
MBE, 17(2): 975–997.

DOI: 10.3934/mbe.2020052

Received: 24 July 2019

Accepted: 09 October 2019

Published: 08 November 2019

http://www.aimspress.com/journal/MBE

Research article

A self-adaptive mechanism using weibull probability distribution to

improve metaheuristic algorithms to solve combinatorial optimization

problems in dynamic environments

Cesar J. Montiel Moctezuma
1,

*, Jaime Mora
2,

* and Miguel González Mendoza
2

1
Instituto Mexicano del Transporte, Querétaro

2
Tecnologico de Monterrey

* Correspondence: Email: cmontielmoctezuma@gmail.com; jmora@tec.mx; Tel: +52-554-367-2277.

Abstract: In last decades, the interest to solve dynamic combinatorial optimization problems has

increased. Metaheuristics have been used to find good solutions in a reasonably low time, and the use

of self-adaptive strategies has increased considerably due to these kind of mechanism proved to be a

good alternative to improve performance in these algorithms. On this research, the performance of a

genetic algorithm is improved through a self-adaptive mechanism to solve dynamic combinatorial

problems: 3-SAT, One-Max and TSP, using the genotype-phenotype mapping strategy and

probabilistic distributions to define parameters in the algorithm. The mechanism demonstrates the

capability to adapt algorithms in dynamic environments.

Keywords: genetic algorithm; self-adaptive mechanism; dynamic combinatorial optimization problems

1. Introduction

In the last decades, combinatorial optimization problems have attract the interest of researchers

due to the increase of dynamic environments applied on these problems, and researchers have

developed mechanisms and methods to help optimization algorithms to adapt to changes that exist

during the execution of these algorithms.

These problems can be represented by many production and services problems, including the

reduction of the product’s cost, improvement of logistic and company’s profit. Furthermore, transport

976

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

cost minimization is one of the cost reduction methods in which the mercancy is transported from an

origin place to the one or several destinations with minimum cost [1].

Even defining Dynamic Combinatorial Optimization Problems (DCOP’s or Dynamic COP’s) is a

challenging task due to applications in real problems such as transportation of products where there are

a lot of not considered variables which cannot be identified until implementation on real cases. In

general, researchers usually define optimization problems that change over time as Dynamic Problems,

Time-Dependent Problems, or Dynamic Optimization Problems [2]. In existing metaheuristics studies,

dynamic problems are defined as a sequence of static problems linked up by some dynamic rules or as

a problem that have time dependent parameters in its mathematical model.

Usually, for static Combinatorial Optimization Problems (COP’s), the goal of metaheuristics is to

find the global optimum as fast and precise as possible, considering performance measures such as the

convergence speed and the rate to get the optimum over multiple runs.

However, the goal of algorithms to solve DCOP’s turns from to find the global optimum as fast as

possible [3], to track the optimum as close as possible to real time on dynamic changes; in several

cases, the algorithm needs to detect these changes, and then, it needs to track the local or global

optimum. In addition, on environments where there exists a correlation between changes, the

optimization algorithm needs to learn from its previous experience as a feedback to improve the search

in the new solution space. Otherwise, the optimization process after each change will be explained like

the process to solve different problems starting from the old population.

Heuristics and metaheuristics are methods that have been used to solve several problems in

logistics as cost reduction in supply chain distribution [4,5] and facility location problems [6], even in

manufacturing like optimization of manufacturing systems [7,8] and manufacturing models [9].

This research focuses on theoretical dynamic combinatorial problems to demonstrate the ability

of a proposed mechanism to adapt in dynamic environments which could describe the behavior of a

real problem. In this case, the mechanism was implemented in genetic algorithms to solve a travelling

salesman problem which can be generalized in several problems, such as vehicle routing problem

which is used in several areas of logistics and manufacturing. These mechanism is tested in other

theoretical problems like One Max and 3-SAT problem to demonstrate the capability to solve

binary problems, which are considered as simple problems but genetic algorithms search have a

little complication to solve them due to the behavior and evolutive process of mutation and

crossover operators.

2. Dynamic optimization problems

Many dynamic optimization problems have been used in literature [10], many of them have

features and can be classified into different groups based on some criteria:

 Time-Linkage: Whether the future behavior of the problem depends on the current solution

found by an algorithm or not.

 Predictability: Whether the generated changes are predictable or not.

 Visibility: Whether the changes are visible to the optimization algorithm and whether the

changes can be detected by using just a few detectors.

 Constrained problem: Whether the problem is constrained or not.

 Number of objectives: Whether the problem has single objective or multiple objectives.

 Types of changes: Detailed explanation of how changes occur in the search space.

 Cyclicity: Whether the changes are cyclic/recurrent in the search space or not.

977

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

 Periodicity: Whether the changes area periodical or not.

 Factors that change: Changes may involve parameters of objective functions, variables domain,

variables number, constraints, among others.

2.1. Dynamic combinatorial optimization problems

The problems defined in this research are Travelling Salesman Problem (TSP) and One-Max

problem, which have been considered in their static and dynamic form to extend the analysis of

several assessments between a set of configurations for genetic algorithm and a self-adaptive

mechanism proposed implemented in genetic algorithm to improve the search of solutions in

dynamic environments. The algorithm will be explained in next section.

2.1.1. 3-SAT

This problem consists of a logical propositional formula in n variables and the requirement to

find a value (true or false) for each variable that makes the formula true. This problem has

assignments. For k-SAT, the formula consists of a conjunction of clauses and each clause is a

disjunction of k variables, any of which may be negated. For these problems are

NP-complete. An example of such a clause for , with the third variable negated, is

 , which is false for exactly one assignment for these variables: ,

 , .

3-SAT is one of Karp’s 21 NP-complete problems [11], using Cook-Levin theorem to show that

there is a polynomial time many-one reduction from the boolean satisfiability problem to each of 21

combinatorial and graph theoretical computational problems, thereby showing that they are all

NP-complete. The instances that were used to test this problem were obtained from

DIMACS-SATLIB Benchmark Problems.

2.1.2. Dynamic 3 SAT

To generate the dynamism in the 3-SAT problem, a strategy of insertion and elimination of

conjunctions is used. At the beginning of the execution of the algorithm, only one strategy is selected

to use it for the whole execution, the strategy can be generate a random conjunction with random

variables or delete a random conjunction in the set of existing conjunctions. Since the original

instance is the one of 3SATLib, when new conjunctions are inserted, it is not known in what will be

the reaction of the new solutions. In the case of the elimination is an easier in this way because it

does not increase the complexity of the problem, on the contrary, it reduces it.

2.1.3. One max problem

The One-Max Problem (or Bit Counting) is a simple problem consisting in maximizing the

number of ones of a bit-string. Formally, this problem can be described as finding a string

 with , that maximizes the following equation:

978

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

 (1)

Many authors, studying this problem, define this problem as a simple unimodal function and for

a simple hill-climber using a traditional bit-flipping neighborhood search operator. However, a GA

does not search over this simple `Hamming' landscape. It is easy to analyze the landscape induced by

a traditional NS operator, but the position is a little more complicated for the operators normally used

by a GA, this is the reason of why this problem is important.

This is the simplest problem that can be selected, to convert this problem of a static

environment to a dynamic environment is needed to change the search, it means, if the objective

function is to find most of 1's in the solution, the change will be to find the most of 0s in the solution.

This causes that the algorithms start to converge in determined generations, and when the change

appears, all the solutions that have a good fitness, they are changing by the worst solution because

they have the worst fitness in that moment.

2.1.4. Travelling salesman problem

TSP can be formulated as an integer linear program. Label the cities with the numbers

and define , 1 if the path goes from city to city , and 0 otherwise. For let a

dummy variable, and the distance from city to city . Then TSP can be written as:

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

2.1.5. Dynamic travelling salesman problem (DTSP)

979

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

DTSP have several real applications, especially in the optimization of dynamic networks, like

planning and designing networks, load-balance routing, traffic management, among others.

An example of a DTSP is defined in [12] as a TSP with a dynamic cost matrix as:

 (9)

where: is the distance cost from city to city , and is the number of cities. DTSP

can be defined as , and the objective of DTSP is to find a minimum-cost route with all cities

at time . It can be described as follow:

 (10)

where: denotes the -th city in the solution such that and, if
is different of , and different of .

This problem have been used in manufacturing problems such as distribution and routing

problems [13–15] and in some cases to optimize facilities [16] and machines location [17].

3. Solution algorithms

3.1. Genetic algorithm

Genetic Algorithms (GA’s) have been developed in the 1970s by J. Holland to understand the

adaptive processes of natural systems [18]. Then, they have been applied to optimization and

machine learning in the 1980s [19,20].

Genetic algorithms are defined in four steps: the first one is focused in the creation of a random

population of candidate solutions according with the objective function. The second step is focused

on each individual is evaluated in objective function. The third one, parents will be selected of the

population, then is applied the crossover operator to these parents to build new solutions called

children, then, the mutation operator is applied to these children. In the last step, children population

will be the population for the new generation of parents, and this process will be repeated until a stop

criterion defined [19]. This process is in Figure 1.

3.2. Adaptive and self-adaptive methods

It is well known that the values of parameter settings for metaheuristics has a great impact on

their performance and this has attracted considerable interest in various mechanisms that in some

way attempt to automatically adjust the algorithms parameters for a given problem. Adaptive and

self-adaptive methods are developed to solve problems that have dynamic features.

In [20], there is a classification according to levels of adaptation or the mechanics on these

methods. In mechanics classification exist: static, deterministic, adaptive and self-adaptive. In static

methods the users need to define the parameters values manually; in deterministic, a heuristic

function is defined to select the values; in adaptive, a heuristic function takes advantage of some

feedback while the algorithm is running; and in self-adaptive, the parameters are encoded as part of

individuals allowing the algorithm to operate directly on the parameters.

980

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Figure 1. Generic Genetic Algorithm process.

In self-adapt levels exists four classes: environment, population, individual and component. On

environment level, the changes will be on fitness function; on population level, the changes will be

on individuals set; on individual level, changes are directly related with each individual; and in

component level, changes are made on each component of each individual, for example genes in

genetic algorithm.

3.3. Self-adaptation methods on genetic algorithms

Adaptation and self-adaptation methods have been explored on genetic algorithm components,

but these mechanisms do not have relevant improvements on all of them. The most considerable

improvement is in mutation and crossover operations, where new genetic operators are generated to

preserve the population distribution and a degree of diversity in future off-springs. Ingo Rechenberg

proposed the first deterministic adaptation rule for mutation parameter, called the ―1/5 rule‖, that

indicates in each generation must exist 1/5 of total genes mutated. A proposal of a crossover operator

is named Simulated Binary Reproduction (SBX), it is presented by Deb and Beyer in [22] where

SBX creates children solutions in proportion to the difference in parent solution, their purpose is to

obtain results as evolutionary strategies but as genetic algorithms. Another research [22] uses a

genetic operator known as Multiple Crosses Per Couple (MCPC) in which the quantity of crossovers

allowed per individual is encoded in the chromosome. Similar results are obtained via the design of

self-adaptive crossover operator, specifying rules such as preservation of the statistical moments in

distribution of the population and the diversity degree in future on-springs in [23], in this case,

Uniformly Unimodal Distribution Crossover (UNDX) is defined.

Others researches [24] have developed the idea of Immigrants Schemes in genetic algorithms to

solve dynamic routing problems, these schemes are based in random immigrants approach, which is

a natural and simple way to maintain the diversity level of population through replacing some

individuals of the current population with random individuals, called random immigrants, every

generation. Usually there are two strategies to select individuals in the population that should be

replaced: replacing random or the worst individuals. Authors [24] have used Memory Schemes at the

same time, in this case, memory store useful information from the current environment, either

implicitly through redundant representations or explicitly by storing best solutions of current

981

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

population in an extra memory. The stored information can be reused later in new environments.

Finally there are algorithms using hybrid immigrants and memory schemes.

4. Mechanism description

The proposed mechanism is based on the idea of a genotype-phenotype mapping function which

generates random values for each parameter of a Weibull probability distribution and finally through

this distribution is obtained the value of each parameter of genetic algorithm. This mechanism

belongs to self-adaptive methods in the individual level described in previous section. Before to

explain how the mechanism works, genotype-phenotype mapping idea needs to be explained and

how Weibull probability distribution works.

4.1. Genotype-phenotype mapping

The genotype and phenotype terms were created by Wilhelm Johannsen in 1911. Genotype is

the complete hereditary information of an organism, even if it is not expressed. The Phenotype is a

feature observed in the organism, such as morphology, development or behavior. This distinction is

fundamental in the study of trait heredity and evolution. The strategy or method to map a set of

genotypes to a set of phenotypes is call genotype-phenotype mapping. Genotype of an organism is an

important factor in the development of its phenotype, but it is not the only one. Even two organisms

with the same genotypes normally differ in their phenotypes [21].

The first studies about genotype-phenotype mapping in computation were elaborated on genetic

programming in Banzhaf and Keller's work [23], they focused on Motoo Kimura's bio molecular

research in 1968, where changes in molecules genotypes are phenotypically neutral are postulated, it

means, several genotypes codified the same phenotype. These research is called Neutral Theory of

Molecular Evolution of Motoo Kimura. Banzhaf and Keller proposed a genotype-phenotype

mapping for genetic programming where they modified the non-viable genotypes to correct them

with others nearby. An example in genetic algorithms is show in [25], where authors described a

strategy to guide the search according with mutation. The evolutive advantage is given by some

synonyms mutate towards more significant phenotypes than others.

Synonyms are explored in a more detailed way in Rothlauf y Goldberg’s work [26] where they

described that not all kind of representations are useful in the context of evolutive algorithms. A

representation is defined as synonomically redundant if the genotypes associated with the same

phenotype are similar, this concept is formally defined in terms of the sum of all distances between

pairs of genotypes obtained from the set of genotypes that encodes a phenotype. If each phenotype is

represented by the same number of genotypes, it means that the representation is uniformly

redundant, one genotype is neighbor to another if the distance between them is the least possible, if

neighboring genotypes throw neighboring phenotypes, the representation have a high locality.

In Ohnishi’s work [27] is explained a mutation-based evolutionary algorithm that evolves

genotypic genes for regulating developmental timing of phenotypic values. The genotype

sequentially generates a given number of entire phenotypes and then finishes its life at each

generation. Each genotypic gene represents a cycle time of changing probability to determine its

corresponding phenotypic value in a life span of the genotype.

In Fagan’s work [28] are explained some approaches that use genotype-phenotype mapping in

genetic programming, and they focused on performance, it means, they examined diff erent ways of

implementing this mapping from chromosome to solution and investigate the possibility of the

982

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

existence of mappings that are more suited to certain types of problems, or if a general mapping can

be found which exhibits acceptable performance across all problem domains.

4.2. Weibull distribution function

Probability distribution functions were used to define the mapping function in which a genotype

represents a phenotype, these functions were used indirectly to generate values for each parameter in

the algorithms, and this is the reason to explain each section of the proposed mechanism.

A probability distribution is a mathematical function that represent the probabilities of

occurrence of different possible outcomes in an experiment, it is a description of a random

phenomenon according with their respective probabilities of events.

There are a lot of probability distribution, but this research focuses on evaluate 3 different

distributions to select the best one, normal, exponential and Weibull distributions were tested. The

Weibull distribution function got the best results according to proposes of this research, due to it is

too simple to manipulate the values of its parameters to generate many forms, and this behavior helps

the adaptation of each parameter on a genetic algorithm. That’s the reason Weibull distribution is the

only probability distribution mentioned on this research.

Weibull distributions can be seen as a generalization of the exponential distribution as such as

the gamma distribution. This distribution is commonly used for modeling reliability or survival data.

It has two parameters: is the shape parameter and is the scale parameter, which allow

it to handle increasing, decreasing or constant failure-rates. Weibull distribution effectively describes

the time we have to wait for one event to occur, if that event becomes more or less likely with time.

Here the parameter describes how quickly the probability ramps up.

 It is defined as:

 (11)

Its complementary cumulative distribution function is a stretched exponential function. If the

quantity x is a time-to-failure, the Weibull distribution gives a distribution where the failure rate is

proportional to a time power. The pdf for the Weibull distribution drops off much more quickly

(for) or slowly (for) than a gamma distribution. In the case where , they both

reduce to the exponential distribution, this particularity makes this distribution special against others.

The shape parameter can be interpreted directly as follows:

 A value of indicates that the failure rate decreases over time. If there is significant

mortality or defective items failing early, and the failure rate decrease over time as the

defective items are eliminated of population.

 A value of indicates that the failure rate is constant over time. This suggest that

random external events are causing mortality or failure.

 A value of indicates that the failure rate increases over time. If there is an aging

behavior or parts that start to fail as time goes on.

Figure 2 shows how this distribution changes according with different values for parameters.

4.3. Proposed mechanism

The algorithm is based on the idea of a genotype-phenotype mapping function which generates

random values for each parameter in genetic algorithm based on a Weibull distribution, the idea is to

983

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

incorporate parameters of the algorithm to evolve in each generation with the population, but, each

individual has their own value for each parameter, it means, each individual has their own mutation

probability and selection probability.

Figure 2. Weibull Distribution graph for different configurations on each parameter.

4.3.1. Generating individuals

First, to generate each individual for genetic algorithms is needed to consider two aspects, the

first one is the individual size, it represents the original size for a solution that solves the problem;

the second aspect is focused on considered size for the Weibull distribution parameters, each

individual on population contains the own parameters and to generate a Weibull distribution

(see Figure 3).

Figure 3. Representation of individuals.

Segment on each individual that consider the Weibull distribution parameters needs satisfy two

features: a) Size needs to be even. b) Size is represented in binary code. The feature (a) is defined

due to segment is divided in two parts, the first one represents the value for and the second part

represents the value for , and both parameters need the same quantity of binary elements to map

their values in decimal integers. The feature (b) is defined because is easier to work with binary

984

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

values in most of the algorithms, it is recommended that the parameters representation must be

binary, to satisfy this representation is needed a mapping function that transforms binary values into

integer decimal values for each parameter (see Figure 4).

Figure 4. Representation of parameters segment of an individual into Weibull parameters.

To define the size of the mapping function to transform the parameters, it is necessary to define

the lower and upper limits that will be used for the Weibull parameters; the minimum recommended

value for and is 1, to avoid the form that this distribution has between the 0-1 values, because

it tends to be a logarithmic distribution, and it does not give good results for mechanism purposes;

the upper limit value is recommended to use values according to the number of binary bits to be used,

if it is necessary to handle only 3 bits it is recommended to use a limit size of 8, if it needs to use 4

bits a limit of 16, for 5 bits a limit of 32, and so on, this is to avoid normalizing from decimal to

binary values (see Figure 5).

Figure 5. Mapping function to transform parameters.

4.3.2. Generating random values with Weibull distribution

With parameters and is possible to generate a Weibull distribution, it just needed to

substitute these values on Equation 4, then the distribution generate the Cumulative Distribution

985

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Function (CDF). The CDF is used to generate random numbers in a range defined by the Weibull

distribution through the Inverse Transformation method.

Inverse Transformation is a method that used the cumulative distribution function F(x) of the

Weibull distribution, being that F(x) is defined in the interval (0, 1), it is possible to generate a

uniform random number and try to determine the value of the random variable for which the

cumulative distribution is equal to , it means, simulated value of the random variable that follows a

probability distribution f(x) is determined by solving the following equation:

 (12)

And for Weibull distribution the inverse function is:

 (13)

where is a random value .

4.3.3. Generating random parameters for algorithms

Finally, it is necessary to generate a mapping function that transforms the obtained random

value to a value that represents a parameter of the algorithms, in GA, the parameters that the

algorithm used are commonly probabilities and this is the reason that the parameters need to be

mapped between 0 and 1 values.

The mapping function is defined to evaluate and to obtain the parameter values for genetic

algorithm. The value obtained from the CDF is divided by the maximum value that can be obtained

in the Weibull distribution, this is to normalize it in the range of 0 and 1, and it is the new value for

each parameter.

4.3.4. Mechanism in genetic algorithm

Genetic algorithms have two main operators, crossover and mutation, and their values can be

between 0 and 1. The idea of how the mechanism works is based on the mutation and crossover

operators for binary individuals, it means, the segment that represents the parameters on each

individual will evolve with this genetic operators on each generation, but the operators will focus on

evolve this segment such as if algorithm were solving a binary problem; if the original problem is

defined in a non-binary space, such as combinatorial problems, the segment that represents the

individuals will be solved with genetic operators focused on this kind of problem, nevertheless, the

segment which represent the parameters will be solved as a binary problem. The pseudo-code that

represents this idea is explained in Figure A1 Appendix A.

5. Results

The implementations were tested and benchmarked in 3 experiments. In the first experiment the

One-Max problem was tested, this problem was configured on two instances with 50 and 500 bits

length respectively. The second experiment was tested on TSP problem with TSPLib where 2

instances were obtained called ―a280‖ and ―ulysses22‖, where problems have 280 and 22 cities

respectively, the matrix distance is obtained with Euclidean distance between cities. In third

experiment 3-SAT problem was evaluated, this problem was configured on two instances with 20

986

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

variables and 91 clauses, these instances where selected from SATLib library, the files are in

DIMACS CNF format, a standard format of instances of SAT developed in the nineties to express

Boolean satisfaction problems in a normal conjunctive way (that is, where the problem is expressed

as a conjunction of clauses and a clause is a disjunction of literals). On each dynamic instance, the

changes were realized every 50 generations and every 300 generations. For both experiments, 100

runs were generated for each instance, and the average of the results were used to compare the

algorithms. Due to the particular features of 3-SAT problems, 4 rules to identify dynamism in

problems were: problem was updated every 50 generations and every 300 generations, and the

process was to delete clauses and to add clauses. All experiments were tested in a computer with

Intel i7-4800MQ processor with 2.7 GHz and 16GB RAM. Implementations were coded using Java

version 8, jdk 1:8:092 and jre 1:8:0144.

The algorithms used to compare the mechanism proposed was selected by their results in an

analysis realized previously through a Design of Experiments (DOE) to prove which configuration(s)

of genetic algorithms are the best to solve these problems. The parameters used to generate these

configurations were population, mutation probability and crossover probability. The values

considered for each parameter on this DOE were:

Mutation Probability = .1, .5 y .9

Crossover Probability = .1, .5 y .9

Population = 50, 150, 300

With these values were obtained 27 different configurations for the GA. The results obtained in

the first experiment for these 27 algorithms are shown in the Figures B1-B2. These results

demonstrate that each configuration has a specific behavior when it tries to get the result for genetic

algorithm, this is the reason that for each combination values for each parameter were created

diff erent clusters to identify the main feature that solve in a better way that problem, in case of the

first experiment in its dynamic environment, results are shown in Figures B3-B4. These behaviors

were similar on each problem, in Figures B5-B6 are results obtained by experiment 2 in static

environment and in Figures B7-B8 in dynamic state. For the last experiment, in Figure B9-B10 are

shown only results obtained for static environment to these configurations in genetic algorithm, due

to the particular features described previously on this section.

The algorithms were selected according to the best results obtained and the population with a

balance between exploration and exploitation strategies, all results obtained for each configuration on

each problem defined in experiments were classified on different clusters, in Figures B11-B12 are

shown the clusters for the analysis on One-Max problem, in Figures B13-B14 for TSP problem and in

Figures B15-B16 for 3-SAT problem, on these graphs, a clustering strategy was used to identify the

features of the algorithms with the best results for each problem. There exist three different clusters,

the first one represents the better configurations that get best average global fitness and the

population is to near of the optimal, they are represented by the biggest circles in the graphs, the

features that describe these behaviors for each cluster is represented on Table 1.

According with clusters and features identified for each configurations to solve these problems,

for each problem, the best configurations of parameters were selected, for each problem 3 different

configurations such as is shown in Table 2.

987

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Table 1. Features for cluster to solve problems.

Cluster Problem Features

1 One Max Low mutation values and crossover does not have high values

2 One Max All algorithms with mutation value of .5

3 One Max Mutation and crossover values are proportionally inverse

1 TSP The mutation is low

2 TSP The mutation has intermediate values

3 TSP The mutation has the highest values

1 3-SAT The crossover has intermediate and low values, and mutation or too low or too high.

2 3-SAT Is not characterized for a special configuration

3 3-SAT Mutation has intermediate and high values

Table 2. Selected algorithms with best results to compete against the mechanism proposed.

Algorithm Problem Population Value Cross Over Value Mutation Value

GA9 One-Max 300 0.9 0.1

GA18 One-Max 300 0.9 0.5

GA27 One-Max 300 0.9 0.9

GA1 Dynamic One-Max 50 0.1 0.1

GA10 Dynamic One-Max 50 0.1 0.5

GA19 Dynamic One-Max 50 0.1 0.9

GA19 TSP 50 0.1 0.9

GA20 TSP 150 0.1 0.9

GA21 TSP 300 0.1 0.9

GA11 Dynamic TSP 150 0.1 0.5

GA20 Dynamic TSP 150 0.1 0.9

GA21 Dynamic TSP 300 0.1 0.9

GA1 3-SAT 50 0.1 0.1

GA10 3-SAT 50 0.1 0.5

GA20 3-SAT 150 0.1 0.9

For each problem several configurations for genetic algorithm have good results to solve it, to

demonstrate these results, on Figure B17, Figure B18 and Figure B19 are shown the three

configurations with best results for each problem.

The parameters to test the mechanism were mutation probability and crossover probability. The

mechanism proposed was evaluated in static problems and in dynamic problems, results are shown in

Figure 6 and Figure 7, to ensure that it will have good results in static problems and not only in

dynamic problems, the main objective for this research is to evaluate if mechanism help genetic

algorithms to change the exploration and exploitation strategies when combinatorial problems have

dynamic changes over time.

988

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Figure 6. Results of GA Weibull against genetic algorithm with different configurations

for static One-Max.

Figure 7. Results of GA Weibull against genetic algorithm with different configurations

for static TSP.

In Figures 8–11 are represented the results about dynamic problems, in both cases the

mechanism improves the genetic algorithm and it helps to track the optimal solution when a change

989

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

occurs, in all graphics the mechanism is represented by the blue line with the best results. On each

algorithm, results obtained for each configuration are shown in Table 3 for One Max, Table 4

Dynamic One Max, Table 5 TSP and Table 6 Dynamic TSP.

Figure 8. Best solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic One-Max.

Figure 9. Average solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic One-Max.

990

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Figure 10. Best solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic TSP.

Figure 11. Average solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic TSP.

991

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Table 3. Results for algorithms in One Max Problem.

Algorithm Best Average Mode Minimum

GA1 50 47.5922 50 46.64

GA9 50 48.2436 50 47.66

GA10 50 47.7099 50 47.28

GA11 50 45.2242 49 40.6667

GA18 50 48.252 50 48.0067

GA19 50 47.7065 50 47.6082

GA21 50 30.046166 47 27.57

GA27 50 48.2448 50 48.0633

GA Weibull 50 32.8611 50 27.05

Table 4. Results for algorithms in Dynamic One Max Problem.

Algorithm Best Average Mode Minimum

GA1 49 45.2046 49 42.1

GA9 50 36.8534 50 24.2

GA10 49 45.3747 49 42.87

GA11 48 44.0205 43 37.5267

GA18 50 36.8391 50 24.7533

GA19 49 45.3738 49 42.83

GA21 50 36.1885 50 22.2767

GA27 50 36.8146 50 24.8033

GA Weibull 50 49.4188 50 45.64

Table 5. Results for algorithms in TSP Problem.

Algorithm Best Average Mode

GA1 76.8119 89.5805 76.8119

GA9 114.0008 146.4622 126.7976

GA10 76.1759 88.05 76.1759

GA11 76.3119 88.0503 76.3119

GA18 109.7748 146.1850 163.4686

GA19 75.5088 87.5741 75.5088

GA21 75.5088 87.6917 75.5088

GA27 107.2962 146.1011 125.7882

GA Weibull 75.3097 80.4664 79.1822

In case of results for 3-SAT problem, 4 rules were defined to identify dynamism in this kind of

problems. In Figure 12 and Figure 13 are represented the best and average results for dynamic

environment for 3-SAT problem adding 5 clauses each 300 generations. In Figure 14 and Figure 15

are represented the best and average results for dynamic 3-SAT problem deleting 2 clauses every 300

generations. On this experiment is represented with figures just the 3-SAT problem with changes

992

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

every 300 generations, in the other case, changes every 50 generations, has the same behavior but the

graphs do not show the changes as clearly as they are shown in these figures.

Table 6. Results for algorithms in Dynamic TSP Problem.

Algorithm Best Average Mode

GA1 63.4885 97.7229 87.438

GA9 106.0332 173.1659 144.1324

GA10 66.1179 95.8859 78.0715

GA11 66.211 94.5666 76.374

GA18 94.6573 173.7578 214.5497

GA19 61.852 95.5419 70.1903

GA21 64.335 95.7753 77.8263

GA27 102.047 173.8176 140.1949

GA Weibull 61.6235 75.8967 79.2923

Figure 12. Best solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic 3-SAT adding 5 clauses every 300 generations.

993

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Figure 13. Average solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic 3-SAT adding 5 clauses every 300 generations.

Figure 14. Best solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic 3-SAT deleting 2 clauses every 300 generations.

994

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

Figure 15. Average solutions of GA Weibull against genetic algorithm with different

configurations for Dynamic 3-SAT deleting 2 clauses every 300 generations.

Table 7. Results for each configuration in static 3-SAT Problem.

Algorithm Best Average Mode Minimum

GA1 91 89.9336 91 89.16

GA10 91 89.9899 91 89.5067

GA20 91 88.6487 91 88.1633

GA Weibull 91 90.6304 90.84 88.44

Table 8. Results for dynamic 3-SAT Problem (adding 5 clauses, 50 generations).

Algorithm Best Average Mode Maximum

GA1 179.67 177.9916 179 183

GA10 180.18 178.4567 180 183

GA20 180.19 176.6554 180 183

GA Weibull 108.02 17.7718 180 184

Table 9. Results for dynamic 3-SAT Problem (deleting 2 clauses, 50 generations).

Algorithm Best Average Mode Maximum

GA1 53 52.4398 53 53

GA10 53 52.4388 53 53

GA20 53 51.5941 53 53

GA Weibull 53 52.8658 53 53

995

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

On each algorithm, results obtained for each configuration are shown in Table 3 for static 3-SAT,

Table 4 Dynamic 3-SAT problem adding 5 clauses every 50 generations, Table 4 TSP and Table 5

Dynamic TSP. In the next tables, the information is limited to shown the three best configurations for

genetic algorithm to solve this problem due to the large amount of information on each table.

Table 10. Results for dynamic 3-SAT Problem (adding 5 clauses, 300 generations).

Algorithm Best Average Mode Maximum

GA1 105.14 103.9322 105 106

GA10 105.04 103.8655 105 106

GA20 105.13 105.5007 105 106

GA Weibull 104.86 104.6524 105 106

Table 11. Results for dynamic 3-SAT Problem (deleting 2 clauses, 300 generations).

Algorithm Best Average Mode Maximum

GA1 75.99 75.1317 76 76

GA10 76 73.8836 76 76

GA20 76 75.0646 76 76

GA Weibull 75.92 75.7808 76 76

6. Discussion

The main conclusion is, at least for the proposed experiments, if genetic algorithm uses the

mechanism proposed, it improves a lot the strategy to search optimal solutions in dynamic problems.

When the problem changes overtime, the mechanism does not have any problem to adapt when

changes occur, it has the advantage to find the optimum to fast and it helps the population to

converge to this value(s). When a change occur, the algorithm is helped by the mechanism to get out

of local optimum solution and to find another optimal solution, it indicates that the self-adaptation is

responsible to change the diversification by an intensification strategy when the algorithm needs to

find solutions in new areas, moreover, it changes diversification by intensification when there not

exist changes in the solution space and the algorithm needs to find solutions in the shortest possible

time, the mechanism can manage the changes between these strategies because it increased or

decreased the mutation and crossover probabilities according with needs of the algorithm, due to

each individual in the population has the own probabilities, each individual has different mutation

and crossover probabilities and these values depend of a distribution probability function which

evolves at the same time that the population evolves, it means, each individual will evolve

independently depending on the individuals which it intersects and the mutations that receives on

each generation, and in case of changes in the environment, the evolution of its parameters will be as

drastic as possible depending on the fitness it have in the moment of changes. Furthermore, if the

solution space has more than one optimal solutions, the mechanism improves the possibility to find

them all.

Solutions demonstrates that mechanism improves the performance of genetic algorithms to

solve these problems, and it indicates that it can be implemented in generalized problems as vehicle

routing problems in some practical cases, just is needed to adjust objective function, variables and

restrictions of real problem.

996

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

As future work, this mechanism will be implemented in other algorithms as Particle Swarm

Optimization and Ant Colony Optimization, it will be used to solve more complex problems and to

modify another parameters such as population in genetic algorithms. It will be compared with existing

self-adaptive mechanism and it will be tested to solve vehicle routing problems in logistic real cases.

Acknowledgments

We would like to thank CONACyT for funding this research.

Conflict of interest

The authors declare no conflict of interest.

References

1. Y. Majid and K. Esmaile, Solving the vehicle routing problem by a hybrid metaheuristic algorithm,

J. Industr. Eng. Int., 8 (2012), 11.

2. S. X. Yang, T. T. Nguyen, C. H. Li, Evolutionary dynamic optimization test and evaluation

environments, Evolut. Comput. Dyn. Opt. Probl., 490 (2013), 3.

3. S. X. Yang and X. Yao, Evolutionary computation for dynamic optimization problems,

Springer-Verlag Berlin Heidelberg, 2013. Available from:

https://doi.org/10.1007/978-3-642-38416-5

4. H. Q. Liu, L. Pretorius and D. D. Jiang, Optimization of cold chain logistics distribution network

terminal, EURASOP J. Wireless Commun. Network., 2018, 158.

5. E. M. Cepolina and A. Farina, A new urban freight distribution scheme and an optimization

methodology for reducing its overall cost, Europ. Transp. Res. Rev., 7 (2014), 1.

6. F. F. Razi, A hybrid DEA-based K-means and invasive weed optimization for facility location

problem, J. Ind. Eng. Int., 2018. Available from: https://doi.org/10.1007/s40092-018-0283-5.

7. V. M. Kumar, A. Murthy and K. Chandrashekara, A hybrid algorithm optimization approach for

machine loading problem in flexible manufacturing system, J. Ind. Eng. Int., 8 (2012), 3.

Available from: https://doi.org/10.1186/2251-712X-8-3.

8. M. Tayyab, B. Sarkar and B. N. Yahya, Imperfect multi-stage lean manufacturing system with

rework under fuzzy demand, Mathematics, 7 (2019), 13.

9. S. Khorasgani, S. Mahdi and M. Ghaffari, Developing a cellular manufacturing model considering

the alternative routes, tool assignment, and machine reliability, J. Ind. Eng. Int., 14 (2018): 627.

10. S. X. Yanga, J. G. Yong and T. T. Nguyenc, Metaheuristics for Dynamic combinatorial

optimization problems, IMA J. Manage. Math., 24 (2012). Available from:

https://doi.org/10.1093/imaman/dps021.

11. R. M. Karp, Reducibility among combinatorial problems, Compl. Comput. Computat., 1972.

Available from: https://doi.org/10.1007/978-1-4684-2001-2_9.

12. C. H. Li, M. Yang and L. S. Kang, A new approach to solving dynamic traveling salesman

problems, SEAL, 2006, 4247. Available from: https://doi.org/10.1007/11903697_31.

13. T. Volling, M. Grunewald and T. S. Spengler, An integrated inventory—transportation system

with periodic pick-ups and leveled replenishment, Business Res., 6 (2013), 173. Available from:

https://doi.org/10.1007/BF03342748.

https://doi.org/10.1007/s40092-018-0283-5
https://doi.org/10.1186/2251-712X-8-3
https://doi.org/10.1093/imaman/dps021
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11903697_31
https://doi.org/10.1007/BF03342748

997

Mathematical Biosciences and Engineering Volume 17, Issue 2, 975–997.

14. G. P. Lechuga, Optimal logistics strategy to distribute medicines in clinics and hospitals, J. Math.

Industry, 8 (2018), 2. Available from: https://doi.org/10.1186/s13362-018-0044-5.

15. S. Henn, S. Koch, K. F. Doerner, et al., Metaheuristics for the order batching problem in manual

order picking systems, Business Res., 3(2018), 82. Available from:

https://doi.org/10.1007/BF03342717

16. R. Srikakulapu and U. Vinatha, Optimized design of collector topology for offshore wind farm

based on ant colony optimization with multiple travelling salesman problem, J. Modern Power

Syst. Clean Energy, 6 (2018), 1181. Available from: https://doi.org/10.1007/s40565-018-0386-4.

17. G. Moslemipour, A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout

problems considering dependency of demands, J. Ind. Eng. Int., 14(2018), 429. Available from:

https://doi.org/10.1007/s40092-017-0222-x.

18. J. H. Holland, Adaptation in natural and artificial systems [Master's thesis], University of Michigan

Press, Ann Arbor, MI, 1975.

19. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1st rev.

Addison-Wesley Longman Publishing Co, 1989. ISBN: 0201157675.

20. K. A. De Jong, Genetic algorithms a 10 year perspective, International Conference Genetic

Algorithms, 1985, 169–177. ISBN: 0-8058-0426-9.

21. Y. H. Liao and C. T. Sun, An educational genetic algorithms learning tool, IEEE Transact. Educ.,

2001. Available from: http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm.

22. J. A. B. Vera, J. Mora-Vargas, M. González-Mendoza, et al., Brief review of techniques used to

develop adaptive evolutionary algorithms, Open Cybern. Syst. J., 11(2017), 1–12.

23. J. A. B. Vera, Investigación del rol del mapeo genotipo-fenotipo y del operador de mutación en

algoritmos genéticos aplicados a problemas dinámicos [Master's thesis], Mexico, Tecnologico de

Monterrey, 2011, Spanish.

24. R. E. Keller and W. Banzhaf, Genetic programming using genotype-phenotype mapping from

linear genomes into linear phenotypes, Proceedings of the First Annual Conference on Genetic

Programming, 1996, 116–122. ISBN: 0-262-61127-9.

25. J. Mora, C. Stephens and H. Waelbroeck, Symmetry breaking and adaptation: Evidence from a toy

model of a virus, Biosystems, 51 (1997), 1–14.

26. F. Rothlauf and D. E. Goldberg, Redundant representations in evolutionary computation, Evol.

Comput., 11 (2003), 381–415.

27. K. Ohnishi and K. Yoshida, Evolutionary change in developmental timing, GECCO 2005, 2005,

1561–1562. Available from: https://doi.org/10.1145/1068009.1068259.

28. D. Fagan, Genotype-phenotype mapping in dynamic environments with grammatical evolution,

GECCO 2011, 2011. Available from: https://doi.org/ 10.1145/2001858.2002091.

©2020 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0).

https://doi.org/10.1186/s13362-018-0044-5
https://doi.org/10.1007/BF03342717
https://doi.org/10.1007/s40565-018-0386-4
https://doi.org/10.1007/s40092-017-0222-x
http://cindy.cis.nctu.edu.tw/~liao
http://cindy.cis.nctu.edu.tw/ctsun.html
http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm

