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Abstract: We propose a multi-group, multi-scale mathematical model to investigate the between-
host and within-host dynamics of cholera. At the between-host level, we divide the total population
into a number of host groups with different characteristics representing spatial heterogeneity. Our
model incorporates the dual transmission pathways that include both the environment-to-human and
human-to-human transmission routes. At the within-host level, our model describes the interaction
among the pathogenic bacteria, viruses, and host immune response. For each host group, we couple
the between-host disease transmission and within-host pathogen dynamics at different time scales. Our
study thus integrates multi-scale modeling and multi-group modeling into one single framework. We
describe the general modeling framework and demonstrate it through two specific and biologically
important cases. We conduct detailed analysis for each case and obtain threshold results regarding the
multi-scale dynamics of cholera in a spatially heterogeneous environment. In particular, we find that
the between-host reproduction number is shaped by the collection of the disease risk factors from all
the individual host groups. Our findings highlight the importance of a whole-population approach for
cholera prevention and intervention.
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1. Introduction

Infectious diseases remain a serious public health burden in developing countries, leading to high
morbidity and mortality every year. Mathematical modeling has long been a useful theoretical tool to
investigate the mechanisms of infectious diseases and provide input for the design of control
strategies. Although traditional mathematical epidemic models are focused on disease transmission
and spread at the population level, there is increasing interest in connecting the between-host
transmission dynamics and the within-host immunological dynamics [1–5]. These studies, however,
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are mainly concerned with directly transmitted or vector-borne diseases, and typically involves only a
single population setting in a homogeneous environment.

The goal of the present paper is to conduct multi-scale modeling for cholera, a severe waterborne
infection, in a spatially heterogeneous environment. Although cholera is an ancient disease, it
continues to devastate impoverished populations that have limited access to clean water, hygiene and
sanitation resources. The persistence of cholera has been highlighted by large outbreaks in Yemen
(2016–2018), South Sudan (2014), Haiti (2010–2012), and many other places, with millions of cases
reported in recent years [6, 7].

The causative agent of cholera is the bacterium Vibrio cholerae, which can survive and multiply
both in the aquatic environment and within the human body. Individual hosts can catch the pathogen
from ingestion of contaminated water through the indirect (i.e., environment-to-human) transmission
route, or from close contact with infected individuals through the direct (i.e., human-to-human)
transmission route [8, 9]. Once entering the body of a host, the pathogenic bacteria go through
complicated processes of biological, chemical and genetic interactions, leading to large amounts of
watery diarrhea and other symptoms (such as vomiting, muscle cramps and low blood pressure) that
characterize human cholera. Thus, the dynamics of cholera normally involve dual transmission
pathways, different time scales happening for the between-host transmission and within-host
interaction, and could vary significantly from place to place due to the heterogeneity in
environmental, geographic, and socioeconomic conditions.

Mathematical modeling of cholera could play an important role in understanding the infection and
designing effective strategies for disease prevention and intervention. A large number of cholera
models have been published in recent years; see, for example, [8, 10–20]. Despite the many
progresses made in these studies, our current knowledge in the fundamental mechanisms of cholera
remains limited.

In a study of the 2008–2009 Zimbabwe cholera outbreak [12], basic reproduction numbers were
estimated for the 10 provinces in Zimbabwe. The results were highly heterogeneous, an indication that
the underlying transmission pattern varied widely throughout the country. Similarly, an investigation
of the 2010–2012 Haiti cholera outbreak produced very different reproduction numbers for different
administrative departments of Haiti [17]. Although relatively simple mathematical models were used in
these studies, they did imply that spatial heterogeneity plays an important role in cholera transmission.
Consequently, the effects of the movement of human hosts and the dispersal of pathogenic bacteria
may also contribute to the overall pattern of cholera epidemics and endemism.

In order to represent the spatial movement of hosts and pathogens, simple partial differential
equation (PDE) models were developed in [18, 19] to account for cholera epidemic spreading along a
theoretical river, where only the environment-to-human transmission route was considered. In [21], a
PDE cholera model based on reaction-diffusion equations was proposed that represents the spatial
diffusion of the pathogens and human hosts while incorporating both the direct and indirect
transmission routes. This work was later extended in [22] to include a convection process for the
pathogenic bacteria, and in [23] to incorporate seasonal fluctuation into the spatiotemporal dynamics
of cholera. For all these PDE studies, the spatial domain is restricted to a one-dimensional (1D) space.
Meanwhile, multi-patch models based on ordinary differential equations are also proposed [24, 25] to
study the spread of cholera from one patch to another due to human and/or water movement.

In spite of these efforts and related findings, some difficulties remain in the investigation of the
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spatial dynamics of cholera. For example, it is still a nontrivial task to model and analyze cholera
epidemics in a realistic setting that incorporates spatial variations and multiple transmission pathways
of cholera. It also remains a challenge to quantify the infection risk of cholera in a spatially
heterogeneous environment.

Another limitation in current modeling studies of cholera is the insufficient understanding of the
within-host disease dynamics. Most of the published cholera models are concerned with the
between-host transmission and spread at the population level. On the other hand, experimental
measurements [26] show that cholera infection involves complicated within-host dynamics that are
distinct from many other infections such as vector-borne or directly transmitted diseases. In particular,
the pathogenesis of the vibrios inside the human body involves a special type of virus, referred to as
the cholera toxin phage (CTXφ). This phage is originally present as an integrated section of the
genome of the V. cholerae bacterium, and it remains silent within V. cholerae in the natural
environment. However, when the vibrios are ingested into the human body and reach the intestinal
area, the viruses within some vibrios are activated and, through a horizontal gene transfer, transduces
the vibrios ingested from the environment into another type of vibrios, which we refer to as human
vibrios, that have a much higher infectivity (up to 700-fold compared to that of the environmental
vibrios) [8, 9, 27]. The released viruses then attach to and enter other vibrios, and such bacterial-viral
interaction leads to the production of large amounts of toxin causing severe diarrhea. Eventually,
through shedding, these highly infectious vibrios get out of the human body and remain active for a
period of several hours, during which time these vibrios may significantly impact the disease
transmission among human hosts. Therefore, the within-host interaction constitutes an essential part
of cholera dynamics and is closely related to the between-host transmission and spread of the disease.

A mathematical model that links the between-host and within-host dynamics of cholera was
proposed in [28], which involved two time scales: the fast scale for the pathogen dynamics inside the
human body, and the slow scale for the disease transmission among hosts and the time evolution of
the environmental vibrios. In a related study [29], the within-host dynamics of cholera were
investigated in more detail, where the vibrios ingested from the environment (with lower infectivity)
and those transformed inside the human body (with higher infectivity) are distinguished, and their
interaction with the virus (CTXφ) is taken into account. More recently, a multi-scale cholera model
was proposed in [30] that couples the between-host transmission, the within-host interaction and the
temporal evolution of the bacteria in the environment. Particularly, the within-host subsystem in this
model involves the interaction among the cholera vibrios, the virus, and the host immune response.

In the present study, we aim to partially fill the knowledge gaps in the two aforementioned
challenges in cholera modeling, by integrating multi-scale modeling of cholera into a spatially
heterogeneous setting. The motivations for this study are threefold: (1) to better understand the spatial
dynamics of cholera; (2) to gain more knowledge in cholera dynamics at different time scales; and
(3) to connect the between-host transmission, the within-host interaction and the time evolution of the
environmental bacteria for cholera in a heterogeneous spatial domain. We will employ the
multi-group modeling technique, which is one of the most successful approaches to investigate spatial
heterogeneity in mathematical epidemiology [31, 32]. Other modeling studies to deal with spatial
heterogeneity include the Lagrangian and Eulerian approaches (see [33] and references therein) which
explicitly describe the population dispersal. Some of the existing cholera models have already utilized
the multi-group technique; see, e.g., [17, 34]. In the multi-group framework, the entire population is
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divided into multiple groups and disease transmission may occur within the same group and between
different groups, reflecting the movement of human hosts and/or the pathogen from one region to
another. For each group, we will investigate cholera dynamics at multiple scales by coupling the
between-host transmission and within-host interaction. The within-host dynamics remain the same
for individuals in the same group, allowing for a level of homogeneity for each group (i.e., a subset of
the total population), but they differ from group to group, reflecting the heterogeneity in terms of
environmental conditions, medical resources, individual contact patterns, etc., in different subsets of
the host population. To our knowledge, this study represents the first effort in integrating multi-scale
and multi-group frameworks for cholera modeling.

We will start from a general multi-group setting, where disease transmission occurs both within each
group and across different groups with distinct transmission rates. A common water source is shared
by all host groups, so that all hosts may contribute (e.g., through shedding) to the time evolution of the
pathogenic bacteria in the environment while they are exposed to the pathogens from the contaminated
water shared by the entire population. We will then focus our attention on two special, but biologically
important, cases. For each case, we conduct careful analysis on the equilibrium solutions and their
stabilities, and complement the analytical findings with some numerical simulation results.

The remainder of this paper proceeds as follows. In Section 2, we present the general formulation
of our multi-group, multi-scale model. In Section 3, we consider the first special case where the host
groups are connected with semi-uniform disease transmission. In Section 4, we study the second
special case where the host groups are isolated so that there is no cross-transmission among different
groups. Finally, we conclude the paper with some discussion in Section 5.

2. General formulation

We consider a human population in a spatially heterogeneous environment. The total population is
divided into m distinct groups that reside in different locations. Each host group is partitioned into a
susceptible compartment S i, an infected (and infectious) compartment Ii, and a recovered compartment
Ri, where the population in each group is assumed to be a constant and given by Ni = S i + Ii + Ri, for
i = 1, . . . ,m. Meanwhile, we assume that all the host groups share the same water source, and we let B
denote the concentration of the bacterium Vibrio cholerae in the common water supply.

We then describe the between-host transmission dynamics of cholera in this setting by the following
system of differential equations:

dS i

dt
=µNi − S i

m∑
k=1

βHik Ik − βLiS iB − µS i

dIi

dt
=S i

m∑
k=1

βHik Ik + βLiS iB − (γi + µ)Ii

dRi

dt
=γiIi − µRi

(2.1)

for i = 1, · · · ,m, together with the equation for the time evolution of the pathogenic vibrios in the
environment:

dB
dt

=

m∑
i=1

ξi(Zi)Ii − δB (2.2)
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Here we assume that the natural birth and death rates for all the human hosts are the same, denoted
by µ , considering the relatively short duration of a typical cholera epidemic (compared to the average
human lifespan) and the generally low lethality rate of cholera [6,7]. For each i = 1, · · · ,m, susceptible
individuals in group i contract cholera either through direct (i.e., human-to-human) transmission from
infectives in group k at the rate βHik (1 ≤ k ≤ m), or through indirect (i.e., environment-to-human)
transmission from the contaminated water at the rate βLi . Meanwhile, an infected individual in group
i recovers at the rate γi , and contributes (via shedding) to the growth of the bacteria in the aquatic
environment at the rate ξi(Zi) depending on the within-host pathogen load Zi, defined in system (2.3).
We assume that the environmental bacterial growth is predominantly refueled by the infected hosts. In
addition, δ denotes the natural removal rate of the vibrios.

After the vibrios from the environment are ingested by a human host, they interact with the virus
CTXφ in the small intestine. Consequently, the environmental vibrios are transformed into highly toxic
and infectious vibrios [9, 27]), which we refer to as the human vibrios. Meanwhile, the host immune
system responds to the invasion by trying to eliminate the pathogenic vibrios and viruses as a means
to protect the human body. Hence, we use the following system of differential equations (an extension
of the model from [30] for homogeneous host settings) to describe the within-host dynamics of an
average infected individual in the ith group

dZi

dt
=c1i BVi − d1i MiZi − ζiZi

dVi

dt
=c2i BVi − d2i MiVi − τiVi

dMi

dt
=e1i MiZi + e2i MiVi − piMi

(2.3)

Here Zi, Vi, and Mi (i = 1, · · · ,m) represent the concentrations of human vibrios, viruses (i.e., CTXφ),
and host immune cells, respectively. The parameters c1i and c2i denote the generation rates, and d1i

and d2i denote the immune killing rates, for human vibrios and viruses respectively; ζi is the removal
rate of human vibrios (due to natural death or shedding), τi is the removal rate of viruses, and pi is the
removal rate of the immune cells; e1i and e2i represent the immune stimulation rates from the human
vibrios and viruses, respectively. We have assumed in systems (2.2) and (2.3) that the environmental
vibrios are only produced in the aquatic environment, whereas the human vibrios are only generated
inside the human body and, after being shed out by infected individuals, lose their high infectivity and
eventually become part of the environmental vibrios.

The within-host dynamics, represented by system (2.3) for each group, take place on a fast time
scale, ranging from several hours to a few days. In contrast, the between-host dynamics, represented
by system (2.1) for each group, are on a much slower scale, typically lasting several months or even a
few years. Thus, cholera dynamics in each host group are modeled by a multi-scale process, involving
both within-host interaction and between-host transmission. Note that all the host groups interact with
the common water source in the sense that they are exposed to the pathogenic bacteria while they
also contribute to the bacterial growth in the environment. Note also that the within-host dynamics
are dependent on the environmental bacterial concentration. Therefore, the temporal evolution of the
environmental bacteria, represented by Eq (2.2), plays an important role by not only connecting all the
host groups, but also linking the between-host and within-host dynamics inside each group.

Equations (2.1)–(2.3) constitute our multi-group, multi-scale model for cholera dynamics in a
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spatially heterogeneous environment. This general formulation, however, makes mathematical
analysis difficult. As a means to demonstrate the application of this framework, in what follows we
focus our attention on two simplified (yet biologically meaningful) scenarios of the model and
conduct careful analysis to each.

3. Case one: Semi-uniform transmission

Since all the host groups share the same water source, it may be reasonable to assume that all
individuals are equally exposed to the pathogen in the contaminated water and have an equal chance to
contract cholera from the environment-to-human route. Consequently, the indirect transmission rates
are assumed to be the same for all groups:

βL1 = βL2 = · · · = βLm , βL (3.1)

Meanwhile, we assume that an infected individual in group i has an equal probability to contact a
susceptible individual from any group; that is, the direct transmission rates satisfy the following
condition:

βH1i = βH2i = · · · = βHmi , βHi , 1 ≤ i ≤ m (3.2)

This could happen when all the host groups are adjacent to each other and have similar population size,
and people regularly move from one place to another. Though, in general, we assume that βHi , βH j

when i , j, so that we retain some degree of heterogeneity in direct transmission patterns for different
host groups. We refer to this setting as a multi-group model with semi-uniform transmission.

Our between-host system (including the environmental pathogen equation) now takes a simpler
form, given below

dS i

dt
= µNi − S i

[(
m∑

k=1
βHkIk

)
+ βLB + µ

]
,

dIi

dt
= S i

[(
m∑

k=1
βHkIk

)
+ βLB

]
− (γi + µ)Ii ,

dRi

dt
= γiIi − µRi, i = 1, 2, · · · ,m;

dB
dt

=
m∑

i=1
ξi(Zi)Ii − δB.

(3.3)

The within-host system, on the other hand, remains the same as given in Eq (2.3).
We first investigate the between-host dynamics described in Eq (3.3) using the separation of scales;

that is, the fast variable Zi for each group i is regarded at its steady state when analyzing the slow
system (3.3). Consequently, ξi(Zi) is treated as a constant in this process and we may simply write
ξi = ξi(Zi) for i = 1, 2, · · · ,m.

3.1. Between-host reproduction number

The disease-free equilibrium (DFE) of system (3.3) is given by (S, I,R, B) = (N, 0, 0, 0) where
S = (S 1, S 2, . . . , S m), I = (I1, I2, . . . , Im), R = (R1,R2, . . . ,Rm), and N = (N1,N2, . . . ,Nm). To compute
the basic reproduction number R0 for system (3.3), we employ the standard next-generation matrix

Mathematical Biosciences and Engineering Volume 17, Issue 2, 948–974.



954

technique [35]. We separate the right-hand side of the infection subsystem (i.e., I and B) into the
generation of new infection, denoted by F , and the transfer among compartments, denoted byV. Then
the next-generation matrix is given by FV−1 where F and V denote the Jacobian matrices associated
with F andV, respectively, evaluated at the DFE. Specifically,

FV−1 =



N1
γ1+µ

[
βH1 + ξ1

βL
δ

]
N1
γ2+µ

[
βH2 + ξ2

βL
δ

]
. . . N1

γm+µ

[
βHm + ξm

βL
δ

]
N1

βL
δ

N2
γ1+µ

[
βH1 + ξ1

βL
δ

]
N2
γ2+µ

[
βH2 + ξ2

βL
δ

]
. . . N2

γm+µ

[
βHm + ξm

βL
δ

]
N2

βL
δ

...
...

. . .
...

...
Nm
γ1+µ

[
βH1 + ξ1

βL
δ

]
Nm
γ2+µ

[
βH2 + ξ2

βL
δ

]
. . . Nm

γm+µ

[
βHm + ξm

βL
δ

]
Nm

βL
δ

0 0 . . . 0 0


. (3.4)

The basic reproduction number is defined as the spectral radius of the next-generation matrix; i.e.,
R0 = ρ(FV−1). Note that the matrix FV−1 can be expressed as a product AB where

A =
[
N1 N2 . . . Nm

]T

B =
[

1
γ1+µ

(
βH1 + ξ1

βL
δ

)
1

γ2+µ

(
βH2 + ξ2

βL
δ

)
. . . 1

γm+µ

(
βHm + ξm

βL
δ

)]
.

Since ρ(AB) = ρ(BA), we obtain

R0 = ρ(BA) =

m∑
i=1

Ni

γi + µ

(
βHi + ξi(Zi)

βL

δ

)
(3.5)

where, again, ξi = ξi(Zi) is treated as a constant (i = 1, 2, · · · ,m). The expression in (3.5) can also be
obtained by observing that the next-generation matrix has rank one and so R0 = tr(FV−1).
Remark 3.1.1. In Eq (3.5), each term Ri

0 ,
Ni
γi+µ

(
βHi + ξi

βL
δ

)
represents the individual reproduction

number for group i (i = 1, 2, · · · ,m), where the first part (associated with βHi) depicts the contribution
of the human-to-human transmission, and the second part (associated with βL) describes the
contribution of the environment-to-human transmission. Thus, the direct and indirect transmission
routes, combined together, determine the disease risk for each group i, and the overall infection risk
for the multi-group system (3.3) is shaped by the summation of the individual risk factors from all the
host groups. Biologically, this result indicates a collective impact of individual communities on the
entire population for the onset of a cholera epidemic. For example, even if there is only one host
group with high risk (so that its individual reproduction number is larger than unity), then R0 > 1 for
the whole population and a cholera epidemic would take place and spread to all groups, due to the
inter-group connections. Similarly, even if the risk factor Ri

0 < 1 for each group i, there is still a
possibility for the collective value R0 to be higher than unity which triggers a cholera outbreak.
Hence, to effectively control cholera in such a closely connected population, efforts should be made to
weaken both the direct and indirect transmission modes, for each host group, so as to reduce the
overall R0 below unity.

When R0 < 1, it follows that the DFE is locally asymptotically stable [35]. To explore the global
stability of the DFE, we employ the method described in [36] to construct a Lyapunov function. Let us
first introduce the following function:

f (x, y) = (F − V)x − F (x, y) +V(x, y) (3.6)
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where F, V, F and V are defined as in the computation of R0, and x = (I1, I2, ..., Im, B)T and
y = (S 1, S 2, ..., S m)T denote the infection and non-infection compartments, respectively. Note that the
infection subsystem of (3.3) can be written as

x′ = F (x, y) −V(x, y) = (F − V)x − f (x, y) (3.7)

We first show that f (x, y) ≥ 0 and f (0, y) = 0. In fact, we have

(F − V)x =



N1βH1 − (γ1 + µ) N1βH2 . . . N1βHm N1βL

N2βH1 N2βH2 − (γ2 + µ) . . . N2βHm N2βL
...

...
. . .

...
...

NmβH1 NmβH2 . . . NmβHm − (γm + µ) NmβL

ξ1 ξ2 . . . ξm −δ





I1

I2
...

Im

B



=



N1
∑m

i=1 βHi Ii − (γ1 + µ)I1 + N1βLB
N2

∑m
i=1 βHi Ii − (γ2 + µ)I2 + N2βLB

...

Nm
∑m

i=1 βHi Ii − (γm + µ)Im + NmβLB∑m
i=1 ξiIi − δB


Then

f (x, y) = (F − V)x − F (x, y) +V(x, y) =



(N1 − S 1)(
∑m

i=1 βHi Ii + βLB)
(N2 − S 2)(

∑m
i=1 βHi Ii + βLB)
...

(Nm − S m)(
∑m

i=1 βHi Ii + βLB)
0


≥ 0

and f (0, y) = 0.
Let wT be the left eigenvector of the matrix V−1F corresponding to the eigenvalue ρ(V−1F) =

ρ(FV−1) = R0. It is straightforward to observe that F ≥ 0, V−1 ≥ 0, and V−1F is non-negative and
irreducible. Thus, we obtain wT � 0 by the Perron-Frobenius theorem. We are now ready to prove the
following result.

Theorem 3.1. When R0 < 1, the DFE of system (3.3) is globally asymptotically stable.

Proof. We construct a Lyapunov function L = wT V−1x. Differentiating L along the vector field of
system (3.3) yields

L′ = wT V−1x′ = wT V−1(F − V)x − wT V−1 f (x, y) = (R0 − 1)wT x − wT V−1 f (x, y)

where we have used Eq (3.7). When R0 < 1, we have L′ ≤ 0, and L′ = 0 if and only if x = 0
(since wT � 0). Meanwhile, it is straightforward to verify that y = y0 , (N1,N2, · · · ,Nm)T is globally
asymptotically stable in the disease-free subsystem of (3.3). Thus, the only invariant set that contains
x = 0 is the singleton {(0, y0)}; i.e., the DFE. Based on LaSalle’s invariance principle, the DFE is
globally asymptotically stable. �

Theorem 3.1 confirms our observation in Remark 3.1. That is, when the overall between-host
reproduction number R0 is reduced below unity, the disease would be eliminated from the whole
population.
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3.2. Between-host endemic equilibrium

We now consider the existence and uniqueness of a nontrivial equilibrium for system (3.3). Solving
dB
dt = 0 for B∗ gives

B∗ =
1
δ

m∑
j=1

ξ jI∗j

Solving dS k
dt = 0 for S ∗k (k = 1, 2, · · · ,m) and substituting for B∗ give

S ∗k =
µNk

µ +
m∑

j=1

(
βH j + ξ j

βL
δ

)
I∗j

.

Solving dIk
dt = 0 for I∗k (k = 1, 2, · · · ,m) and substituting for S ∗k give

I∗k =
µNk

γk + µ
·

m∑
j=1

(
βH j + ξ j

βL
δ

)
I∗j

µ +
m∑

j=1

(
βH j + ξ j

βL
δ

)
I∗j

.

Letting f (I∗) =
m∑

j=1

(
βH j + ξ j

βL
δ

)
I∗j yields

I∗k =
µNk

γk + µ
·

f (I∗)
µ + f (I∗)

for 1 ≤ k ≤ m. This establishes the following relation for all k:

I∗k = ckI∗1

where
ck =

γ1 + µ

N1
·

Nk

γk + µ

We may now rewrite I∗1 in the following manner:

I∗1 =
µN1

γ1 + µ
·

I∗1
m∑

k=1
akck

µ + I∗1
m∑

k=1
akck

where
ak = βHk + ξk

βL

δ
.

Assuming I∗1 , 0, we divide both sides by I∗1 and obtain, after some algebraic manipulation,

I∗1 =
µN1

γ1 + µ
−

µ
m∑

k=1
akck

.
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Clearly, as long as I∗1 > 0, then I∗k > 0 for all k; consequently, B∗ > 0 and S ∗k > 0 for all k. Thus, in
order to achieve a unique positive endemic equilibrium, the inequality

N1

γ1 + µ
·

m∑
k=1

akck > 1

must hold. Upon inspection, the above inequality is equivalent to the inequality R0 > 1, where R0 is
defined in (3.5). Therefore, system (3.3) has a unique endemic equilibrium when R0 > 1.

In what follows we establish the global asymptotic stability of the endemic equilibrium with
(S ∗i , I

∗
i , B

∗), 1 ≤ i ≤ m. Our proof is inspired by the approach of constructing Lyapunov functions on
networks using graph theory [37]. We define

Vi = S i − S ∗i − S ∗i ln
S i

S ∗i
+ Ii − I∗i − I∗i ln

Ii

I∗i
(3.8)

for 1 ≤ i ≤ m, and

Vm+1 = B − B∗ − B∗ln
B
B∗
. (3.9)

Then

V ′i =
S i − S ∗i

S i
S ′i +

Ii − I∗i
Ii

I′i

=
S i − S ∗i

S i

S ∗i
 m∑

j=1

βH j I
∗
j + βLB∗ + µ

 − S i

 m∑
j=1

βH j I j + βLB + µ




+
Ii − I∗i

Ii

S i

 m∑
j=1

βH j I j + βLB

 − (γi + µ)Ii − S ∗i

 m∑
j=1

βH j I
∗
j + βLB∗

 Ii

I∗i
+ (γi + µ)Ii


≤

S i − S ∗i
S i

 m∑
j=1

βH j(S
∗
i I∗j − S iI j) + βL(S ∗i B∗ − S iB)


+

Ii − I∗i
Ii

 m∑
j=1

βH j

(
S iI j − S ∗i I∗j

Ii

I∗i

)
+ βL

(
S iB − S ∗i B∗

Ii

I∗i

)
Note that

S i − S ∗i
S i

βL(S ∗i B∗ − S iB) = βLS ∗i B∗
(
1 −

S ∗i
S i

+
B
B∗
−

S iB
S ∗i B∗

)
(3.10)

and
Ii − I∗i

Ii
βL(S iB − S ∗i B∗

Ii

I∗i
) = βLS ∗i B∗

(
1 −

Ii

I∗i
+

S iB
S ∗i B∗

−
S iBI∗i
S ∗i B∗Ii

)
(3.11)

Combining (3.10) and (3.11) yields

(3.10) + (3.11) =βLS ∗i B∗
(
2 +

B
B∗
−

S ∗i
S i
−

Ii

I∗i
−

S iBI∗i
S ∗i B∗Ii

)
≤βLS ∗i B∗

(
B
B∗
− ln

B
B∗
−

Ii

I∗i
+ ln

Ii

I∗i

)
.

(3.12)
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where we have used the property that 1 − x + ln x ≤ 0 for all x > 0, with the equality holding if and
only if x = 1. Similarly, we find

S i − S ∗i
S i

m∑
j=1

βH j(S
∗
i I∗j − S iI j)+

Ii − I∗i
Ii

m∑
j=1

βH j(S iI j − S ∗i I∗j
Ii

I∗i
)

=

m∑
j=1

βH jS
∗
i I∗j

2 +
I j

I∗j
−

S ∗i
S i
−

Ii

I∗i
−

S iI jI∗i
S ∗i I∗j Ii


≤

m∑
j=1

βH jS
∗
i I∗j

 I j

I∗j
− ln

I j

I∗j
−

Ii

I∗i
+ ln

Ii

I∗i


(3.13)

Adding (3.12) and (3.13), we obtain

V ′i ≤
m∑

j=1

βH jS
∗
i I∗j

 I j

I∗j
− ln

I j

I∗j
−

Ii

I∗i
+ ln

Ii

I∗i

 + βLS ∗i B∗
(

B
B∗
− ln

B
B∗
−

Ii

I∗i
+ ln

Ii

I∗i

)
,

m+1∑
j=1

ai jFi j

for 1 ≤ i ≤ m, where

ai j = βH jS
∗
i I∗j , Fi j =

(
I j

I∗j
− ln I j

I∗j
−

Ii
I∗i

+ ln Ii
I∗i

)
for j = 1, 2, ...,m;

ai,m+1 = βLS ∗i B∗, Fi,m+1 =

(
B
B∗ − ln B

B∗ −
Ii
I∗i

+ ln Ii
I∗i

)
Meanwhile, we have

V ′m+1 =
B − B∗

B
B′

=
B − B∗

B

 m∑
i=1

ξiIi − δB −

 m∑
i=1

ξiI∗i
B
B∗
− δB


=

B − B∗

B

 m∑
i=1

ξi

(
Ii − I∗i

B
B∗

)
=

m∑
i=1

ξiI∗i

(
Ii

I∗i
−

B
B∗

+ 1 −
B∗Ii

BI∗i

)
≤

m∑
i=1

ξiI∗i

(
Ii

I∗i
− ln

Ii

I∗i
+ ln

B
B∗
−

B
B∗

)

where we have used 1 −
B∗Ii

BI∗i
≤ ln

BI∗i
B∗Ii

= ln
B
B∗
− ln

Ii

I∗i
. Thus,

V ′m+1 ≤

m∑
j=1

am+1, jFm+1, j

with

am+1, j = ξ jI∗j , Fm+1, j =

 I j

I∗j
− ln

I j

I∗j
+ ln

B
B∗
−

B
B∗

 .
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Meanwhile, we have

V ′m+1 =
B −B∗
B

B′

=
B −B∗
B

[
m∑

i=1

ξiIi − δB −
(

m∑

i=1

ξiI
∗
i

B

B∗
− δB

)]

=
B −B∗
B

[
m∑

i=1

ξi

(
Ii − I∗i

B

B∗

)]

=
m∑

i=1

ξiI
∗
i

(
Ii
I∗i
− B

B∗
+ 1− B∗Ii

BI∗i

)

≤
m∑

i=1

ξiI
∗
i

(
Ii
I∗i
− ln Ii

I∗i
+ ln

B

B∗
− B

B∗

)

where 1− B∗Ii
BI∗i

≤ ln BI
∗
i

B∗Ii
= ln

B

B∗
− ln Ii

I∗i
. Thus,

V ′m+1 ≤
m∑

j=1

am+1,jFm+1,j

with

am+1,j = ξjI
∗
j , Fm+1,j =

(
Ij
I∗j
− ln Ij

I∗j
+ ln

B

B∗
− B

B∗

)
.

Now, for any 1 ≤ i ≤ m and 1 ≤ j ≤ m, we have the following graph structure:

m+1

ji

Fi,m+1

Fm+1,i

Fm+1,j

Fj,m+1

Fji

Fij

It can be easily verified that on each directed cycle the following hold:

Fij + Fji =0

Fi,m+1 + Fm+1,i =0

Fi,m+1 + Fji + Fm+1,j =0

Fj,m+1 + Fij + Fm+1,i =0

(30)

12

Figure 1. A subgraph containing vertices i, j and m + 1 of the weighted digraph G for
system (3.3).

Now, for any 1 ≤ i ≤ m and 1 ≤ j ≤ m, we have a graph structure illustrated in Figure 1 with three
vertices i, j and m + 1.

It can be easily verified that on each directed cycle the following hold:

Fi j + F ji =0
Fi,m+1 + Fm+1,i =0
F j,m+1 + Fm+1, j =0

Fi,m+1 + F ji + Fm+1, j =0
F j,m+1 + Fi j + Fm+1,i =0

(3.14)

We now have a weighted digraph G with m + 1 vertices and an associated (m + 1) × (m + 1) weight
matrix A = (ai j) whose entry ai j equals the weight of arc ( j, i). We denote this weighted digraph with
its associated weight matrix as (G, A). We note that (G, A) is strongly connected, and A is irreducible.
Furthermore, we define ci as the cofactor of the i-th diagonal element of the Laplacian matrix of (G, A).
Equivalently,

ci =
∑
T∈Ti

w(T ), i = 1, 2, ...,m + 1 (3.15)

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, w(T ) is the weight of
T , and ci > 0 [37].

The following general result was established in [37]:

Theorem 3.2. Consider a system of differential equations on a graph G with n vertices

u′i = fi(t, ui) +

n∑
j=1

gi j(t, ui, u j), i = 1, 2, · · · , n, (3.16)

where t > 0 and ui ∈ Di with Di being an open set in Rmi , i = 1, 2, · · · , n. Assume that:
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(1) There exist functions Vi(t, ui), Fi j(t, ui, u j) and constants ai j ≥ 0 such that

V ′i (t, ui) ≤
n∑

j=1

ai jFi j(t, ui, u j)

(2) Along each directed cycle C of the weighted digraph (G, A), A = (ai j),∑
(s,r)∈E(C)

Frs(t, ur, us) ≤ 0

Let constants ci (1 ≤ i ≤ n) be defined in the same way as in (3.15). Then the function

V(t,u) =

n∑
i=1

ciVi(t, ui)

satisfies V ′(t,u) ≤ 0 for t > 0 and u = (u1, u2, · · · , un) ∈ D1 × D2 × · · · × Dn; namely, V is a Lyapunov
function for system (3.16).

We have already shown that the conditions in Theorem 3.2 hold in our case, and thus we may
conclude that

V =

m+1∑
i=1

ciVi (3.17)

with ci given in (3.15) and Vi defined in (3.8) and (3.9) for 1 ≤ i ≤ m+1, is a Lyapunov function for the
system (3.3) satisfying V ′ ≤ 0. It can also be easily verified that V ′ = 0 ⇐⇒ (S i, Ii, B) = (S ∗i , I

∗
i , B

∗)
for i = 1, 2, ...,m. Hence, by LaSalle’s invariance principle, the endemic equilibrium of system (3.3) is
globally asymptotically stable. We have established the following result.

Theorem 3.3. When R0 > 1, the between-host transmission system (3.3) has a unique endemic
equilibrium that is globally asymptotically stable.

Theorems 3.1 and 3.3 show that at the between-host level (without incorporating the within-host
dynamics), the basic reproduction number defined in (3.5) serves as a threshold quantity to characterize
the global dynamics of system (3.3): the disease is eliminated when R0 < 1 and is persistent when
R0 > 1.

3.3. Full system

Based on the separation of scales, a standard equilibrium analysis can be conducted to the fast-scale,

within-host system (2.3), where the slow variable B is treated as a constant. Defining RF
0i =

c2i B
τi

as the

basic reproduction number for the within-host dynamics associated with each group i (1 ≤ i ≤ m). It is
easy to show that when RF

0i < 1, there is a unique and stable trivial equilibrium (Zi,Vi,Mi) = (0, 0, 0);
when RF

0i > 1, the trivial equilibrium is unstable, and there is a unique and stable positive equilibrium.
Remark 3.3.1. Biologically, this implies that when the concentration of the environmental vibrios B
(treated as a constant) is sufficiently low, the within-host dynamics may be trivial. In contrast, when
the environmental bacterial concentration B is higher than a certain threshold, then the within-host
dynamics become non-trivial and could potentially impact the between-host disease infection at the
population level. Note also that the within-host reproduction number RF

0i (i = 1, 2, · · · ,m) is generally
distinct from each other, reflecting the heterogeneity among different host groups.
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Next, we proceed to consider the full system of our multi-scale model that couples the between-host
dynamics, described by Eq (3.3), and the within-host dynamics, described by Eq (2.3). The slow scale
and fast scale are then linked together in the analysis below. In particular, the fast variable Zi is no
longer a constant in the slow-scale system (3.3), and the slow variable B is no longer a constant in the
fast-scale system (2.3).

3.3.1. Basic reproduction number

We will again utilize the next-generation matrix technique to calculate the basic reproduction
number of the full system. First, note that a unique disease-free equilibrium of the system (2.3) and
(3.3) is given by

X0 = (N1, ...,Nm, 0, ..., 0)T .

We separate the vector of unknowns X of the system into the infection and non-infection related
compartments as follows:

X = x + y
where

x =(I1, ..., Im, B,Z1, ...,Zm,V1, ...,Vm)T

y =(S 1, ..., S m,M1, ...,Mm)T .

We can then compute the next-generation matrix FV−1, and subsequently obtain the basic reproduction
number of the full system

R̃0 = ρ(FV−1) =

m∑
i=1

Ni

γi + µ

(
βHi + ξi(0)

βL

δ

)
. (3.18)

Remark 3.3.2. The expression in (3.18) shows that when the between-host and within-host dynamics
are linked, the cholera infection risk for the entire population can still be represented as a combination
of the individual risk factors from all host groups, an interpretation similar to that made to the between-
host reproduction number R0 defined in Eq (3.5). Although the expression of R̃0 is similar to that of R0

in (3.5), the distinction is that the fast variable Zi for each group i is treated as a constant in Eq (3.5)
at the slow time scale, whereas Zi does not appear in Eq (3.18) since the slow and fast variables are
coupled in the full system. Instead, the host shedding term ξi(0) in Eq (3.18) represents the role played
by the fast-scale dynamics in shaping the overall disease risk.

3.3.2. Endemic equilibrium

Next we seek the existence and uniqueness of a positive endemic equilibrium. For any group i, we
may solve the within-host system at the equilibrium given by (Z′i , V ′i , M′

i )
T = 0. The result is

Z∗i =
c1i B

∗V∗

d1i M∗ + ζi

V∗i =
pi − e1iZ

∗
i

e2i

M∗
i =

c2i B
∗ − τi

d2i

(3.19)
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Substituting the last two equations in (3.19) into the first one, and defining

Z∗i = qi(B∗) =
c1i piB∗

B∗(c1ie1i +
c2i e2i d1i

d2i
) + e2i(ζi −

d1i
d2i
τi)

, (3.20)

we can modify the endemic equilibrium from Section 3.2 to include the shedding function ξ(Z∗i ). Then
for any 1 ≤ k ≤ m we have

I∗k =ckI∗1

B∗ =
1
δ

m∑
k=1

ξk(qk(B∗))I∗k

where
I∗1 =

µN1

γ1 + µ
−

µ
m∑

k=1
akck

ak =βHk + ξk
βL

δ

ck =
γ1 + µ

N1
·

Nk

γk + µ

with the solutions for S ∗k following directly from here. Note that the between-host and within-host
systems are coupled through the environmental bacterial equation. Utilizing the relationship between
I∗k and I∗1, we have the following system in I∗1 and B∗:

I∗1 =
µN1

γ1 + µ
−

µ
m∑

k=1

[
βHk + ξk(qk(B∗))

βL
δ

]
ck

B∗ =
I∗1
δ

m∑
k=1
ξk(qk(B∗))ck

If a solution exists for this system, then it also determines a positive equilibrium for the full system.
Equivalently, an intersection of the two equations

f (B∗) =
µN1

γ1 + µ
−

µ
m∑

k=1

[
βHk + ξk(qk(B∗))

βL
δ

]
ck

g(B∗) =
δB∗

m∑
k=1
ξk(qk(B∗))ck

(3.21)

determines an endemic equilibrium. To proceed, we introduce the following assumptions regarding the
functions ξk and the model parameters for 1 ≤ k ≤ m :

(A1) ξk > 0, ξ
′

k > 0, and ξ
′′

k < 0

(A2)
ζk

τk
<

d1k

d2k
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(A3) βL < δ, and max ξk <
βHk

1 − βL
δ

(A4) ξk
(
qk(B)

)′ ∣∣∣
B=0

< δ2

µβL
ξk

(
qk(0)

)
Remark 3.3.3. Assumptions (A1), (A3) and (A4) provide biologically meaningful characterizations
for the host shedding functions ξk. Specifically, we regulate ξk as positive, monotonically increasing
with the within-host pathogen load but remaining below a certain threshold, and subject to a saturation
effect (when the pathogen load is high, the shedding rate would increase more slowly than linearly).

Theorem 3.4. Under assumptions (A1) and (A2), there exists a positive endemic equilibrium for the
coupled system (3.3) and (2.3) when R̃0 > 1. Such an endemic equilibrium is unique if additional
assumptions (A3) and (A4) hold.

Proof. First, we show the existence of an endemic equilibrium under assumptions (A1) and (A2).
Consider the function qk(B∗) and its first and second derivatives:

qk(B∗) =
c1k pkB∗

B∗(c1ke1k +
c2k e2k d1k

d2k
) + e2k(ζk −

d1k
d2k
τk)

> 0

q′k(B
∗) =

e2k(ζk −
d1kτk

d2k
)

[B∗(c1ke1k +
c2k e2k d1k

d2k
) + e2k(ζk −

d1k
d2k
τk)]2

> 0

q′′k (B∗) =
−2e2k(ζk −

d1kτk

d2k
)(c1ke1k +

c2k e2k d1k
d2k

)

[B∗(c1ke1k +
c2k e2k d1k

d2k
) + e2k(ζk −

d1k
d2k
τk)]3

< 0

(3.22)

Additionally,

lim
B∗→∞

qk(B∗) =
d2kc1k pk

d2kc1ke1k + c2ke2kd1k

, αk

Next, we consider f (B∗):

f (B∗) =
µN1

γ1 + µ
−

µ
m∑

k=1

[
βHk + ξk(qk(B∗))

βL
δ

]
ck

,
µN1

γ1 + µ

(
1 −

1
R∗0

)

where

R∗0 =

m∑
k=1

Nk

γk + µ

[
βHk + ξk(qk(B∗))

βL

δ

]
.

Since ξ′k(Z
∗) > 0 and q′k(B

∗) > 0 we have R∗0 > R̃0 for all B∗. Therefore, when R̃0 > 1,

f (B∗) =
µN1

γ1 + µ

(
1 −

1
R∗0

)
>

µN1

γ1 + µ

(
1 −

1

R̃0

)
> 0.

Now,

f ′(B∗) =

µ
m∑

k=1
ξ′k(qk(B∗))q′k(B

∗)βL
δ

ck(
m∑

k=1

[
βHk + ξk(qk(B∗))

βL
δ

]
ck

)2 > 0.
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Also,

f ′′(B∗) =

µ
m∑

k=1

(
ξ′′k (qk(B∗))(q′k(B∗))2 + ξ′k(qk(B∗))q′′k (B∗)

)
βL
δ

ck(
m∑

k=1

[
βHk + ξk(qk(B∗)) βL

δ

]
ck

)2 −

2µ
(

m∑
k=1

ξ′k(qk(B∗))q′k(B∗) βL
δ

ck

)2

(
m∑

k=1

[
βHk + ξk(qk(B∗)) βL

δ

]
ck

)3

< 0

and
lim

B∗→∞
f (B∗) =

µN1

γ1 + µ
−

µ
M∑

k=1

[
βHk + ξk(αk)

βL
δ

]
ck

< ∞.

Finally, we observe that f (0) > 0, g(0) = 0, and

lim
B∗→∞

g(B∗) = ∞.

Thus, there exists at least one point of intersection between the curves of f and g.
To guarantee that this intersection is unique, we assume (A3) and (A4) hold. Note that

g′(B∗) =
δ
[
σ(B∗) − B∗σ′(B∗)

](
σ(B∗)

)2

f ′(B∗) =
µβLσ

′(B∗)

δ
[
(γ1+µ

N1
)R∗0

]2

(3.23)

where

σ(B∗) =

m∑
k=1

ξk(qk(B∗))ck > 0

σ′(B∗) =

m∑
k=1

ξ′k(qk(B∗))q′k(B
∗)ck > 0

Meanwhile, we have

σ′′(B∗) =

m∑
k=1

[
ξ′′k (qk(B∗))(q′k(B

∗))2 + ξ′k(qk(B∗))q′′k (B∗)
]
ck < 0

By assumption (A3),
βHk

1 − βL
δ

> ξk(qk(B∗))

=⇒ βHk + ξk(qk(B∗))
βL
δ
> ξk(qk(B∗))

=⇒
γ1+µ

N1
R∗0 > σ(B∗)

(3.24)

Let
h(B∗) =

σ(B∗)
σ′(B∗)

− B∗

Note that h(0) > 0 and

h′(B∗) = −
σ(B∗)σ′′(B∗)

(σ′(B∗))2 > 0
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Figure 2. A typical scenario for the semi-uniform transmission model (2.3) and (3.3) with
R̃0 > 1, indicating the local asymptotic stability of the endemic equilibrium. Here m = 2.
Upper panel: between-host variables; middle panel: environmental bacteria; lower panel:
within-host variables. All the horizontal axes represent the time in days. The vertical axes
in the upper panel represent the number of human individuals, and the vertical axes in the
middle and lower panels represent their concentrations.

Therefore h(B∗) is a positive increasing function. By assumption (A4), we have σ(0) >
µβL

δ2 σ
′(0); i.e.,

h(0) >
µβL

δ2 , which yields h(B∗) >
µβL

δ2 . Consequently, we have

δ
[
σ(B∗) − B∗σ′(B∗)

]
>
µβLσ

′(B∗)
δ

, B∗ > 0 (3.25)

Combining equations (3.23), (3.24) and (3.25), we obtain g′(B∗) > f ′(B∗) for all B∗ > 0. Hence, there
is only one intersection between f and g, which guarantees a unique endemic equilibrium. �

Theorem 3.4 provides sufficient conditions to ensure the existence and uniqueness of the endemic
equilibrium for the full system (2.3) and (3.3). Due to the complexity of this coupled system, we have
not resolved the stability of the endemic equilibrium. Nevertheless, it is reasonable to expect that this
equilibrium is at least locally asymptotically stable when R̃0 > 1. We have conducted numerical
simulation to the full system and the numerical results are consistent with our expectation. We find
that when R̃0 > 1, all solution orbits starting sufficiently close to the endemic equilibrium will
eventually converge to it. A typical scenario is shown in Figure 2 with m = 2 that demonstrates the
local asymptotic stability of the endemic equilibrium.
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4. Case two: Isolated host groups

Now we consider another special case for the general model in (2.1)–(2.3), and assume that these
m host groups are isolated from each other so that there is no direct communication among groups.
Consequently, the cross-transmission rates in the direct transmission route would become zero; i.e.,

βHi j = 0 if i , j; βHi j , βHi > 0 if i = j (4.1)

This would be feasible for a large spatial domain with a common water source (such as a long river
or a large lake), where the host groups reside in different locations that are remote from each other.
Meanwhile, we make the same assumption as in (3.1) regarding the indirect transmission rates.

The between-host system under this setting is given by

dS i

dt
= µNi − βHiS iIi − βLS iB − µS i ,

dIi

dt
= βHiS iIi + βLS iB − (γi + µ)Ii ,

dRi

dt
= γiIi − µRi , i = 1, 2, · · · ,m;

dB
dt

=
m∑

i=1
ξi(Zi)Ii − δB

(4.2)

while the within-host system (2.3) remains the same.

4.1. Between-host system

We again start the analysis by separating the between-host system (4.2) from the within-host system.
Subsequently, we treat the fast variable Zi as a constant in the slow-scale system (4.2) so that ξi = ξi(Zi)
is a constant (1 ≤ i ≤ m).

The disease-free equilibrium is given by S i = Ni and all other variables equal to zero. The next-
generation matrix of system (4.2) is found as

FV−1 =



N1
γ1+µ

(βH1 +
βL
δ
ξ1) N1βLξ2

δ(γ2+µ) . . . N1βLξm
δ(γm+µ)

N1βL
δ

N2βLξ1
δ(γ1+µ)

N2
γ2+µ

(βH2 +
βL
δ
ξ2) . . .

... N2βL
δ

...
. . .

. . . Nm−1βLξm
δ(γm+µ)

...

NmβLξ1
δ(γ1+µ) . . . NmβLξm−1

δ(γm−1+µ)
Nm
γm+µ

(βHm +
βL
δ
ξm) NmβL

δ

0 0 0 0 0


The basic reproduction number R0 = ρ(FV−1), however, cannot be analytically determined in this case.
Nevertheless, with some further simplifications, an explicit form can be reached. For example, if we
assume that the direct transmission quantity, βHiNi, and the recovery rate, γi, are the same for all the
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host groups; i.e., βHiNi , p and γi , γ for 1 ≤ i ≤ m, then R0 can be found as

R0 =
p

γ + µ
+

1
δ(γ + µ)

m∑
j=1

N jβLξ j(Z j) (4.3)

Remark 4.1.1. We may compare the results in equations (4.3) and (3.5) for the basic reproduction
numbers associated with the two different settings. In Eq (3.5), if we make the same assumptions that
βHiNi , p and γi , γ for 1 ≤ i ≤ m, then the equation is reduced to

R0 =
m p
γ + µ

+
1

δ(γ + µ)

m∑
j=1

N jβLξ j(Z j) (4.4)

Obviously the indirect transmission parts are identical in equations (4.3) and (4.4). This is certainly
expected as the indirect transmission follows the same pattern in these two cases. The difference
between the two reproduction numbers, then, is the direct transmission part. For the current case
characterized by isolated groups (but each group sharing the same direct transmission quantity), the
risk factor based on direct transmission is the same for each group, and also for the entire population
(since there is no cross-transmission between groups). In contrast, for the previous case characterized
by frequent and regular communications among all groups, the risk factor based on direct transmission
for the entire population is the summation of the individual factors from all m groups, leading to the
multiplication of m in Eq (4.4). Due to such a difference in direct transmission pattern, the current
case, represented by (4.3), exhibits a lower infection risk than that of the previous case, represented
by (4.4).

A cholera transmission model similar to our between-host system (4.2) has been studied in detail
in [34] and the results are applicable to our case. Specifically, Theorems 4.1 and 4.2 in [34] lead to the
result below that characterizes the global dynamics of system (4.2).

Theorem 4.1. Let the between-host reproduction number R0 be defined in (4.3).

(i) If R0 ≤ 1, then the disease-free equilibrium of system (4.2) is globally asymptotically stable.

(ii) If R0 > 1, then the disease-free equilibrium is unstable, and system (4.2) admits a unique endemic
equilibrium that is globally asymptotically stable.

4.2. Full system

We proceed to link systems (4.2) and (2.3) to study the coupled between-host and within-host
dynamics for the current isolated group model. With similar algebraic manipulation as before, we can
obtain the next-generation matrix FV−1 and then define the basic reproduction number R̃0 = ρ(FV−1).
Note that the disease-free equilibrium is still given by S i = Ni (i = 1, 2, · · · ,m) and all other variables
equal to zero. As a special case, when βHiNi = p and (γi + µ) = v for 1 ≤ i ≤ m, we have

R̃0 =
p
v

+
1
δv

m∑
i=1

NiβLξi(0) (4.5)

The term ξi(0) again reflects the feedback of the within-host dynamics to the between-host
transmission. Indeed, the interpretation of the relationship between equations (4.5) and (4.3) is similar
to that between equations (3.18) and (3.5).
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To analyze the positive endemic equilibrium for the coupled system, we set all equations in (4.2)
and (2.3) to zero. The equilibrium solutions for the within-host system (2.3) remain the same as derived
before. The between-host system (4.2) leads to the following (i = 1, 2, · · · ,m):

(S ∗i )′ = 0 =⇒ S ∗i =
µNi

βHi I
∗
i + βLB∗ + µ

(I∗i )′ = 0 =⇒ I∗i =
βLB∗S ∗i

(γi + µ) − βHiS
∗
i

=⇒ Ii =
µβLB∗Ni

(γi + µ)(βHi I
∗
i + βLB∗ + µ) − µβHi Ni

which yields a quadratic equation for I∗i

(γi + µ)βHi(I
∗
i )2 +

[
(γi + µ)(βLB∗ + µ) − µβHI Ni

]
I∗i − µβLB∗Ni = 0 (4.6)

For any B∗ > 0, Eq (4.6) has one and only one positive root:

I∗i = gi(B∗) ,
1
2

(
µNi

γi + µ
−
βLB∗ + µ

βHi

)
+

1
2

√(
βLB∗ + µ

βHi

−
µNi

γi + µ

)2

+ 4
µβLB∗Ni

βHi(γi + µ)
(4.7)

Meanwhile, setting B′ = 0 in system (4.2) yields

B∗ =
1
δ

m∑
k=1

ξk(qk(B∗)) I∗k (4.8)

where the function qk(B∗), defined in Eq (3.20), represents the equilibrium solution from the within-
host system. Substituting Eq (4.7) into (4.8), we obtain

B∗ =
1
δ

m∑
k=1

ξk(qk(B∗))gk(B∗) , F(B∗) (4.9)

Hence, a nontrivial solution of (4.9), or equivalently, a positive intersection between the two curves B∗

and F(B∗), determines a positive endemic equilibrium. To proceed, we need additional assumptions
given below, for 1 ≤ k ≤ m:

(A5) βHk Nk < γk + µ

(A6) The function Fk(B∗) , ξk(qk(B∗))gk(B∗) is a concave function; i.e., F
′′

k (B∗) ≤ 0.

Remark 4.2.1. Condition (A5) sets an upper bound for the total direct transmission involved within
each host group. Alternatively, it can be interpreted as prescribing a maximum for the individual
community size Nk (when the direct transmission rate is fixed), or the direct transmission rate βHk

(when the community size is fixed), for each group. Condition (A6) implies that Fk(B∗) is subject to a
saturation effect, which is a common assumption for a biologically feasible function.

Theorem 4.2. Let the basic reproduction number for the coupled system (4.2) and (2.3) be defined
in Eq (4.5). Then, under assumption (A5), the system has at least one positive endemic equilibrium.
Additionally, if assumption (A6) holds, then the endemic equilibrium is unique.
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Proof. Based on Eq (4.7) and assumption (A5), it is easy to observe

gk(0) = 0, gk(B∗) > 0 for B∗ > 0, and lim
B∗→∞

gk(B∗)
B∗

= 0

Hence, it follows that

F(0) = 0, F(B∗) > 0 for B∗ > 0, and F(B∗) < B∗ for sufficiently large B∗ (4.10)

Meanwhile, direct calculation yields

g′k(0) =
βLNk

(γk + µ) − βHk Nk
> 0

Subsequently, using gk(0) = 0 and qk(0) = 0 we obtain

F′(0) =
1
δ

m∑
k=1

[
ξ′k(qk(0))q′k(0)gk(0) + ξk(qk(0))g′k(0)

]
=

1
δ

m∑
k=1

ξk(0)g′k(0) =
1
δ

m∑
k=1

ξk(0)βLNk

(γk + µ) − βHk Nk

With the simplifications βHk Nk = p and γk + µ = v (1 ≤ k ≤ m) incorporated in Eq (4.5), we have

F′(0) =
1
δ

m∑
k=1

ξk(0)βLNk

v − p

Note that v − p > 0 based on assumption (A5). It is now straightforward to verify that

R̃0 =
p
v

+
1
δv

m∑
i=1

NiβLξi(0) > 1

would yield F′(0) > 1. Combining this fact with (4.10), we obtain that the two curves B∗ and F(B∗)
must have at least one intersection for B∗ > 0. Furthermore, if assumption (A6) holds, then

F′′(B∗) =
1
δ

m∑
k=1

F′′k (B∗) ≤ 0

and thus the intersection point between B∗ and F(B∗) must be unique. �

With similar difficulty as in the full system of the previous case, we have not analytically worked
out the stability property of the endemic equilibrium. Our numerical results, nevertheless, demonstrate
that the endemic equilibrium is at least locally asymptotically stable when R̃0 > 1; that is, all solution
orbits starting in a small neighborhood of the endemic equilibrium will eventually converge to the
endemic equilibrium. A typical result is illustrated in Figure 3 (other results are similar and not shown
here).
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Figure 3. A typical scenario for the isolated group model (2.3) and (4.2) with R̃0 > 1,
indicating the local asymptotic stability of the endemic equilibrium. Here m = 2. Upper
panel: between-host variables; middle panel: environmental bacteria; lower panel: within-
host variables. All the horizontal axes represent the time in days. The vertical axes in the
upper panel represent the number of human individuals, and the vertical axes in the middle
and lower panels represent their concentrations.

5. Discussion

We have presented a multi-group, multi-scale model to investigate cholera dynamics. Each group
has its own susceptible, infected, and recovered compartments linked together through direct and
indirect transmission routes. Each group also has its own system governing the within-host dynamics,
coupled together through the environmental equation. The study integrates multi-scale modeling and
multi-group modeling, traditionally seen as two distinct and unrelated realms in mathematical
epidemiology, into one single framework.

Cholera dynamics are complex, involving a wide variety of biological, environmental, genetic,
geographic, and socioeconomic factors and spanning a number of temporal and spatial scales. In order
to gain deeper understanding of such dynamics, our work has emphasized the interplay among the
multiple routes of disease transmission, the multiple scales of disease dynamics, and the multiple host
groups that represent the spatial heterogeneity.

We have specifically focused on two types of spatial settings: one with connected groups and
semi-uniform transmission representing a host population who are in regular, consistent contact and
communication, and the other with isolated groups and no cross-transmission representing a
population who are divided and remotely located from one another. For each case, we have derived
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the basic reproduction numbers associated with the decoupled and coupled systems, analyzed the
equilibria and stabilities of the multi-scale model, and conducted some numerical simulation to
complement the analytical results. In particular, we have found that under biologically feasible
conditions, the system dynamics and global stability at the between-host level exhibit a sharp
threshold at R0 = 1, where R0 is the between-host reproduction number that is shaped by the
collection of the disease risk factors from all the individual host groups. Our findings highlight the
importance of a whole-population approach for cholera prevention and intervention; that is, reducing
the overall reproduction number below unity for cholera elimination at the entire population level.
Toward that goal, specific cholera control measures should target both the environment-to-human and
human-to-human transmission routes, and be strategically implemented in different
groups/communities taking into account the spatial heterogeneity and host characteristics.

When the within-host dynamics are linked to the between-host transmission, the analysis of the
model becomes more challenging due to the complexity, strong nonlinearity and high dimension of the
overall system. We have obtained results on the existence and uniqueness of the endemic equilibrium in
each case, indicating the persistence of the infection when the basic reproduction number R̃0 is higher
than unity, but have not resolved the endemic stability of the fully coupled system. Nevertheless, our
numerical results indicate that the endemic equilibrium is at least locally asymptotically stable when
R̃0 > 1, as naturally expected.

Further development of the modeling framework could involve more detailed description of the
within-host dynamics (e.g., by distinguishing the innate and adaptive immune responses and
including both into the pathogen-host interaction), as well as more sophisticated spatial settings (e.g.,
by considering both shared and isolated aquatic environments). We may also consider different ways
of defining host groups (e.g., based on age, gender and health conditions, instead of locations) to
extend our modeling framework. Such future study may benefit from numerical simulation based on
efficient implementation of a multi-scale algorithm. Meanwhile, it may be worthwhile to explore a
multi-scale PDE modeling approach, where the spatial dynamics of cholera are represented by a PDE
system, and possibly compare with our current multi-scale, multi-group model, to gain a more
complete picture of cholera dynamics. In addition, agent-based modeling techniques for within-host
and between-host disease dynamics (e.g., [38–41]) might offer useful insight that complements the
results from our deterministic modeling approaches. Finally, these modeling efforts would benefit
from realistic case studies where the models are used to fit field data to estimate real risks of cholera
and to guide disease control and management.
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