table 8 shows the F-measure values 
when source and target projects exist no common metrics. Both of these tables are the average values 
calculated 100 repeated runs. The average F-measure value of HDPM is 0.63 in Table 6, and the 
average F-measure values of HDPM is 0.61 in Table 8. From Tables 6 and 8, we can see that HDPM 
can obtain better F-measure values in most cases compared with existing CPDP methods. The reason 
is that our approach uses all the metrics for defect prediction rather than just common metrics, so 
HDPM can retain all the information of source and target projects. When comparing Table 6 with 
Table 8, the performance of our approach is not affected significantly whether the source and target 
projects have common metrics. The reason is that we use principle directions of source and target 
projects to construct the projective matrix that the principle directions recombine all the metrics to 
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make them irrelevant and can represent the main information of source and target projects, so HDPM 
is not affected by the number of common metrics. Above all, we can conclude that HDPM is helpful 
for HCPDP and can achieve better performance for one-to-one HDPM. 

We perform the Wilcoxon rank-sum test [35] at a confidence level of 95% to statistically 
analyze the F-measure results in Tables 4 and 6, and the p-values are shown in the last row of Tables 
4 and 6. As the p-values are all below 0.05, it illustrates that HDPM can significantly improve the 
existing CPDP methods. 

Table 6. F-measure values of one-to-one HDPM with common metrics. 

Source→Target HDPM TNB NN-filter TCA+ CCA+ Source→Target HDPM TNB NN-filter TCA+ CCA+ 

CM1→AR4 0.67 0.33 0.60 0.40 0.80 Apache→MW1 0.57 0.34 0.27 0.43 0.27 

AR4→CM1 0.56 0.29 0.24 0.28 0.78 PC1→Safe 0.80 0.48 0.60 0.22 0.73 

PC1→AR4 0.70 0.33 0.55 0.37 0.75 Safe→PC1 0.50 0.21 0.11 0.19 0.56 

AR4→PC1 0.58 0.34 0.27 0.23 0.74 CM1→Apache 0.70 0.54 0.65 0.62 0.76 

MW1→AR4 0.48 0.32 0.59 0.38 0.70 AR3→Apache 0.53 0.53 0.63 0.28 0.32 

PC1→AR3 0.68 0.31 0.61 0.46 0.80 Apache→AR3 0.78 0.14 0.21 0.31 0.38 

PC1→AR5 0.62 0.36 0.50 0.51 0.76 AR4→ZXing 0.57 0.26 0.15 0.40 0.47 

CM1→ZXing 0.61 0.49 0.44 0.53 0.54 ZXing→AR4 0.76 0.23 0.33 0.22 0.52 

Zxing→CM1 0.69 0.31 0.30 0.40 0.39 AR5→Safe 0.46 0.33 0.47 0.31 0.47 

MW1→Apache 0.70 0.30 0.51 0.33 0.69 Safe→AR5 0.70 0.20 0.38 0.32 0.55 

Average 0.63 0.33 0.42 0.36 0.60 P-values - 3.3e-7 2.2e-4 7.2e-7 0.0017 

4.5. Multiple-to-one HDPM 

For multiple-to-one HDPM, the experiments were conducted on a 32-bit window machine with 
Intel Core2 Duo E8400 3.0 GHz and 3.0 GB memory. We run the code on MATLAB. We select one 
project from SOFTLAB, NASA, AEEEM and ReLink datasets, respectively, and three of them as 
heterogeneous source projects and the other project as target project. Since the source projects are 
heterogeneous among themselves and they are also heterogeneous with target project, there are no 
common metrics in source and target projects, therefore, HDPM can only compare with 
within-project method (target→target) for multiple heterogeneous source projects. 

Table 9 shows the Pd and Pf values of HDPM and WPDP method when using multiple 
heterogeneous source projects. Table 10 shows the F-measure values of HDPM and WPDP method. 
The Pd, Pf and F-measure values of these tables are the average values calculated from 100 repeated 
runs, and the numbers which are presented with boldface indicate the best results. The average Pd 
and Pf values of HDPM are 0.70 and 0.09 and the average F-measure values of HDPM is 0.71. From 
Tables 9 and 10, we can see that HDPM can obtain better performance of defect prediction compared 
with WPDP method. The p-value is 6.5 × 10−8 which indicates HDPM makes a statistically 
significant improvement in comparison with WPDP method. As compared with one-to-one HDPM, 
the Pd and F-measure values are increased by about 10% and the Pf value is similar. The reason is 
that using multiple heterogeneous source projects contains more useful information and can build a 
more accurate prediction model than using only one source project, so defect prediction for multiple 
heterogeneous source projects outperforms one source project. Above all, we can conclude that using 
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multiple heterogeneous source projects is applicable to HCPDP and extend the data acquisition range 
of defect prediction and make software defect prediction better applied to software engineering. 

Table 7. Pd and Pf values of one-to-one HDPM with no common metrics. 

Source→Target Measure HDPM CCA+ Source→Target Measure HDPM CCA+ Source→Target Measure HDPM CCA+ 

EQ→AR5 
Pd 0.73 0.66 

MW1→EQ 
Pd 0.56 0.62 

JDT→ZXing 
Pd 0.61 0.68 

Pf 0.09 0.18 Pf 0.22 0.22 Pf 0.07 0.43 

AR5→EQ 
Pd 0.59 0.62 

LC→CM1 
Pd 0.58 0.56 

ZXing→JDT 
Pd 0.67 0.69 

Pf 0.28 0.22 Pf 0.02 0.25 Pf 0.00 0.17 

ML→AR4 
Pd 0.61 0.66 

CM1→LC 
Pd 0.67 0.60 

LC→Safe 
Pd 0.63 0.65 

Pf 0.02 0.23 Pf 0.00 0.20 Pf 0.27 0.24 

AR4→ML 
Pd 0.53 0.58 

JDT→PC1 
Pd 0.73 0.86 

Safe→LC 
Pd 0.64 0.70 

Pf 0.02 0.20 Pf 0.10 0.29 Pf 0.20 0.20 

PDE→AR4 
Pd 0.51 0.66 

PC1→JDT 
Pd 0.50 0.69 

PDE→ZXing 
Pd 0.67 0.68 

Pf 0.15 0.23 Pf 0.10 0.17 Pf 0.03 0.43 

AR4→PDE 
Pd 0.52 0.77 

EQ→Safe 
Pd 0.55 0.65 

ZXing→PDE 
Pd 0.70 0.77 

Pf 0.04 0.33 Pf 0.05 0.24 Pf 0.03 0.33 

EQ→MW1 
Pd 0.50 0.44 

Safe→EQ 
Pd 0.67 0.62 

Average 
Pd 0.61 0.63 

Pf 0.13 0.21 Pf 0.01 0.22 Pf 0.09 0.25 

Table 8. F-measure values of one-to-one HDPM with no common metrics. 

Source→Target HDPM CCA+ Source→Target HDPM CCA+ Source→Target HDPM CCA+ 

EQ→AR5 0.79 0.55 MW1→EQ 0.80 0.66 JDT→ZXing 0.49 0.47 

AR5→EQ 0.51 0.66 LC→CM1 0.59 0.39 ZXing→JDT 0.78 0.67 

ML→AR4 0.72 0.59 CM1→LC 0.67 0.45 LC→Safe 0.72 0.63 

AR4→ML 0.49 0.37 JDT→PC1 0.56 0.51 Safe→LC 0.30 0.45 

PDE→AR4 0.60 0.56 PC1→JDT 0.67 0.54 PDE→ZXing 0.57 0.49 

AR4→PDE 0.60 0.42 EQ→Safe 0.59 0.63 ZXing→PDE 0.59 0.47 

EQ→MW1 0.64 0.27 Safe→EQ 0.55 0.66 - - - 

Average 0.61 0.52 P-value - 0.0159 - - - 

4.6. Impact of parameters 

In the experiments of our approach, there are two parameters may have an effect on the 
performance of defect prediction, one is threshold, the other is the number of repeated runs. In this 
section, we would discuss the effect of these parameters. 

4.6.1. Impact of threshold 

In our experiment setup, we run HDPM 100 times and add up these experiment results. When 
there are more than threshold experiments predict a module to be defective, the module is predicted 
to be defective eventually. Here, we would like to investigate what value of threshold can achieve 
better performance of defect prediction. We take threshold between 10 and 70 and record the 
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F-measure values. Figure 1 shows the boxplot of F-measure when taking different value of threshold. 
From Figure 2, we can see our approach can get better performance of defect prediction when the 
value of threshold varies from 30 to 45. That is, our approach can get better performance when 
30−45% of the experiments predict a module to be defective and the module is predicted to be 
defective eventually. While the value of threshold is too low or too high, most of modules are 
predicted as defective or clean in the experiment, making the experiment results inaccuracy.  

Table 9. Pd and Pf values of multiple-to-one HDPM. 

Source→Target Measure HDPM 
WPDP 

(Target→Target) 
Source→Target Measure HDPM 

WPDP 

(Target→Target) 

{CM1, Apache, 

LC}→AR3 

Pd 0.71 0.38 
{CM1, AR4, ML}→Safe 

Pd 0.79 0.65 

Pf 0.01 0.14 Pf 0.11 0.24 

{MW1, ZXing, 

EQ}→AR3 

Pd 0.75 0.38 
{MW1, AR3, EQ}→Safe 

Pd 0.61 0.65 

Pf 0.22 0.14 Pf 0.01 0.24 

{MW1, Apache, 

PDE}→AR4 

Pd 0.61 0.66 
{MW1,AR4,LC}→ZXing 

Pd 0.65 0.68 

Pf 0.21 0.23 Pf 0.04 0.43 

{PC1, ZXing, 

EQ}→AR4 

Pd 0.75 0.66 
{PC1, AR3, EQ}→ZXing 

Pd 0.67 0.68 

Pf 0.03 0.23 Pf 0.17 0.43 

{CM1, ZXing, 

ML}→AR5 

Pd 0.69 0.66 {AR3, MW1, 

ZXing}→EQ 

Pd 0.77 0.75 

Pf 0.21 0.18 Pf 0.19 0.37 

{PC1, Apache, 

PDE}→AR5 

Pd 0.74 0.66 
{AR4, CM1, Safe}→EQ 

Pd 0.68 0.75 

Pf 0.15 0.18 Pf 0.02 0.37 

{AR3, Apache, 

JDT}→CM1 

Pd 0.69 0.74 {AR4, CM1, 

ZXing}→JDT 

Pd 0.67 0.69 

Pf 0.01 0.37 Pf 0.01 0.17 

{AR4, ZXing, 

PDE}→CM1 

Pd 0.80 0.74 {AR5, MW1, 

Apache}→JDT 

Pd 0.65 0.69 

Pf 0.02 0.37 Pf 0.14 0.17 

{AR3, Safe, 

JDT}→MW1 

Pd 0.70 0.44 
{AR3, PC1, Safe}→LC 

Pd 0.61 0.71 

Pf 0.06 0.21 Pf 0.22 0.19 

{AR5, ZXing, 

ML}→MW1 

Pd 0.76 0.44 {AR4, MW1, 

Apache}→LC 

Pd 0.73 0.71 

Pf 0.16 0.21 Pf 0.02 0.19 

{AR4, Safe, 

JDT}→PC1 

Pd 0.73 0.86 {AR3, PC1, 

ZXing}→ML 

Pd 0.71 0.58 

Pf 0.02 0.29 Pf 0.01 0.20 

{AR5, Apache, 

JDT}→PC1 

Pd 0.73 0.86 
{AR4, MW1, Safe}→ML 

Pd 0.70 0.58 

Pf 0.06 0.29 Pf 0.01 0.20 

{CM1, AR3, 

JDT}→Apache 

Pd 0.65 0.67 {AR3, MW1, 

Safe}→PDE 

Pd 0.65 0.77 

Pf 0.08 0.31 Pf 0.11 0.33 

{PC1, AR4, 

PDE}→Apache 

Pd 0.67 0.67 {AR4, CM1, 

Apache}→PDE 

Pd 0.76 0.77 

Pf 0.11 0.31 Pf 0.04 0.33 

Average Pd 0.70 0.66 - Pf 0.09 0.26 

4.6.2. Impact of different number of repeated runs 

To deal with the randomness of our approach, that is using random sampling to process 
class-unbalanced data of source project, we repeated the experiment 100 times. Here, we would 
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like to investigate whether the performance of our approach will be affected if we run HDPM with 
different number of repeated runs. We run HDPM 10–100 times in 40 pairs of heterogeneous 
source and target projects, and Figure 3 shows F-measure values with different number of repeated 
runs. We can see that the performance of HDPM is basically stable for different number of repeated 
runs, and the average F-measure values vary from 0.6083 to 0.6327. Thus, we can conclude that 
different number of repeated runs has limited impact on the performance of our approach. 

Table 10. F-measure values of multiple-to-one HDPM. 

Source→Target HDPM 
WPDP 

(Target→Target) 
Source→Target HDPM 

WPDP 

(Target→Target) 

{CM1, Apache, LC}→AR3 0.81 0.31 {CM1, AR4, ML}→Safe 0.61 0.63 

{MW1, ZXing, EQ}→AR3 0.66 0.31 {MW1, AR3, EQ}→Safe 0.75 0.63 

{MW1, Apache, PDE}→AR4 0.69 0.49 {MW1,AR4,LC}→ZXing 0.54 0.50 

{PC1, ZXing, EQ}→AR4 0.79 0.49 {PC1, AR3, EQ}→ZXing 0.69 0.50 

{CM1, ZXing, ML}→AR5 0.57 0.55 {AR3, MW1, ZXing}→EQ 0.87 0.65 

{PC1, Apache, PDE}→AR5 0.64 0.55 {AR4, CM1, Safe}→EQ 0.82 0.65 

{AR3, Apache, JDT}→CM1 0.62 0.38 {AR4, CM1, ZXing}→JDT 0.64 0.59 

{AR4, ZXing, PDE}→CM1 0.88 0.38 {AR5, MW1, Apache}→JDT 0.78 0.59 

{AR3, Safe, JDT}→MW1 0.69 0.27 {AR3, PC1, Safe}→LC 0.67 0.44 

{AR5, ZXing, ML}→MW1 0.65 0.27 {AR4, MW1, Apache}→LC 0.70 0.44 

{AR4, Safe, JDT}→PC1 0.80 0.41 {AR3, PC1, ZXing}→ML 0.83 0.40 

{AR5, Apache, JDT}→PC1 0.73 0.41 {AR4, MW1, Safe}→ML 0.66 0.40 

{CM1, AR3, JDT}→Apache 0.75 0.68 {AR3, MW1, Safe}→PDE 0.62 0.40 

{PC1, AR4, PDE}→Apache 0.68 0.68 {AR4, CM1, Apache}→PDE 0.84 0.40 

Average 0.71 0.49 P-value - 6.5× 10-8 

 

Figure 2. The boxplot of F-measure values of threshold from 10 to 70. 
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(a) (b) 

  
(c) (d) 

Figure 3. F-measure for HDPM with different number of repeated runs. 

4.7. Answers to research questions 

RQ1. Is our approach HDPM helpful for heterogeneous cross-project defect prediction? 

From Tables 5 and 6 which source and target projects have common metrics, the Pd values of 
HDPM vary from 0.42 to 0.78 and the F-measure values of HDPM vary from 0.46 to 0.80. The 
average Pd and F-measure of HDPM are 0.65 and 0.63, respectively. From Tables 7 and 8 which 
source and target projects have no common metrics, the Pd and F-measure values of HDPM vary 
from 0.50 to 0.73 and 0.30 to 0.80. The average Pd and F-measure of HDPM are both 0.61. The 
p-value of Tables 4 and 6 are all below 0.05. Thus, we can conclude that our approach is helpful for 
heterogeneous cross-project defect prediction.  

The existing CPDP methods can only use common metrics and achieve unsatisfactory results 
when source and target projects contain few common metrics. However, our approach makes full 
use of all the metrics of source and target projects, and can achieve better performance of defect 
prediction at most times compared with existing CPDP methods. And HDPM can obtain 
comparable or even better prediction results compared with within-project defect prediction. The 
performance of HDPM is similar whether there are common metrics in source and target projects 
or not. The p-values indicate HDPM can make a statistically significant improvement in 
comparison with other methods. 

RQ2. Whether using multiple heterogeneous source projects is applicable to software defect prediction? 

As we for the first time use multiple heterogeneous source projects to predict defects, we also 
investigate whether using multiple heterogeneous source projects is applicable to HCPDP. From 
Table 9, the Pd and Pf values of HDPM vary from 0.61 to 0.80 and 0.01 to 0.22, and the average 
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Pd and Pf of HDPM are 0.70 and 0.09. From Table 10, the F-measure values of HDPM vary from 
0.54 to 0.88 and the average F-measure is 0.71. We can see that our approach outperforms 
within-project defect prediction at most times. The average Pd and F-measure of multiple-to-one 
HDPM outperforms one-to-one HDPM by 11.11 and 14.52%, respectively. The p-value of Table 8 
is 6.5 × 10−8 which is less than 0.05. It indicates that the performance of defect prediction of 
multiple-to-one HDPM is better than one-to-one HDPM. In addition, all the experiments can get 
the results in several minutes, and this indicates that the time efficiency of our method is 
acceptable. Therefore, we can conclude that using multiple heterogeneous source projects is 
applicable to HCPDP and extend the data acquisition range of defect prediction and make software 
defect prediction better applied to software engineering. 

4.8. Threats to validity 

Although the experiment achieved good results, the generalizability of our results may be 
limited since the scale of the dataset in the experiment is still small. However, we have analyzed 14 
projects from 4 different public defect datasets (SOFTLAB, NASA, ReLink and AEEEM) 
containing a total of 7511 modules, and the data is from publish defect datasets which are well 
represented, so it can verify the effectiveness of the method at some extent. In the future, we plan 
to analyze even more defect data to reduce this threat, especially the data from commercial 
software projects. 

We evaluated our approach in recall, false-positive and F-measure that are commonly used 
performance measures in defect prediction. However, there are other measures that can be used in defect 
prediction, such as area under curve (AUC), and G-means which are also comprehensive measures. 

For the four compared methods TNB, NN-filter, TCA+ and CCA+, we got the program code of 
TCA+ from the author, and we carefully implement TNB, NN-filter and CCA+ by following their 
papers. It may affect the accuracy of the experiment. 

5. Conclusion 

In this paper, we propose Heterogeneous Defect Prediction with Multiple source projects 
(HDPM) which can use multiple heterogeneous source projects for defect prediction to solve 
heterogeneous cross-project defect prediction (HCPDP) problem. HDPM constructs the projective 
matrix which can transfer source project to target project space, making the distributions of source 
and target projects are similar. Our approach is applicable for heterogeneous cross-project defect 
prediction and for the first time to use multiple heterogeneous source projects in software defect 
prediction, making software defect prediction better applied to software engineering. The results of 
our experiments show that HDPM can achieve better performance of defect prediction than existing 
CPDP methods, and can obtain comparable or even better prediction results compared with WPDP 
method. In addition, the performance of defect prediction for multiple-to-one HDPM outperforms 
one-to-one HDPM. 

In the future, we plan to evaluate HDPM with more datasets to validate the generalization of our 
approach, and try other transfer learning methods and classifiers to improve the performance of 
defect prediction further. 
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