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Abstract: In last decades, the interest to solve dynamic combinatorial optimization problems has 

increased. Metaheuristics have been used to find good solutions in a reasonably low time, and the use 

of self-adaptive strategies has increased considerably due to these kind of mechanism proved to be a 

good alternative to improve performance in these algorithms. On this research, the performance of a 

genetic algorithm is improved through a self-adaptive mechanism to solve dynamic combinatorial 

problems: 3-SAT, One-Max and TSP, using the genotype-phenotype mapping strategy and 

probabilistic distributions to define parameters in the algorithm. The mechanism demonstrates the 

capability to adapt algorithms in dynamic environments. 
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1. Introduction  

In the last decades, combinatorial optimization problems have attract the interest of researchers 

due to the increase of dynamic environments applied on these problems, and researchers have 

developed mechanisms and methods to help optimization algorithms to adapt to changes that exist 

during the execution of these algorithms. 

These problems can be represented by many production and services problems, including the 

reduction of the product’s cost, improvement of logistic and company’s profit. Furthermore, transport 
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cost minimization is one of the cost reduction methods in which the mercancy is transported from an 

origin place to the one or several destinations with minimum cost [1]. 

Even defining Dynamic Combinatorial Optimization Problems (DCOP’s or Dynamic COP’s) is a 

challenging task due to applications in real problems such as transportation of products where there are 

a lot of not considered variables which cannot be identified until implementation on real cases. In 

general, researchers usually define optimization problems that change over time as Dynamic Problems, 

Time-Dependent Problems, or Dynamic Optimization Problems [2]. In existing metaheuristics studies, 

dynamic problems are defined as a sequence of static problems linked up by some dynamic rules or as 

a problem that have time dependent parameters in its mathematical model. 

Usually, for static Combinatorial Optimization Problems (COP’s), the goal of metaheuristics is to 

find the global optimum as fast and precise as possible, considering performance measures such as the 

convergence speed and the rate to get the optimum over multiple runs.  

However, the goal of algorithms to solve DCOP’s turns from to find the global optimum as fast as 

possible [3], to track the optimum as close as possible to real time on dynamic changes; in several 

cases, the algorithm needs to detect these changes, and then, it needs to track the local or global 

optimum. In addition, on environments where there exists a correlation between changes, the 

optimization algorithm needs to learn from its previous experience as a feedback to improve the search 

in the new solution space. Otherwise, the optimization process after each change will be explained like 

the process to solve different problems starting from the old population. 

Heuristics and metaheuristics are methods that have been used to solve several problems in 

logistics as cost reduction in supply chain distribution [4,5] and facility location problems [6], even in 

manufacturing like optimization of manufacturing systems [7,8] and manufacturing models [9]. 

This research focuses on theoretical dynamic combinatorial problems to demonstrate the ability 

of a proposed mechanism to adapt in dynamic environments which could describe the behavior of a 

real problem. In this case, the mechanism was implemented in genetic algorithms to solve a travelling 

salesman problem which can be generalized in several problems, such as vehicle routing problem 

which is used in several areas of logistics and manufacturing. These mechanism is tested in other 

theoretical problems like One Max and 3-SAT problem to demonstrate the capability to solve 

binary problems, which are considered as simple problems but genetic algorithms search have a 

little complication to solve them due to the behavior and evolutive process of mutation and 

crossover operators. 

2. Dynamic optimization problems  

Many dynamic optimization problems have been used in literature [10], many of them have 

features and can be classified into different groups based on some criteria: 

 Time-Linkage: Whether the future behavior of the problem depends on the current solution 

found by an algorithm or not. 

 Predictability: Whether the generated changes are predictable or not. 

 Visibility: Whether the changes are visible to the optimization algorithm and whether the 

changes can be detected by using just a few detectors. 

 Constrained problem: Whether the problem is constrained or not. 

 Number of objectives: Whether the problem has single objective or multiple objectives. 

 Types of changes: Detailed explanation of how changes occur in the search space. 

 Cyclicity: Whether the changes are cyclic/recurrent in the search space or not. 
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 Periodicity: Whether the changes area periodical or not. 

 Factors that change: Changes may involve parameters of objective functions, variables domain, 

variables number, constraints, among others. 

2.1. Dynamic combinatorial optimization problems 

The problems defined in this research are Travelling Salesman Problem (TSP) and One-Max 

problem, which have been considered in their static and dynamic form to extend the analysis of 

several assessments between a set of configurations for genetic algorithm and a self-adaptive 

mechanism proposed implemented in genetic algorithm to improve the search of solutions in 

dynamic environments. The algorithm will be explained in next section. 

2.1.1. 3-SAT 

This problem consists of a logical propositional formula in n variables and the requirement to 

find a value (true or false) for each variable that makes the formula true. This problem has      

assignments. For k-SAT, the formula consists of a conjunction of clauses and each clause is a 

disjunction of k variables, any of which may be negated. For     these problems are 

NP-complete. An example of such a clause for    , with the third variable negated, is 

                    , which is false for exactly one assignment for these variables:         , 

        ,        . 

3-SAT is one of Karp’s 21 NP-complete problems [11], using Cook-Levin theorem to show that 

there is a polynomial time many-one reduction from the boolean satisfiability problem to each of 21 

combinatorial and graph theoretical computational problems, thereby showing that they are all 

NP-complete. The instances that were used to test this problem were obtained from 

DIMACS-SATLIB Benchmark Problems. 

2.1.2. Dynamic 3 SAT 

To generate the dynamism in the 3-SAT problem, a strategy of insertion and elimination of 

conjunctions is used. At the beginning of the execution of the algorithm, only one strategy is selected 

to use it for the whole execution, the strategy can be generate a random conjunction with random 

variables or delete a random conjunction in the set of existing conjunctions. Since the original 

instance is the one of 3SATLib, when new conjunctions are inserted, it is not known in what will be 

the reaction of the new solutions. In the case of the elimination is an easier in this way because it 

does not increase the complexity of the problem, on the contrary, it reduces it. 

2.1.3. One max problem 

The One-Max Problem (or Bit Counting) is a simple problem consisting in maximizing the 

number of ones of a bit-string. Formally, this problem can be described as finding a string    

             with       , that maximizes the following equation: 
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       (1)  

Many authors, studying this problem, define this problem as a simple unimodal function and for 

a simple hill-climber using a traditional bit-flipping neighborhood search operator. However, a GA 

does not search over this simple `Hamming' landscape. It is easy to analyze the landscape induced by 

a traditional NS operator, but the position is a little more complicated for the operators normally used 

by a GA, this is the reason of why this problem is important. 

This is the simplest problem that can be selected, to convert this problem of a static 

environment to a dynamic environment is needed to change the search, it means, if the objective 

function is to find most of 1's in the solution, the change will be to find the most of 0s in the solution. 

This causes that the algorithms start to converge in determined generations, and when the change 

appears, all the solutions that have a good fitness, they are changing by the worst solution because 

they have the worst fitness in that moment. 

2.1.4. Travelling salesman problem 

TSP can be formulated as an integer linear program. Label the cities with the numbers         

and define     , 1 if the path goes from city   to city  , and 0 otherwise. For         let    a 

dummy variable, and      the distance from city   to city  . Then TSP can be written as: 

           

 

       

 

   

 (2) 

                             (3) 

                              (4) 

      

 

       

                        (5) 

      

 

       

                        (6) 

                                      (7) 

                              (8) 

2.1.5. Dynamic travelling salesman problem (DTSP) 
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DTSP have several real applications, especially in the optimization of dynamic networks, like 

planning and designing networks, load-balance routing, traffic management, among others. 

An example of a DTSP is defined in [12] as a TSP with a dynamic cost matrix as: 

                  (9) 

where:         is the distance cost from city   to city  , and   is the number of cities. DTSP 

can be defined as       , and the objective of DTSP is to find a minimum-cost route with all cities 

at time  . It can be described as follow: 

                         

 

   

 (10) 

where:               denotes the  -th city   in the solution such that           and, if   
is different of  , and    different of   .  

This problem have been used in manufacturing problems such as distribution and routing 

problems [13–15] and in some cases to optimize facilities [16] and machines location [17]. 

3. Solution algorithms  

3.1. Genetic algorithm 

Genetic Algorithms (GA’s) have been developed in the 1970s by J. Holland to understand the 

adaptive processes of natural systems [18]. Then, they have been applied to optimization and 

machine learning in the 1980s [19,20]. 

Genetic algorithms are defined in four steps: the first one is focused in the creation of a random 

population of candidate solutions according with the objective function. The second step is focused 

on each individual is evaluated in objective function. The third one, parents will be selected of the 

population, then is applied the crossover operator to these parents to build new solutions called 

children, then, the mutation operator is applied to these children. In the last step, children population 

will be the population for the new generation of parents, and this process will be repeated until a stop 

criterion defined [19]. This process is in Figure 1. 

3.2. Adaptive and self-adaptive methods 

It is well known that the values of parameter settings for metaheuristics has a great impact on 

their performance and this has attracted considerable interest in various mechanisms that in some 

way attempt to automatically adjust the algorithms parameters for a given problem. Adaptive and 

self-adaptive methods are developed to solve problems that have dynamic features. 

In [20], there is a classification according to levels of adaptation or the mechanics on these 

methods. In mechanics classification exist: static, deterministic, adaptive and self-adaptive. In static 

methods the users need to define the parameters values manually; in deterministic, a heuristic 

function is defined to select the values; in adaptive, a heuristic function takes advantage of some 

feedback while the algorithm is running; and in self-adaptive, the parameters are encoded as part of 

individuals allowing the algorithm to operate directly on the parameters. 
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Figure 1. Generic Genetic Algorithm process. 

In self-adapt levels exists four classes: environment, population, individual and component. On 

environment level, the changes will be on fitness function; on population level, the changes will be 

on individuals set; on individual level, changes are directly related with each individual; and in 

component level, changes are made on each component of each individual, for example genes in 

genetic algorithm. 

3.3. Self-adaptation methods on genetic algorithms 

Adaptation and self-adaptation methods have been explored on genetic algorithm components, 

but these mechanisms do not have relevant improvements on all of them. The most considerable 

improvement is in mutation and crossover operations, where new genetic operators are generated to 

preserve the population distribution and a degree of diversity in future off-springs. Ingo Rechenberg 

proposed the first deterministic adaptation rule for mutation parameter, called the ―1/5 rule‖, that 

indicates in each generation must exist 1/5 of total genes mutated. A proposal of a crossover operator 

is named Simulated Binary Reproduction (SBX), it is presented by Deb and Beyer in [22] where 

SBX creates children solutions in proportion to the difference in parent solution, their purpose is to 

obtain results as evolutionary strategies but as genetic algorithms. Another research [22] uses a 

genetic operator known as Multiple Crosses Per Couple (MCPC) in which the quantity of crossovers 

allowed per individual is encoded in the chromosome. Similar results are obtained via the design of 

self-adaptive crossover operator, specifying rules such as preservation of the statistical moments in 

distribution of the population and the diversity degree in future on-springs in [23], in this case, 

Uniformly Unimodal Distribution Crossover (UNDX) is defined.  

Others researches [24] have developed the idea of Immigrants Schemes in genetic algorithms to 

solve dynamic routing problems, these schemes are based in random immigrants approach, which is 

a natural and simple way to maintain the diversity level of population through replacing some 

individuals of the current population with random individuals, called random immigrants, every 

generation. Usually there are two strategies to select individuals in the population that should be 

replaced: replacing random or the worst individuals. Authors [24] have used Memory Schemes at the 

same time, in this case, memory store useful information from the current environment, either 

implicitly through redundant representations or explicitly by storing best solutions of current 
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population in an extra memory. The stored information can be reused later in new environments. 

Finally there are algorithms using hybrid immigrants and memory schemes. 

4. Mechanism description  

The proposed mechanism is based on the idea of a genotype-phenotype mapping function which 

generates random values for each parameter of a Weibull probability distribution and finally through 

this distribution is obtained the value of each parameter of genetic algorithm. This mechanism 

belongs to self-adaptive methods in the individual level described in previous section. Before to 

explain how the mechanism works, genotype-phenotype mapping idea needs to be explained and 

how Weibull probability distribution works. 

4.1. Genotype-phenotype mapping  

The genotype and phenotype terms were created by Wilhelm Johannsen in 1911. Genotype is 

the complete hereditary information of an organism, even if it is not expressed. The Phenotype is a 

feature observed in the organism, such as morphology, development or behavior. This distinction is 

fundamental in the study of trait heredity and evolution. The strategy or method to map a set of 

genotypes to a set of phenotypes is call genotype-phenotype mapping. Genotype of an organism is an 

important factor in the development of its phenotype, but it is not the only one. Even two organisms 

with the same genotypes normally differ in their phenotypes [21]. 

The first studies about genotype-phenotype mapping in computation were elaborated on genetic 

programming in Banzhaf and Keller's work [23], they focused on Motoo Kimura's bio molecular 

research in 1968, where changes in molecules genotypes are phenotypically neutral are postulated, it 

means, several genotypes codified the same phenotype. These research is called Neutral Theory of 

Molecular Evolution of Motoo Kimura. Banzhaf and Keller proposed a genotype-phenotype 

mapping for genetic programming where they modified the non-viable genotypes to correct them 

with others nearby. An example in genetic algorithms is show in [25], where authors described a 

strategy to guide the search according with mutation. The evolutive advantage is given by some 

synonyms mutate towards more significant phenotypes than others. 

Synonyms are explored in a more detailed way in Rothlauf y Goldberg’s work [26] where they 

described that not all kind of representations are useful in the context of evolutive algorithms. A 

representation is defined as synonomically redundant if the genotypes associated with the same 

phenotype are similar, this concept is formally defined in terms of the sum of all distances between 

pairs of genotypes obtained from the set of genotypes that encodes a phenotype. If each phenotype is 

represented by the same number of genotypes, it means that the representation is uniformly 

redundant, one genotype is neighbor to another if the distance between them is the least possible, if 

neighboring genotypes throw neighboring phenotypes, the representation have a high locality. 

In Ohnishi’s work [27] is explained a mutation-based evolutionary algorithm that evolves 

genotypic genes for regulating developmental timing of phenotypic values. The genotype 

sequentially generates a given number of entire phenotypes and then finishes its life at each 

generation. Each genotypic gene represents a cycle time of changing probability to determine its 

corresponding phenotypic value in a life span of the genotype. 

In Fagan’s work [28] are explained some approaches that use genotype-phenotype mapping in 

genetic programming, and they focused on performance, it means, they examined diff erent ways of 

implementing this mapping from chromosome to solution and investigate the possibility of the 
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existence of mappings that are more suited to certain types of problems, or if a general mapping can 

be found which exhibits acceptable performance across all problem domains. 

4.2. Weibull distribution function  

Probability distribution functions were used to define the mapping function in which a genotype 

represents a phenotype, these functions were used indirectly to generate values for each parameter in 

the algorithms, and this is the reason to explain each section of the proposed mechanism. 

A probability distribution is a mathematical function that represent the probabilities of 

occurrence of different possible outcomes in an experiment, it is a description of a random 

phenomenon according with their respective probabilities of events. 

There are a lot of probability distribution, but this research focuses on evaluate 3 different 

distributions to select the best one, normal, exponential and Weibull distributions were tested. The 

Weibull distribution function got the best results according to proposes of this research, due to it is 

too simple to manipulate the values of its parameters to generate many forms, and this behavior helps 

the adaptation of each parameter on a genetic algorithm. That’s the reason Weibull distribution is the 

only probability distribution mentioned on this research. 

Weibull distributions can be seen as a generalization of the exponential distribution as such as 

the gamma distribution. This distribution is commonly used for modeling reliability or survival data. 

It has two parameters:     is the shape parameter and     is the scale parameter, which allow 

it to handle increasing, decreasing or constant failure-rates. Weibull distribution effectively describes 

the time we have to wait for one event to occur, if that event becomes more or less likely with time. 

Here the    parameter describes how quickly the probability ramps up. 

 It is defined as: 

         
 
    

  
                              

                                             

  (11) 

Its complementary cumulative distribution function is a stretched exponential function. If the 

quantity x is a time-to-failure, the Weibull distribution gives a distribution where the failure rate is 

proportional to a time power. The pdf for the Weibull distribution drops off much more quickly 

(for   ) or slowly (for    ) than a gamma distribution. In the case where    , they both 

reduce to the exponential distribution, this particularity makes this distribution special against others. 

The shape parameter   can be interpreted directly as follows: 

 A value of     indicates that the failure rate decreases over time. If there is significant 

mortality or defective items failing early, and the failure rate decrease over time as the 

defective items are eliminated of population. 

 A value of     indicates that the failure rate is constant over time. This suggest that 

random external events are causing mortality or failure. 

 A value of     indicates that the failure rate increases over time. If there is an aging 

behavior or parts that start to fail as time goes on. 

Figure 2 shows how this distribution changes according with different values for parameters. 

4.3. Proposed mechanism 

The algorithm is based on the idea of a genotype-phenotype mapping function which generates 

random values for each parameter in genetic algorithm based on a Weibull distribution, the idea is to 
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incorporate parameters of the algorithm to evolve in each generation with the population, but, each 

individual has their own value for each parameter, it means, each individual has their own mutation 

probability and selection probability.  

 

Figure 2. Weibull Distribution graph for different configurations on each parameter.  

4.3.1. Generating individuals 

First, to generate each individual for genetic algorithms is needed to consider two aspects, the 

first one is the individual size, it represents the original size for a solution that solves the problem; 

the second aspect is focused on considered size for the Weibull distribution parameters, each 

individual on population contains the own parameters   and   to generate a Weibull distribution 

(see Figure 3). 

 

Figure 3. Representation of individuals. 

Segment on each individual that consider the Weibull distribution parameters needs satisfy two 

features: a) Size needs to be even. b) Size is represented in binary code. The feature (a) is defined 

due to segment is divided in two parts, the first one represents the value for   and the second part 

represents the value for  , and both parameters need the same quantity of binary elements to map 

their values in decimal integers. The feature (b) is defined because is easier to work with binary 



984 

Mathematical Biosciences and Engineering  Volume 17, Issue 2, 975–997. 

values in most of the algorithms, it is recommended that the parameters representation must be 

binary, to satisfy this representation is needed a mapping function that transforms binary values into 

integer decimal values for each parameter (see Figure 4). 

 

Figure 4. Representation of parameters segment of an individual into Weibull parameters. 

To define the size of the mapping function to transform the parameters, it is necessary to define 

the lower and upper limits that will be used for the Weibull parameters; the minimum recommended 

value for   and   is 1, to avoid the form that this distribution has between the 0-1 values, because 

it tends to be a logarithmic distribution, and it does not give good results for mechanism purposes; 

the upper limit value is recommended to use values according to the number of binary bits to be used, 

if it is necessary to handle only 3 bits it is recommended to use a limit size of 8, if it needs to use 4 

bits a limit of 16, for 5 bits a limit of 32, and so on, this is to avoid normalizing from decimal to 

binary values (see Figure 5). 

 

Figure 5. Mapping function to transform parameters. 

4.3.2. Generating random values with Weibull distribution 

With parameters   and   is possible to generate a Weibull distribution, it just needed to 

substitute these values on Equation 4, then the distribution generate the Cumulative Distribution 
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Function (CDF). The CDF is used to generate random numbers in a range defined by the Weibull 

distribution through the Inverse Transformation method.  

Inverse Transformation is a method that used the cumulative distribution function F(x) of the 

Weibull distribution, being that F(x) is defined in the interval (0, 1), it is possible to generate a 

uniform random number   and try to determine the value of the random variable for which the 

cumulative distribution is equal to  , it means, simulated value of the random variable that follows a 

probability distribution f(x) is determined by solving the following equation: 

                      (12) 

And for Weibull distribution the inverse function is: 

                                 
 
  (13) 

where   is a random value         . 

4.3.3. Generating random parameters for algorithms 

Finally, it is necessary to generate a mapping function that transforms the obtained random 

value to a value that represents a parameter of the algorithms, in GA, the parameters that the 

algorithm used are commonly probabilities and this is the reason that the parameters need to be 

mapped between 0 and 1 values. 

The mapping function is defined to evaluate and to obtain the parameter values for genetic 

algorithm. The value obtained from the CDF is divided by the maximum value that can be obtained 

in the Weibull distribution, this is to normalize it in the range of 0 and 1, and it is the new value for 

each parameter. 

4.3.4. Mechanism in genetic algorithm 

Genetic algorithms have two main operators, crossover and mutation, and their values can be 

between 0 and 1. The idea of how the mechanism works is based on the mutation and crossover 

operators for binary individuals, it means, the segment that represents the parameters on each 

individual will evolve with this genetic operators on each generation, but the operators will focus on 

evolve this segment such as if algorithm were solving a binary problem; if the original problem is 

defined in a non-binary space, such as combinatorial problems, the segment that represents the 

individuals will be solved with genetic operators focused on this kind of problem, nevertheless, the 

segment which represent the parameters will be solved as a binary problem. The pseudo-code that 

represents this idea is explained in Figure A1 Appendix A. 

5. Results 

The implementations were tested and benchmarked in 3 experiments. In the first experiment the 

One-Max problem was tested, this problem was configured on two instances with 50 and 500 bits 

length respectively. The second experiment was tested on TSP problem with TSPLib where 2 

instances were obtained called ―a280‖ and ―ulysses22‖, where problems have 280 and 22 cities 

respectively, the matrix distance is obtained with Euclidean distance between cities. In third 

experiment 3-SAT problem was evaluated, this problem was configured on two instances with 20 
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variables and 91 clauses, these instances where selected from SATLib library, the files are in 

DIMACS CNF format, a standard format of instances of SAT developed in the nineties to express 

Boolean satisfaction problems in a normal conjunctive way (that is, where the problem is expressed 

as a conjunction of clauses and a clause is a disjunction of literals). On each dynamic instance, the 

changes were realized every 50 generations and every 300 generations. For both experiments, 100 

runs were generated for each instance, and the average of the results were used to compare the 

algorithms. Due to the particular features of 3-SAT problems, 4 rules to identify dynamism in 

problems were: problem was updated every 50 generations and every 300 generations, and the 

process was to delete clauses and to add clauses. All experiments were tested in a computer with 

Intel i7-4800MQ processor with 2.7 GHz and 16GB RAM. Implementations were coded using Java 

version 8, jdk 1:8:092 and jre 1:8:0144.  

The algorithms used to compare the mechanism proposed was selected by their results in an 

analysis realized previously through a Design of Experiments (DOE) to prove which configuration(s) 

of genetic algorithms are the best to solve these problems. The parameters used to generate these 

configurations were population, mutation probability and crossover probability. The values 

considered for each parameter on this DOE were: 

Mutation Probability = .1, .5 y .9 

Crossover Probability = .1, .5 y .9 

Population = 50, 150, 300 

With these values were obtained 27 different configurations for the GA. The results obtained in 

the first experiment for these 27 algorithms are shown in the Figures B1-B2. These results 

demonstrate that each configuration has a specific behavior when it tries to get the result for genetic 

algorithm, this is the reason that for each combination values for each parameter were created 

diff erent clusters to identify the main feature that solve in a better way that problem, in case of the 

first experiment in its dynamic environment, results are shown in Figures B3-B4. These behaviors 

were similar on each problem, in Figures B5-B6 are results obtained by experiment 2 in static 

environment and in Figures B7-B8 in dynamic state. For the last experiment, in Figure B9-B10 are 

shown only results obtained for static environment to these configurations in genetic algorithm, due 

to the particular features described previously on this section. 

The algorithms were selected according to the best results obtained and the population with a 

balance between exploration and exploitation strategies, all results obtained for each configuration on 

each problem defined in experiments were classified on different clusters, in Figures B11-B12 are 

shown the clusters for the analysis on One-Max problem, in Figures B13-B14 for TSP problem and in 

Figures B15-B16 for 3-SAT problem, on these graphs, a clustering strategy was used to identify the 

features of the algorithms with the best results for each problem. There exist three different clusters, 

the first one represents the better configurations that get best average global fitness and the 

population is to near of the optimal, they are represented by the biggest circles in the graphs, the 

features that describe these behaviors for each cluster is represented on Table 1. 

According with clusters and features identified for each configurations to solve these problems, 

for each problem, the best configurations of parameters were selected, for each problem 3 different 

configurations such as is shown in Table 2. 
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Table 1. Features for cluster to solve problems. 

Cluster Problem Features 

1 One Max Low mutation values and crossover does not have high values 

2 One Max All algorithms with mutation value of .5 

3 One Max Mutation and crossover values are proportionally inverse 

1 TSP The mutation is low 

2 TSP The mutation has intermediate values 

3 TSP The mutation has the highest values 

1 3-SAT The crossover has intermediate and low values, and mutation or too low or too high. 

2 3-SAT Is not characterized for a special configuration 

3 3-SAT Mutation has intermediate and high values 

 

Table 2. Selected algorithms with best results to compete against the mechanism proposed. 

Algorithm Problem Population Value Cross Over Value Mutation Value 

GA9 One-Max 300 0.9 0.1 

GA18 One-Max 300 0.9 0.5 

GA27 One-Max 300 0.9 0.9 

GA1 Dynamic One-Max 50 0.1 0.1 

GA10 Dynamic One-Max 50 0.1 0.5 

GA19 Dynamic One-Max 50 0.1 0.9 

GA19 TSP 50 0.1 0.9 

GA20 TSP 150 0.1 0.9 

GA21 TSP 300 0.1 0.9 

GA11 Dynamic TSP 150 0.1 0.5 

GA20 Dynamic TSP 150 0.1 0.9 

GA21 Dynamic TSP 300 0.1 0.9 

GA1 3-SAT 50 0.1 0.1 

GA10 3-SAT 50 0.1 0.5 

GA20 3-SAT 150 0.1 0.9 

 

For each problem several configurations for genetic algorithm have good results to solve it, to 

demonstrate these results, on Figure B17, Figure B18 and Figure B19 are shown the three 

configurations with best results for each problem. 

The parameters to test the mechanism were mutation probability and crossover probability. The 

mechanism proposed was evaluated in static problems and in dynamic problems, results are shown in 

Figure 6 and Figure 7, to ensure that it will have good results in static problems and not only in 

dynamic problems, the main objective for this research is to evaluate if mechanism help genetic 

algorithms to change the exploration and exploitation strategies when combinatorial problems have 

dynamic changes over time. 
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Figure 6. Results of GA Weibull against genetic algorithm with different configurations 

for static One-Max. 

 

Figure 7. Results of GA Weibull against genetic algorithm with different configurations 

for static TSP. 

In Figures 8–11 are represented the results about dynamic problems, in both cases the 

mechanism improves the genetic algorithm and it helps to track the optimal solution when a change 
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occurs, in all graphics the mechanism is represented by the blue line with the best results. On each 

algorithm, results obtained for each configuration are shown in Table 3 for One Max, Table 4 

Dynamic One Max, Table 5 TSP and Table 6 Dynamic TSP. 

 

Figure 8. Best solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic One-Max. 

 

Figure 9. Average solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic One-Max. 
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Figure 10. Best solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic TSP. 

 

Figure 11. Average solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic TSP. 
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Table 3. Results for algorithms in One Max Problem. 

Algorithm Best Average Mode Minimum 

GA1 50 47.5922 50 46.64 

GA9 50 48.2436 50 47.66 

GA10 50 47.7099 50 47.28 

GA11 50 45.2242 49 40.6667 

GA18 50 48.252 50 48.0067 

GA19 50 47.7065 50 47.6082 

GA21 50 30.046166 47 27.57 

GA27 50 48.2448 50 48.0633 

GA Weibull 50 32.8611 50 27.05 

Table 4. Results for algorithms in Dynamic One Max Problem. 

Algorithm Best Average Mode Minimum 

GA1 49 45.2046 49 42.1 

GA9 50 36.8534 50 24.2 

GA10 49 45.3747 49 42.87 

GA11 48 44.0205 43 37.5267 

GA18 50 36.8391 50 24.7533 

GA19 49 45.3738 49 42.83 

GA21 50 36.1885 50 22.2767 

GA27 50 36.8146 50 24.8033 

GA Weibull 50 49.4188 50 45.64 

Table 5. Results for algorithms in TSP Problem. 

Algorithm Best Average Mode 

GA1 76.8119 89.5805 76.8119 

GA9 114.0008 146.4622 126.7976 

GA10 76.1759 88.05 76.1759 

GA11 76.3119 88.0503 76.3119 

GA18 109.7748 146.1850 163.4686 

GA19 75.5088 87.5741 75.5088 

GA21 75.5088 87.6917 75.5088 

GA27 107.2962 146.1011 125.7882 

GA Weibull 75.3097 80.4664 79.1822 

In case of results for 3-SAT problem, 4 rules were defined to identify dynamism in this kind of 

problems. In Figure 12 and Figure 13 are represented the best and average results for dynamic 

environment for 3-SAT problem adding 5 clauses each 300 generations. In Figure 14 and Figure 15 

are represented the best and average results for dynamic 3-SAT problem deleting 2 clauses every 300 

generations. On this experiment is represented with figures just the 3-SAT problem with changes 
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every 300 generations, in the other case, changes every 50 generations, has the same behavior but the 

graphs do not show the changes as clearly as they are shown in these figures. 

Table 6. Results for algorithms in Dynamic TSP Problem. 

Algorithm Best Average Mode 

GA1 63.4885 97.7229 87.438 

GA9 106.0332 173.1659 144.1324 

GA10 66.1179 95.8859 78.0715 

GA11 66.211 94.5666 76.374 

GA18 94.6573 173.7578 214.5497 

GA19 61.852 95.5419 70.1903 

GA21 64.335 95.7753 77.8263 

GA27 102.047 173.8176 140.1949 

GA Weibull 61.6235 75.8967 79.2923 

 

Figure 12. Best solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic 3-SAT adding 5 clauses every 300 generations. 
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Figure 13. Average solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic 3-SAT adding 5 clauses every 300 generations. 

 

 

Figure 14. Best solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic 3-SAT deleting 2 clauses every 300 generations. 
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Figure 15. Average solutions of GA Weibull against genetic algorithm with different 

configurations for Dynamic 3-SAT deleting 2 clauses every 300 generations. 

Table 7. Results for each configuration in static 3-SAT Problem. 

Algorithm Best Average Mode Minimum 

GA1 91 89.9336 91 89.16 

GA10 91 89.9899 91 89.5067 

GA20 91 88.6487 91 88.1633 

GA Weibull 91 90.6304 90.84 88.44 

Table 8. Results for dynamic 3-SAT Problem (adding 5 clauses, 50 generations). 

Algorithm Best Average Mode Maximum 

GA1 179.67 177.9916 179 183 

GA10 180.18 178.4567 180 183 

GA20 180.19 176.6554 180 183 

GA Weibull 108.02 17.7718 180 184 

Table 9. Results for dynamic 3-SAT Problem (deleting 2 clauses, 50 generations). 

Algorithm Best Average Mode Maximum 

GA1 53 52.4398 53 53 

GA10 53 52.4388 53 53 

GA20 53 51.5941 53 53 

GA Weibull 53 52.8658 53 53 
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On each algorithm, results obtained for each configuration are shown in Table 3 for static 3-SAT, 

Table 4 Dynamic 3-SAT problem adding 5 clauses every 50 generations, Table 4 TSP and Table 5 

Dynamic TSP. In the next tables, the information is limited to shown the three best configurations for 

genetic algorithm to solve this problem due to the large amount of information on each table. 

Table 10. Results for dynamic 3-SAT Problem (adding 5 clauses, 300 generations). 

Algorithm Best Average Mode Maximum 

GA1 105.14 103.9322 105 106 

GA10 105.04 103.8655 105 106 

GA20 105.13 105.5007 105 106 

GA Weibull 104.86 104.6524 105 106 

Table 11. Results for dynamic 3-SAT Problem (deleting 2 clauses, 300 generations). 

Algorithm Best Average Mode Maximum 

GA1 75.99 75.1317 76 76 

GA10 76 73.8836 76 76 

GA20 76 75.0646 76 76 

GA Weibull 75.92 75.7808 76 76 

6. Discussion  

The main conclusion is, at least for the proposed experiments, if genetic algorithm uses the 

mechanism proposed, it improves a lot the strategy to search optimal solutions in dynamic problems. 

When the problem changes overtime, the mechanism does not have any problem to adapt when 

changes occur, it has the advantage to find the optimum to fast and it helps the population to 

converge to this value(s). When a change occur, the algorithm is helped by the mechanism to get out 

of local optimum solution and to find another optimal solution, it indicates that the self-adaptation is 

responsible to change the diversification by an intensification strategy when the algorithm needs to 

find solutions in new areas, moreover, it changes diversification by intensification when there not 

exist changes in the solution space and the algorithm needs to find solutions in the shortest possible 

time, the mechanism can manage the changes between these strategies because it increased or 

decreased the mutation and crossover probabilities according with needs of the algorithm, due to 

each individual in the population has the own probabilities, each individual has different mutation 

and crossover probabilities and these values depend of a distribution probability function which 

evolves at the same time that the population evolves, it means, each individual will evolve 

independently depending on the individuals which it intersects and the mutations that receives on 

each generation, and in case of changes in the environment, the evolution of its parameters will be as 

drastic as possible depending on the fitness it have in the moment of changes. Furthermore, if the 

solution space has more than one optimal solutions, the mechanism improves the possibility to find 

them all. 

Solutions demonstrates that mechanism improves the performance of genetic algorithms to 

solve these problems, and it indicates that it can be implemented in generalized problems as vehicle 

routing problems in some practical cases, just is needed to adjust objective function, variables and 

restrictions of real problem. 
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As future work, this mechanism will be implemented in other algorithms as Particle Swarm 

Optimization and Ant Colony Optimization, it will be used to solve more complex problems and to 

modify another parameters such as population in genetic algorithms. It will be compared with existing 

self-adaptive mechanism and it will be tested to solve vehicle routing problems in logistic real cases. 
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