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1. Introduction

It is now widely believed that the actual spread of many infectious diseases occurs in a diverse
or dispersed population [1]. Subpopulations (or compartments) can be determined not only on the
basis of disease-related factors such as mode of transmission, latent period, infectious period, and
genetic susceptibility or resistance, but also on the basis of social, cultural, economic, demographic,
and geographic factors [2]. In the viewpoint of epidemiology above, let S (t), I(t) and R(t) be the
density of susceptible, infectious and recover individuals at time t, respectively, and we suppose that
the dynamics of the disease transmission is governed by the following equations:

dS
dt

= µN − g(S , I) − µS + γR,

dI
dt

= g(S , I) − (µ + δ)I,

dR
dt

= δI − µR − γR,

(1.1)
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where µ, δ, γ are all positive constants, µ the birth and death rate, δ the recovery rate of infectious indi-
viduals, and γ the rate of removed individuals who lose immunity and return to susceptible individuals
class. Here, we assume that the disease does not have vertical transmission and is generally non–
pathogenic and ignores the death induced by the disease. The infectious individuals force g(S , I) plays
a key role in determining disease dynamics [3, 4]. Traditionally, the density-dependent transmission
(or the bilinear incidence rate, g(S , I) = βS I, and β is the proportionality constant) and the frequency-
dependent transmission (or the standard incidence rate, g(S , I) =

βS I
S +I ) are two extreme forms of disease

transmission, which have been frequently used in well-known epidemic models [5–7]. There are sev-
eral different nonlinear transmission functions proposed by researchers, to see more details, we refer
to [8–12] and the references therein. Especially, Yuan and Li [13] studied a ratio-dependent nonlinear
incident rate which takes the following form (1.2):

g(S , I) = f
( I
S

)
S =

β (I/S )l

1 + α (I/S )h S =
βS h−l+1Il

S h + αIh , (1.2)

where the parameters l and h are positive constant, α is the parameter which measures the psychological
or inhibitory effect. It is worthy to note that in the special case of α = 1 and h = l = 1, (1.2) becomes
the well–known frequency-dependent transmission rate βS I

S +I . In this case, the nonlinear incidence rate
(1.2) can be seen as an extension form of the frequency-dependent transmission rate.

Before 1970s, ecological population modelers (involving epidemic models) typically used ordinary
differential equations (ODE, e.g. model (1.1) ), seeking equilibria and analyzing stability. These mod-
els provided important insights, such as when species can stably coexist and when susceptible and
infectious densities oscillate over time [14]. The ODE models that have been described so far assume
that the populations experience the same homogeneous environment. In reality, individual organisms
are distributed in space and typically interact with the physical environment and other organisms in
their spatial neighborhood [15]. More recently, many studies have shown that the spatial epidemic
model is an appropriate tool for investigating the fundamental mechanism of complex spatiotempo-
ral epidemic dynamics. In these studies, reaction-diffusion equations have been intensively used to
describe spatiotemporal dynamics [16–25].

Many studies show that spatial heterogeneity generated by species dynamics is mathematically
more interesting and also biologically more important [14]. In fact, relationships between individual-
level processes and ecological dynamics often depend on population spatial structure, and epidemic
dynamics can be governed by localized spatial processes of contact between susceptible and infectious
individuals [27]. It has been suggested that spatial heterogeneity may address many of the deficiencies
of epidemic models and play an important role in the spread of an epidemic [16, 28–34]. Of them,
Grenfell, Bjornstad and Kappey [31] showed that measles waves spreading from large cities to small
towns in England and Wales are determined by the spatial hierarchy of the host population structure;
Keeling et al. [32] showed that the spatial distribution of farms influences the regional variability of
foot-and-mouth outbreaks in UK; Hufnagel et al. [34], Colizza et al. [33] showed that the high degree
of predictability of the worldwide spread of infectious diseases is caused by the strong heterogeneity of
the transport network; Merler and Ajelli [30] showed that spatial heterogeneity in population density
results in a relevant delay in epidemic onset between urban and rural areas. Hence, understanding the
role of the spatial heterogeneity in epidemic dynamics is challenging both theoretically and empirically.

In this paper, we mainly focus on the impact of spatial heterogeneity of the disease dynamics of an
SIRS epidemic model corresponding to model (1.1). To incorporate the random diffusion, described
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by Laplacian operator [26], coming from the random wandering of susceptible, infectious and recover
individuals, we add the diffusion terms to model (1.1) for the susceptible, infectious and recover in-
dividuals, respectively. To incorporate the spatial heterogeneity, we consider β := β(x), and β(x) is
a positive Hölder continuous function on Ω̄, which is the space–dependent rate of disease transmis-
sion by infectious individuals at position x ∈ Ω, β(x)Il measures the infection force of the disease,
and 1/(1 + αIh) describes the psychological or inhibitory effect from the behavioral change of the
susceptible individuals when the number of infective individuals is very large. For the sake of conve-
nient analysis, we adopt l = 1. Then the reaction-diffusion model corresponding to model (1.1) is the
following model system which governs the spatial heterogeneity and population mobility:

∂S
∂t

= dS ∆S + µN −
β(x)S hI
S h + αIh − µS + γR, x ∈ Ω, t > 0,

∂I
∂t

= dI∆I +
β(x)S hI
S h + αIh − (µ + δ)I, x ∈ Ω, t > 0,

∂R
∂t

= dR∆R + δI − µR − γR, x ∈ Ω, t > 0,

∂S
∂n

=
∂I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, t > 0,

(1.3)

where the habitat Ω ⊂ Rm(m ≥ 1) is a bounded domain with smooth boundary ∂Ω (when m > 1), and
n is the outward unit normal vector on ∂Ω. Moreover N = S + I + R is the total population, dS , dI and
dR are diffusion coefficients for the susceptible, infectious and recover individuals, respectively.

Assume that the initial values satisfy

(H1) S (x, 0), I(x, 0) and R(x, 0) are nonnegative continuous functions in Ω̄,
∫

Ω

I(x, 0)dx > 0 and∫
Ω

(S (x, 0) + I(x, 0) + R(x, 0))dx = N0 > 0.

Mathematical models later confirm that spatial subdivision is important for the persistence of pop-
ulations.

The rest of the paper is organized as follows. In Section 2, we give the global existence and uniform
boundedness of solution. In Section 3, we investigate the threshold dynamics in terms of the basic
reproduction number and study the asymptotic behavior of endemic equilibrium with respect to small
diffusion rate of susceptible individuals. Finally, in Section 4, we provide the summary of the main
results.

2. Global existence and uniform boundedness

The first goal of this paper is to concern with the global existence of classical solutions to
model (1.3).
Theorem 2.1. Model (1.3) has a unique global classical solution (S (x, t), I(x, t),R(x, t)) ∈ [C([0,∞)×
Ω̄) ∩C2,1((0,∞) × Ω̄)]3 satisfying S (x, t), I(x, t),R(x, t) ≥ 0 for all t > 0 and

‖S (·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) + ‖R(·, t)‖L∞(Ω) ≤ C(N0), (2.1)

where C(N0) > 0 is a constant dependent of N0.
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Proof. The local existence and uniqueness of the solutions of model (1.3) follow from a classical result
( [35, Theorem 3.3.3]). It follows from the strong maximum principle [36] that S (x, t), I(x, t) and R(x, t)
are nonnegative for x ∈ Ω̄ and t ∈ (0,Tmax), here Tmax is the maximal existence time for solutions of
model (1.3). In what follows, we prove that the local solution can be extended to a global one, that is
Tmax = ∞. The method of the proof is similar to ( [37, Theorem 2.2]).

Let

V(t) :=
∫

Ω

(S (x, t) + I(x, t) + R(x, t))dx

be the total population size at time t. We can obtain that

∂

∂t

∫
Ω

(S (x, t) + I(x, t) + R(x, t))dx =

∫
Ω

∆(dS S + dI I + dRR)dx = 0, t > 0.

The population size V is a constant, i.e.,∫
Ω

(S (x, t) + I(x, t) + R(x, t))dx = N0, t ≥ 0, (2.2)

which shows that ‖S (·, t)‖L1(Ω), ‖I(·, t)‖L1(Ω) and ‖R(·, t)‖L1(Ω) are bounded in [0,Tmax).
From model (1.3) we easily deduce that

∂S
∂t
≤ dS ∆S + µI + (µ + γ)R, x ∈ Ω, t > 0,

∂I
∂t
≤ dI∆I + (β(x) − µ − δ)I, x ∈ Ω, t > 0,

∂R
∂t

= dR∆R + δI − µR − γR, x ∈ Ω, t > 0,

∂S
∂n

=
∂I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, t > 0,

(2.3)

It follows from [38, Lemma 2.1] with q = p0 = 1 that ‖S (·, t)‖L∞(Ω), ‖I(·, t)‖L∞(Ω) and ‖R(·, t)‖L∞(Ω) are
also bounded in [0,∞). Thus, we obtain (2.1) and complete the proof. �

As expected, the steady state will play a central role in the dynamics of model (1.3). A steady state
solution of model (1.3) is a time–independent (classical) solution and therefore can be viewed as a
function (S̃ , Ĩ, R̃) ∈ [C2(Ω) ∩C1(Ω̄)]3 satisfying

dS ∆S̃ + µÑ −
β(x)S̃ h Ĩ
S̃ h + αĨh

− µS̃ + γR̃ = 0, x ∈ Ω,

dI∆Ĩ +
β(x)S̃ h Ĩ
S̃ h + αĨh

− (µ + δ)Ĩ = 0, x ∈ Ω,

dR∆R̃ + δĨ − (µ + γ)R̃ = 0, x ∈ Ω,

∂S̃
∂n

=
∂Ĩ
∂n

=
∂R̃
∂n

= 0, x ∈ ∂Ω,

(2.4)
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where S̃ (x), Ĩ(x) and R̃(x) denote the density of the steady state solution at location x ∈ Ω. In the view
of (2.2), the steady state solutions also satisfy∫

Ω

(S̃ (x) + Ĩ(x) + R̃(x))dx = N0. (2.5)

In epidemiological model, there are two typical constant steady state solutions, namely, disease–
free equilibrium and endemic equilibrium. A disease–free equilibrium (DFE) is a steady state solution
of (2.4) in which S̃ (x) > 0, both Ĩ(x) and R̃(x) vanish at x ∈ Ω, i.e., Ĩ(x) = R̃(x) = 0. An endemic
equilibrium (EE) is a steady state solution in which S̃ (x), Ĩ(x), R̃(x) > 0 for some x ∈ Ω.

3. Threshold dynamics

This section aims to establish the threshold dynamics of (1.3) in terms of the basic reproduction
number.

3.1. Basic reproduction number

The basic reproductive number, denoted by R0, which is defined as the average number of sec-
ondary infections generated by a single infected individual introduced into a completely susceptible
population, is one of the important quantities in epidemiology [41, 44].

The DFE of model (1.3) is E0 =

(
N0

|Ω|
, 0, 0

)
, where |Ω| is the Lebesgue measure of Ω. Linearizing

model (1.3) at E0 =

(
N0

|Ω|
, 0, 0

)
, we get the following system for the infection related variable I:
∂I
∂t

= dI∆I + (β − (µ + δ))I, x ∈ Ω, t > 0

∂I
∂n

= 0, x ∈ ∂Ω, t > 0.

Using the next generation approach for spatial heterogenous populations [44], we characterize the basic
reproduction number R0 for model (1.3) is

R0 =
1
λ0
,

where λ0 is a unique positive eigenvalue with a positive eigenfunction Ψ(x) on Ω for the elliptic eigen-
values problem 

−dI∆ψ + (µ + δ)ψ = λβψ, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω.

(3.1)

Let λ∗ be the principal eigenvaluewith a positive eigenfunction ψ∗(x) on Ω for the following eigenvalue
problem : 

dI∆ψ + (β − (µ + δ))ψ + λψ = 0, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω.

(3.2)

We have the following result.
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Lemma 3.1. sign(1 − R0) = sign λ∗.

Proof. Following [42, Lemma 2.3], we consider (3.1) and (3.2),

dI∆Ψ − (µ + δ)ψ +
β

R0
Ψ = 0, x ∈ Ω,

dI∆ψ
∗ + (β − (µ + δ))ψ∗ + λ∗ψ∗ = 0, x ∈ Ω,

∂Ψ

∂n
=
∂ψ∗

∂n
= 0, x ∈ ∂Ω.

(3.3)

We multiply the first equation in (3.3) by ψ∗ and the second equation in (3.3) by Ψ, integrate by parts
on Ω, and subtract the two resulting equations,(

1 −
1
R0

) ∫
Ω

βΨψ∗dx + λ∗
∫

Ω

Ψψ∗dx = 0.

Since β,Ψ, ψ∗ are positive, we have sign(1 − R0) = signλ∗. �

3.2. Stability of the DFE

In this subsection, we show that the stability of the DFE is determined entirely by the magnitude of
R0.

Theorem 3.2. For model (1.3), if R0 < 1, then (S (x, t), I(x, t),R(x, t))→
(

N0

|Ω|
, 0, 0

)
as t → ∞. That is,

the DFE is globally asymptotically stable.

Proof. Suppose that R0 < 1. By Lemma 3.1, it implies that λ∗ > 0. Observe from the second equality
of model (1.3) that 

∂I
∂t
≤ dI∆I + (β − (µ + δ))I, x ∈ Ω, t > 0,

∂I
∂n

= 0, x ∈ ∂Ω, t > 0.
(3.4)

Note that the following linear system
∂Z
∂t

= dI∆Z + (β − (µ + δ))Z, x ∈ Ω, t > 0,

∂Z
∂n

= 0, x ∈ ∂Ω, t > 0.
(3.5)

admits a solution ae−λ
∗tψ∗(x), and a is chosen so large that I(x, 0) ≤ Z(x, 0) for every x ∈ Ω. The

comparison principle implies that I(x, t) ≤ ae−λ
∗tψ∗(x), and it then follows that I(x, t) → 0 as t → ∞

for x ∈ Ω̄.
As a result, the equation for R(x, t) is asymptotic to

∂R
∂t

= dR∆R − (µ + γ)R, x ∈ Ω, t > 0.

From the comparison principle, we can get that R(x, t)→ 0 as t → ∞ for x ∈ Ω̄. Similarly, we can get

that S (x, t)→
N0

|Ω|
as t → ∞ for x ∈ Ω̄. This yields the desired result. �

Mathematical Biosciences and Engineering Volume 17, Issue 1, 893–909.



899

3.3. The existence of the endemic equilibrium

Suppose that X = C(Ω;R3) have a supremum norm ‖ · ‖, then X is an ordered Banach space with the
cone P consisting of all nonnegative functions in X, and X has nonempty interior, denoted by int(P).
Set

X0 =

{
W = (S , I,R) ∈ X

∣∣∣∣ ∫
Ω

(S + I + R)dx = N0

}
and U = P∩X0. It is easy to verify that model (1.3) defines a dynamic system on U. Denote the unique
solution of model (1.3) with initial value (S 0, I0,R0) ∈ U by Φt(S 0, I0,R0) = (S (·, t), I(·, t),R(·, t)) for
any t > 0. Φt is continuous and compact for t > 0. Φt is pointwisely dissipative. Therefore, Φt has a
global attractor [46].

Theorem 3.3. If R0 > 1, model (1.3) admits at least one endemic equilibrium.

Proof. We appeal to the uniform persistence theory developed in [46, 47]. Denote

U0 :=
{
(S 0, I0,R0) ∈ U

∣∣∣∣I0 , 0
}
, ∂U0 :=

{
(S 0, I0,R0) ∈ U

∣∣∣∣I0 = 0
}
.

Note that U = U0 ∪ ∂U0. Moreover, U0 and ∂U0 are relatively open and closed subsets of U, respec-
tively, and U0 is convex. We divide the proof into three steps.

Step 1. A direct result of the strong maximum principle for parabolic equations is ΦtU0 ⊂ U0 for
all t > 0.

Step 2. Let A∂ be the maximal positively invariant set for Φt in ∂U0, i.e.

A∂ :=
{
W0 ∈ U

∣∣∣∣Φt(W0) ∈ ∂U0

}
.

It is easy to verify that A∂ :=
{
W0 ∈ U

∣∣∣∣I0 = 0
}
.

Denote ω(W0) as the ω–limit set of W0 in U and

Â∂ := ∪{W0∈A∂}ω(W0).

We now prove Â∂ = {E0}. For any W0 ∈ A∂, i.e. I0 = 0, then I(x, t) = 0 for all x ∈ Ω, t ≥ 0, and
model (1.3) becomes 

∂S
∂t

= dS ∆S + (µ + γ)R, x ∈ Ω, t > 0,

∂R
∂t

= dR∆R − µR − γR, x ∈ Ω, t > 0,

∂S
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, t > 0,

which implies R(·, t) → 0, S (·, t) →
N0

|Ω|
uniformly as t → ∞. Hence, Â∂ = {E0}. Therefore, {E0} is a

compact and isolated invariant set for Φt restricted in A∂.
Step 3. We prove that there exists some constant ε0 independent of initial values such that

lim
t→∞
‖Φt(W0) − E0‖ > ε0.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 893–909.
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Suppose, on the contrary, that for any ε1 > 0, there exists some initial value W∗
0 such that

lim
t→∞
‖Φt(W∗

0) − E0‖ ≤
ε1

2
. (3.6)

For any given small ε2 > 0, let λ∗(ε2) be the unique principal eigenvalue of the following eigenvalue
problem with a positive eigenfunction φI

−dI∆φI −

 β
(

N0
|Ω|
− ε2

)h(
N0
|Ω|
− ε2

)h
+ αεh

2

− (µ + δ)

 φI = λ∗(ε2)φI , x ∈ Ω,

∂φI

∂n
= 0, x ∈ ∂Ω.

Note that lim
ε2→0

λ∗(ε2) = λ∗ < 0, where λ∗ is the principal eigenvalue of eigenvalue problem (3.2).

Therefore, we can choose ε2 such that λ∗(ε2) < 0. Since ε1 is arbitrary, we choose ε1 = 2ε2. In view of
(3.6), there exists T > 0 such that

N0

|Ω|
− ε2 ≤ S ∗(x, t) ≤

N0

|Ω|
+ ε2, I∗(x, t), R∗(x, t) ≤ ε2, ∀ x ∈ Ω, ∀ t ≥ T.

By the strong maximum principal of parabolic equations, (S ∗(·, x), I∗(·, x),R∗(·, x)) ∈ int(P) for all
t > 0. Then we can choose a sufficiently small number c∗ > 0 such that I∗(T, x) ≥ c∗φI . Note that
c∗e−λ

∗(ε2)(t−T )φI is a solution of the following linear system

∂Î
∂t

= dI∆Î +

 β( N0
|Ω|
− ε2)h

( N0
|Ω|
− ε2)h + αεh

2

− (µ + δ)

 Î, x ∈ Ω, t > 0,

∂Î
∂n

= 0, x ∈ ∂Ω, t > 0,

Î(x,T ) = c∗φI , x ∈ Ω.

(3.7)

It follows from the comparison principal that

I∗(x, t) ≥ c∗e−λ
∗(ε2)(t−T )φI , ∀ t ≥ T,

and, hence, I∗(x, t)→ ∞ uniformly in Ω as t → ∞, which contradicts (3.6).
The result of Step 3 implies that {E0} is an isolated invariant set for Φt in U, and WS ({E0}) ∩ U0 is

an empty set, where WS ({E0}) is the stable set of {E0} for Φt.
Finally, Combining Steps 1–3 and [46, Theorem 1.3.1], we have that Φt is uniformly persistent

with respect to (U, ∂U0). Moreover, by [46, Theorem 1.3.7], model (1.3) admits at least one endemic
equilibrium. �

3.4. Asymptotic properties of the endemic equilibrium

In this section, we are concerned with the asymptotic behavior of the EE of model (1.3). Our aim is
to investigate the effect of the slow movement of susceptible individuals on the spatial distribution of
the infectious disease. From now on, unless otherwise specified, we always assume R0 > 1 and
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(H2) β(x) > µ for all x ∈ Ω̄.
Consider the linear eigenvalue problem

−dR∆ψ + (µ + γ)
(
1 −

δ

β − µ

)
ψ = λψ, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω,

(3.8)

and denote the smallest eigenvalue of (3.8) by λ1 := λ1

(
−dR∆ + (µ + γ)(1 − δ

β−µ
)
)
.

Denote ξ := dS S̃ (x) + dI Ĩ(x) + dRR̃(x) and set

S (x) =
S̃ (x)
ξ

, I(x) =
Ĩ(x)
ξ
, R(x) =

R̃(x)
ξ
.

Model (2.4) is equivalent to 

dI∆I +
β(x)S hI
S h + αIh − (µ + δ)I = 0, x ∈ Ω,

dR∆R + δI − µR − γR = 0, x ∈ Ω,

dS S + dI I + dRR = 1, x ∈ Ω,

∂S
∂n

=
∂I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω.

(3.9)

The following results hold:

Lemma 3.4. (S̃ (x), Ĩ(x), R̃(x)) is a solution of model (2.4) if and only if (S (x), I(x),R(x)) is a solution
of model (3.9). Moreover

ξ =
N0∫

Ω

(S + I + R)dx
.

Lemma 3.5. Assume that R0 > 1. For model (3.9), I → I∗,R → R∗ in C1(Ω̄) as dS → 0 for some
I∗,R∗ ∈ C1(Ω̄) with I∗ ≥ 0,R∗ > 0 on Ω̄.

Proof. In the view of dS S + dI I + dRR = 1,
β(x)S hI
S h + αIh is uniformly bounded for any dS > 0. It follows

from Lp-estimate that ‖I‖W2,p is bounded for any p > 1. Thus, ‖I‖C1,τ is bounded for any τ ∈ (0, 1) by
Sobolev embedding theorem. Passing to a subsequence if necessary, I → I∗ in C1(Ω) as dS → 0 where

I∗(x) ≥ 0 for x ∈ Ω and
∂I
∂n

= 0 for x ∈ Ω. By similar arguments, R → R∗ in C1(Ω) as dS → 0 where
R∗(x) ≥ 0 for x ∈ Ω, which satisfies

dR∆R∗ + δI∗ − (µ + γ)R∗ = 0, x ∈ Ω,

∂R∗

∂n
= 0, x ∈ ∂Ω.

(3.10)

Now we show that I∗(x) . 0 on Ω by contradiction argument. If I∗(x) = 0, then we obtain by (3.10)
that R∗ = 0, which implies that S → ∞ is almost everywhere (abbreviate a.e.) as dS → 0. Thus

β(x)S h

S h + αIh → β(x) a.e as dS → 0. (3.11)
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Define
M = ‖I‖L∞(Ω) + ‖R‖L∞(Ω), Î =

I
M
, R̂ =

R
M
.

Note that Î, R̂ > 0 and ‖Î‖L∞(Ω) + ‖R̂‖L∞(Ω) = 1. Then by a standard compactness argument for elliptic
equations, after passing to a further subsequence if necessary,

Î → Î∗, R̂→ R̂∗, x ∈ Ω̄, as dS → 0,

where Î∗, R̂∗ ≥ 0 for x ∈ Ω and 
‖Î∗‖L∞(Ω) + ‖R̂∗‖L∞(Ω) = 1,

∂Î∗

∂n
=
∂R̂∗

∂n
= 0, x ∈ ∂Ω.

(3.12)

It follows from (3.11) that Î∗ is a weak solution of
dI∆Î∗ + (β(x) − (µ + δ))Î∗ = 0, x ∈ Ω,

∂Î∗

∂n
= 0, x ∈ ∂Ω.

(3.13)

By elliptic regularity, we have Î∗ ∈ C2(Ω̄), which gives
dI∆Î∗ + (β(x) − (µ + δ))Î∗ = 0, x ∈ Ω,

dR∆R̂∗ + δÎ∗ − (µ + γ))R̂∗ = 0, x ∈ Ω,

∂Î∗

∂n
=
∂R̂∗

∂n
= 0, x ∈ ∂Ω.

It follows from maximum principle together with (3.12) that Î∗(x), R̂∗(x) > 0. We conclude that (λ, ψ) =

(0, Î∗(x)) is a solution of (3.2). Since Î∗(x) > 0 on Ω, it must be that λ∗ = 0, which implies that R0 = 1.
This contradiction yields I∗(x) . 0. Therefore, again by maximum principle together with (3.10), we
obtain R∗ > 0. �

Note that I(x),R(x) > 0 for any x ∈ Ω, dS > 0. Denote

M(x) = dI I + dRR.

Let
J+ := {x ∈ Ω̄|M∗(x) = 1},

J− := {x ∈ Ω̄|0 < M∗(x) < 1},

where M∗(x) := dI I∗ + dRR∗. Observe that J−
⋃

J+ = Ω̄.

Lemma 3.6. Assume that R0 > 1.
(i) The set J+ has positive Lebesgue measure.
(ii) If further assume that λ1 < 0, then the set J− has positive Lebesgue measure.
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Proof. We prove |J+| > 0 by contradiction. If |J+| = 0, i.e., 0 < M∗(x) < 1 on Ω a.e., then it follows

from dS S = 1 − dI I − dRR that S → ∞ a.e. as dS → 0 and thus
β(x)S hI
S h + αIh → β(x)I∗ a.e. as dS → 0.

Therefore, I∗ is a weak solution of
dI∆I∗ + (β(x) − (µ + δ))I∗ = 0, x ∈ Ω,

∂I∗

∂n
= 0, x ∈ ∂Ω.

By elliptic regularity, we have I∗ ∈ C2(Ω̄), which yields
dI∆I∗ + (β(x) − (µ + δ))I∗ = 0, x ∈ Ω,

dR∆R∗ + δI∗ − (µ + γ))R∗ = 0, x ∈ Ω,

∂I∗

∂n
=
∂R∗

∂n
= 0, x ∈ ∂Ω.

(3.14)

In light of (3.14) and R∗ > 0, we have I∗ > 0. We conclude that (λ, ψ) = (0, I∗(x)) is a solution of (3.2).
Since I∗(x) > 0 on Ω, it must be that λ∗ = 0, which implies that R0 = 1. This contradiction implies
|J+| > 0.

We next prove part (ii) by contradiction. Now assume that |J−| = 0, i.e., M∗(x) = 1 on Ω a.e..
Denote

f (x) =
β(x)S hI
S h + αIh − µI − (µ + γ)R

and choose ϕ ∈ C1(Ω̄) such that ϕ ≥ 0 on Ω. Multiplying the first two equations in (3.9) by ϕ, adding
them together and integrating on Ω, we have

−

∫
Ω

∇ϕ · ∇(dI I + dRR)dx +

∫
Ω

ϕ f (x)dx = 0. (3.15)

As dS → 0, M(x)→ M∗(x) = 1 a.e on Ω. Thus, we obtain∫
Ω

ϕ f (x)dx→ 0 as dS → 0 (3.16)

for any ϕ ∈ C(Ω̄) such that ϕ ≥ 0 on Ω.

Let ψ0 be a positive eigenfunction of λ1

(
−dR∆ + (µ + γ)

(
1 −

δ

β − µ

))
, i.e.


−dR∆ψ0 + (µ + γ)

(
1 −

δ

β(x) − µ

)
ψ0 = λ1ψ0, x ∈ Ω,

∂ψ0

∂n
= 0, x ∈ ∂Ω.

(3.17)

Since −dR∆R + (µ + γ)R − δI = 0 and S , I,R > 0 on Ω, we have

−dR∆R + (µ + γ)
(
1 −

δ

β − µ

)
R =

δ

β(x) − µ
(βI − µI − (µ + γ)R) ≥

δ

β(x) − µ
f (x), x ∈ Ω. (3.18)
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Multiplying (3.18) by ψ0, integrating by parts over Ω and applying (3.17), we obtain

λ1

∫
Ω

ψ0Rdx >
∫

Ω

δ

β(x) − µ
ψ0 f (x)dx.

Let dS → 0. It immediately follows from (3.16) that λ1

∫
Ω

ψ0R∗dx ≥ 0. Since ψ0,R∗ > 0 on Ω, we see

that λ1 ≥ 0. This contradiction yields (iii). �

Theorem 3.7. Let (H2) hold. Assume that R0 > 1 and λ1

(
−dR∆ + (µ + γ)(1 − δ

β−µ
)
)
< 0, then the

following assertions hold:
(i) As dS → 0, S̃ subject to a sequence,

S̃ → S̃ ∗ =
N0(1 − M∗(x))∫
Ω

(1 − M∗(x))dx

for some M∗(x) satisfying 0 < M∗(x) ≤ 1 in Ω. Moreover, S ∗ = 0 on J+ ⊂ Ω̄, S ∗ > 0 on J− ⊂ Ω̄ and∫
Ω

S̃ ∗ = N0.

(ii) There exist positive constants C1,C2, independent of dS , such that for sufficiently small dS

C1 ≤
Ĩ

dS
,

R̃
dS
≤ C2.

That is Ĩ, R̃→ 0 uniformly in Ω as dS → 0.

Proof. By (3.9), we have

N0 =

∫
Ω

(S̃ + Ĩ + R̃)dx

= ξ

∫
Ω

(
1 − dI I − dRR

dS
+ I + R

)
)dx,

=
ξ

dS

(∫
Ω

dS (I + R)dx +

∫
Ω

(1 − M(x))dx
)
.

It follows from S , I,R > 0 and dS S + dI I + dRR = 1 that I,R are uniformly bounded with respect to dS .
Thus, ∫

Ω

dS (I + R)dx→ 0 as dS → 0.

In view of Lemmas 3.5 and 3.6, we have∫
Ω

(1 − M(x))dx→
∫

Ω

(1 − M∗(x))dx > 0 as dS → 0.

Therefore,
ξ

dS
→

N0∫
Ω

(1 − M∗(x))dx
as dS → 0. (3.19)
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This limit is well-defined because J− has positive measure. It follows from S̃ =
ξ

dS
(1 − M(x)) that

S̃ → S̃ ∗ =
N0(1 − M∗(x))∫
Ω

(1 − M∗(x))dx
as dS → 0, x ∈ C1(Ω̄),

and
∫

Ω

S̃ ∗ = N0.

Now we verify (ii). It follows from dS S + dI I + dRR = 1 and Ĩ =
ξ

dS
dS I, R̃ =

ξ

dS
dS R that

0 <
Ĩ

dS
,

R̃
dS

<
ξ

dS
max

{
1
dI
,

1
dR

}
.

Hence (3.19) implies that

lim sup
dS→0

sup
Ĩ

dS
, lim sup

dS→0
sup

R̃
dS
≤

N0∫
Ω

(1 − M∗(x))dx
max

{
1
dI
,

1
dR

}
. (3.20)

Next, by contradiction, we prove

min
{
inf
Ω

Ĩ, inf
Ω

R̃
}
/dS 9 0, as dS → 0.

Assume that min
{
inf
Ω

Ĩ, inf
Ω

R̃
}
/dS = o(dS ). By [48, Lemma 2.3] and (2.4), there exists a positive

constant θ such that

inf
Ω

Ĩ ≥ θ
∫

Ω

β(x)S̃ h Ĩ
S̃ h + αĨh

= θ(µ + δ)
∫

Ω

Ĩdx, inf
Ω

R̃ ≥ θ(µ + γ)
∫

Ω

R̃dx = θδ

∫
Ω

Ĩdx.

Hence ∫
Ω

Ĩdx,
∫

Ω

R̃dx = o(dS ),

which implies ∫
Ω

dI Ĩ + dRR̃
dS

dx→ 0 as dS → 0. (3.21)

Noting that

N0 =

∫
Ω

ξ

dS
dx −

∫
Ω

dI Ĩ + dRR̃
dS

dx +

∫
Ω

(Ĩ + R̃)dx,

and combining (3.19) and (3.21), we can obtain

N0 →
N0|Ω|∫

Ω

(1 − M∗(x))dx
as dS → 0,

which contradicts Lemma 3.6 (ii) (i.e., |J−| > 0). We complete the proof of part (ii). �
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4. Concluding remarks

It is now widely believed that the mathematical models have been revealed as a powerful tool to
understand the mechanism that underlies the spread of the disease. In this paper, we proposed an
epidemic model with ratio-dependent incidence rate incorporating both mobility of population and
spatial heterogeneity, and focus on how spatial diffusion and environmental heterogeneity affect the
basic reproductive number and disease dynamics of the model.

The value of our study lies in two aspects. Mathematically, we prove that the basic reproductive
number R0 can be used to govern the threshold dynamics of the model: if R0 < 1, the unique DFE
is globally asymptotically stable (see Theorem 3.2), while if R0 > 1, there is at least one endemic
equilibrium (see Theorem 3.3). Epidemiologically, we find that restricting the movement of susceptible
population can effectively control the number of infectious individuals (see Theorem 3.7 (ii)). Simply
speaking, our results may provide some potential applications in disease control.
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