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Abstract: The induced kinetic differential equations of a reaction network endowed with mass action
type kinetics is a system of polynomial differential equations. The problem studied here is: Given
a system of polynomial differential equations, is it possible to find a network which induces these
equations; in other words: is it possible to find a kinetic realization of this system of differential
equations? If yes, can we find a network with some chemically relevant properties (implying also
important dynamic consequences), such as reversibility, weak reversibility, zero deficiency, detailed
balancing, complex balancing, mass conservation, etc.? The constructive answers presented to a series
of questions of the above type are useful when fitting differential equations to datasets, or when trying
to find out the dynamic behavior of the solutions of differential equations. It turns out that some of
these results can be applied when trying to solve seemingly unrelated mathematical problems, like the
existence of positive solutions to algebraic equations.

Keywords: kinetic equations; reversibility; weak reversibility; mass action kinetics; reaction
networks; realizations

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020046


863

1. Introduction

Our goal here is to find reaction networks inducing a given system of polynomial differential
equations (or classes of equations with symbolic parameters as coefficients) with as many good
properties (e.g., weak reversibility, reversibility, small deficiency, small number of linkage classes or
reactions, mass conservation, etc.) as possible.

It has been shown that, under mass action kinetics, a necessary and sufficient condition for
realizability is a sign structure in the system of polynomial differential equations [1] (see Lemma 1
below). Once we know that a system can arise from a mass action system, the question still lies: can
the system arise from a mass action system with good properties? This is what this present work
looks at. There exist similar works outside the realm of mass action kinetics. For example, [2] finds
mass action systems that generate the same differential equation as a given S-system or generalized
mass action system. The approach allows recent results from Chemical Reaction Network Theory to
be applied in Biochemical Systems Theory.

There are several sources of motivation for this problem.

1. Having fitted a system of differential equations to data, one may wonder whether the obtained
equations can be interpreted as the mass action type deterministic model of an appropriate reaction
network.

2. There is an internal requirement within this branch of science: One should like to know as much as
possible about the structure of differential equations that arise from modelling a chemical system.

3. Given a system of polynomial differential equations in any field of pure or applied mathematics,
one may wish to have statements on stability or oscillations, similar to those offered by the
Horn-Jackson Theorem [3], Zero Deficiency Theorem [3–5], Volpert’s theorem [6], or the
Global Attractor Conjecture, where several cases have been proven [7–10]∗. Then it comes in
handy to see that the system of differential equations of interest belongs to a well behaving class.

4. Lastly, results of formal reaction kinetics (to use an expression introduced in [12,13]), e.g., on the
existence of stationary points, may offer alternative methods for solving problems in algebraic
geometry [14, 15]. For instance, one might be able to show the existence of positive roots of
a polynomial if the system of polynomial equations is known to be the right hand side of the
induced kinetic differential equation of a reversible or weakly reversible reaction network [16].

The structure of our paper is as follows. Section 2 introduces the essential concepts of reaction
networks and mass action systems. Section 3 formulates the problem we are interested in, that of
realizability of kinetic differential equations. Section 4 treats two special cases: finding realizations
for compartmental models (defined later) and reversible networks. Section 5 focuses on the general
problem of realizability. We first review existing algorithms available. Then we outline several
procedures that modify a reaction network while preserving the system of differential equations,
including adding and removing vertices from the reaction graph. Section 6 explores the relation
between weakly reversible and complex balanced realizations. Here we work with families of
symbolic kinetic differential equations. In Section 7, we prove the geometric meaning of zero
deficiency, and discuss when is a realization unique. We also pose several conjectures that may be of

∗A proof in full generality has been proposed in [11].
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interest to the reader. An Appendix contains a very large number of enlightening examples. The
present paper intends to be a review of the realizability problem, while containing some new results.

A few remarks on notation and the use of words are in order.

1. The set of vectors in RM with strictly positive coordinates is denoted by RM
>0. Also

xy := xy1
1 xy2

2 · · · x
yM
M

for any xi > 0 and yi ≥ 0. If Y = (y1, y2, . . . , yN), then

xY = (xy1 , xy2 , . . . , xyN )T .

2. We use differential equation to mean a system of ordinary differential equations. In the same
vein, we use polynomial to usually mean a system of polynomial equations, i.e. a vector-valued
function on RM

>0. By monomial we mean a scalar-valued function on RM
>0.

3. We say a reaction network induces a differential equation, if we formulate the mass action type
differential equation with given reaction rate coefficients, and a differential equation is realized
by a reaction network, if the network induces the given differential equation.

2. Chemical reaction networks and mass action systems

Here we recapitulate some concepts of the mathematical description of reaction networks; for more
details, see e.g., [17–19].

A reaction network consists of a set of R reaction steps among the chemical species
X(1), X(2), . . . , X(M):

M∑
m=1

α(m, r)X(m)→
M∑

m=1

β(m, r)X(m) (r = 1, 2, . . . ,R) (2.1)

with nonnegative integer stoichiometric coefficients α(m, r), β(m, r). Its induced kinetic differential
equation to describe the time evolution of concentrations and assuming mass action type kinetics (and
disregarding the change of temperature, pressure and reaction volume) is

dxm

dt
=

R∑
r=1

(β(m, r) − α(m, r))kr

M∏
p=1

xα(p,r)
p (m = 1, 2, . . . ,M). (2.2)

The positive number kr is the rate coefficient† for the r-th reaction.

On the two sides of arrows in (2.1), which represent a reaction step, one has formal linear
combinations of the species, called complexes, the left one being the reactant complex, and the right
one being the product complex. Associated to each complex is the vector of the coefficients of these
linear combinations. By an abuse of notation, we will refer to this vector as a complex. The difference

†Instead of rate constants we use the term rate coefficients, because they do depend on everything (pressure, temperature, volume),
except concentrations, although we know that there is a heated argument about this question amongst reaction kineticists, see [20, p.
115].
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between the product complex and the reactant complex is the reaction vector. These vectors form the
columns of the stoichiometric matrix. The stoichiometric space S is the linear span of the reaction
vectors, where S = dimS. (This number can also be interpreted as the number of independent
reaction steps.) The stoichiometric compatibility class of x0 ∈ R

M
>0 is the forward-invariant set

(x0 + S)> := (x0 + S) ∩ RM
>0. The number of complexes is denoted by N.

With sets of reactions and complexes as described above, each reaction network is naturally
associated to a directed graph.

Definition 1. The reaction graph (or Feinberg-Horn-Jackson graph) of a given reaction network is a
finite directed graph with no self-loops, where the vertices are the complexes of the reaction network,
and the edges are precisely the reactions.

The connected components of a reaction graph are also called linkage classes, and L denotes the
number of linkage classes in a reaction network. The deficiency of the reaction network is δ := N−L−S ,
where N is the number of complexes (i.e., number of nodes in the reaction graph), and S = dimS. The
strong components of the reaction graph are also called strong linkage classes. An ergodic component
(or strong terminal class) is a strong component with no reaction step such that the reactant complex
is in the component while the product complex is outside of it, i.e., an ergodic component is a strongly
connected component of the reaction graph. The number of ergodic components will be denoted by T .

Definition 2. A reaction network is reversible if its reaction graph as a relation is symmetric, i.e., i→ j
is a reaction if and only if j → i is a reaction. It is weakly reversible, if the transitive closure of its
reaction graph is symmetric; or if all the reaction arrows are edges of a directed cycle in the reaction
graph; or all of its strong components are ergodic.‡

Definition 3. A reversible reaction network (with rate coefficients kr+, kr− for the r-th pair of reversible
reactions)

M∑
m=1

α(m, r)X(m)

M∑

m=1

β(m, r)X(m) (r = 1, 2, . . . , P := R/2)

is detailed balanced at the positive stationary concentration x∗ if for each pair of reversible reactions,
the forward step proceeds at the same rate as the backward step; in other words, x∗ is detailed balanced
if

kr+(x∗)αr = kr−(x∗)βr , (r = 1, 2, . . . , P).

The induced kinetic differential equation can be written in many different forms, see e.g., [19,
Sec. 6.3]. We introduce the form that will be used frequently below.

For a reaction graph with N complexes, let their associated vectors be columns of the matrix Y :=
(y1, y2, . . . , yN). Implicitly we are imposing an ordering on the set of complexes. For a reaction i → j
(from the i-th complex to the j-th complex), assume that the rate coefficient is k ji > 0. Define the
matrix K to be

[K]i j =

{
ki j if j→ i is a reaction in the graph
0 otherwise

‡Weak reversibility implies T = L, but the converse is false [21].
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so that K is a matrix with nonnegative entries, and 0 along the diagonal. Then the column-conserving
matrix Ak := K − diag(K>1) is the (weighted) Laplacian of the reaction graph. A matrix with
nonnegative off-diagonal entries that is column-conserving is also called Kirchoff.

With these matrices defined and the notation xy := xy1
1 xy2

2 · · · x
yM
M for any xi > 0, the induced kinetic

differential equation (2.2) of the reaction network can be rewritten in the following form:

dx
dt

= Y · Ak · xY, (2.3)

where xY is the vector of monomials (xy1 , xy2 , . . . , xyN )T .
Note that the differential equation (2.3) is completely determined by the complexes (columns of Y)

and the connectivity and rate coefficients of the reaction graph (given by Ak).

Definition 4. The reaction system (2.3) is complex balanced at the positive stationary concentration
x∗, if all the complexes are destroyed and formed with the same rate at this concentration:∑

q,n

kqn(x∗)yn =
∑
q,n

knq(x∗)yq

for all n = 1, 2, . . . ,N. Equivalently, x∗ is complex balanced if Ak(x∗)Y = 0.

If one remains within the framework of mass action kinetics – as we do here – then the Deficiency
Zero Theorem provides a necessary and sufficient structural condition for complex balancing [3–5]:

Theorem 1. A mass action system is complex balanced for all choices of the rate coefficients if and
only if it is weakly reversible and its deficiency is zero.

One might notice that in the Deficiency Zero Theorem, it is the mass action system that is described
as complex balanced, not one of its stationary concentrations. This is because complex balancing
implies a host of good structural and dynamical properties, including:

1. If one of the stationary concentrations is complex balanced, then all stationary concentrations of
the system are complex balanced.

2. There is exactly one stationary concentration within every stoichiometric compatibility class.
3. Let x∗ be any complex balanced stationary concentration. The function

L(x) :=
M∑

m=1

xm(ln xm − ln x∗m − 1)

defined on Rn
>0 is a Lyapunov function, with global minimum at x = x∗.

4. Every positive stationary concentration is locally asymptotically stable within its stoichiometric
compatibility class.

5. The set of complex balanced stationary concentrations Zk satisfies the equation ln Zk = ln x∗+S⊥.

3. Formulation of problems

In defining the system of differential equations for a mass action system, note that given a set of
reactions and rate coefficients (or equivalently, given a reaction graph and positive weights for each

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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edge), it is straightforward to write down the differential equation. Unfortunately, given a differential
equation (satisfying a mild sign condition introduced below), there is in general no unique reaction
graph that is associated to it [22].

A natural question arises: given a differential equation, what are the possible reaction graphs that
could generate it if we assume mass action kinetics. All the information about a reaction graph is
contained inside (Y,Ak).

Definition 5. A realization of a differential equation (2.3) is the pair (Y,Ak), where Y ∈ ZM×N
≥0 and Ak

is the weighted Laplacian of a reaction graph. Equivalently, a realization is a Feinberg-Horn-Jackson
reaction graph and a positive rate coefficient for each edge. Two different realizations (Y,Ak) and
(Y′,A′k) are said to be dynamically equivalent if they give rise to the same differential equation under
mass action kinetics.

Dynamical equivalence is written as linear relations in [23]. In other words, the question we are
asking in this work is: what are the possible dynamically equivalent realizations (Y,Ak) of a given
system of differential equations?

Before searching for dynamically equivalent realizations, we must first ask whether or not a given
differential equation can arise from mass action kinetics. In other words, is it even possible to find one
realization? We provide a necessary and sufficient condition for realizability in Lemma 1 below.

Assume that we are given a system of differential equations of the form

ẋ = Z · xY =

N∑
n=1

znxyn =



∑N
n=1 z1

nxyn

...∑N
n=1 zm

n xyn

...∑N
n=1 zM

n xyn


, (3.1)

where Z := (z1, z2, . . . , zN), and Y := (y1, y2, . . . , yN), and xy := xy1
1 xy2

2 · · · x
yM
M for any xi > 0.

Definition 6. We say that a system of differential equations (3.1) is kinetic if

zm
n < 0 implies (yn)m = ym

n > 0. (3.2)

A system being kinetic reflects the physical assumption that in order to lose a chemical species via
a reaction, that species must participate as a reactant. For example, the system

ẋ = y − x

ẏ = x − xz − y

ż = xy − z

is not kinetic because the term −xz in ẏ does not involve the variable y.
It turns out that a differential equation can arise from mass action kinetics if and only if it is kinetic

in the sense of Definition 6. This has been shown in [1] using a constructive method.

Lemma 1 (Hungarian Lemma). A polynomial system of differential equations of the form (3.1) can
be realized by a mass action system if and only if the system of differential equations is kinetic.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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One realization (the canonical realization) is the collection of reactions

yn
|zm

n |

−−→ yn + sign(zm
n )em (m = 1, 2, . . . ,M; n = 1, 2, . . . ,N),

where em is the m-th vector of the standard basis of RM. Here the product complex vector has
nonnegative integer coordinates because of the assumption in (3.2).

Example 1. Given the differential equation

ẋ = k1x − k2x2

(with k1, k2 > 0), it is possible to find an inducing reaction network with only two complexes defined
by the exponents of the monomials present in the right hand side:

X
k1
−−−⇀↽−−−

k2
2 X.

The right hand side contains two monomials, and there exists a realization with two complexes, and is
also reversible, and has deficiency zero. This also happens to be the canonical realization.

However, in general, the canonical realization is quite complicated, contains too many complexes
and reactions (see Supplementary Example 13). Its main advantage is that it can be automatically
constructed and used as a starting point for finding different realizations.

Now we present the set of problems we are interested in (also posed earlier in [24, Section 4.7]).

List of Problems.

1. Given a kinetic differential equation ẋ = Z · xY, find Ak such that Y · Ak = Z.
2. Find reversible or weakly reversible; complex balanced or detailed balanced; or mass conserving

realizations. Determine if such a realization exists.
3. Find realizations with minimal deficiency, with minimal number of reactions, or with minimal

number of complexes.
4. Without further restrictions, the question about uniqueness of Ak arises at all levels.
5. In all of the above problems, we may add more columns to Y [25]. For example, if the first

problem has no solution, we may consider the following: find Y whose first N columns form
precisely Y and find Ak such that Y · Ak · xY = Z · xY. In this case we can also ask what is the
minimum number of columns that must be added.

We will answer partially the questions above, especially pertaining to reversible, weakly reversible,
complex balanced and detailed balanced realizations. We also consider uniqueness in Section 7 and
mass conserving realizations in the Supplementary.

In considering the uniqueness question, the concepts of sparse and dense realizations have been
useful [26]. The aim is to find an M × N matrix of nonnegative integer components Y and a Kirchoff

matrix Ak giving the product Z = Y · Ak. The pair (Y,Ak) is a realization of the matrix Z. Since
(Y,Ak) uniquely identifies the reaction graph, when we refer to a subgraph of the realization, we mean
a subgraph of the reaction graph corresponding to (Y,Ak).

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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Definition 7. Suppose the set of complexes is fixed, i.e., the matrix Y is given. If the number of zeros
in the above setting in Ak is maximal, then a sparse realization has been obtained. If the number of
zeros in Ak is minimal then a dense realization has been obtained.

Suppose Z is given and fix the matrix Y, i.e., fix the set of complexes (both the reactant and product
complexes) from which we will search for realizations. The following properties of dense and sparse
realizations of a given chemical reaction network were proved in [27]:

Theorem 2.
1. The reaction graph of the dense realizations is unique.
2. The reaction graph of any dynamically equivalent realization is a subgraph of the dense

realization.
3. The reaction graph of a system of differential equations is unique if and only if the reaction graph

of the dense and sparse realizations are identical.

The above statements hold when the word “realization” is replaced by weakly reversible
realization [28]. The above results were extended to the case of constrained realizations, where the
rate coefficients fulfil arbitrary polytopic constraints [29]. An important special case of this is when a
subset of possible reactions is excluded from the network.

We have seen that the canonical representation may be the sparse realization. Later, we shall give
a complete solution to a generalization of part 1 of Problem 3 for the case when the numerical values
of the components of the matrices Z and Y are known. We also review results for the solution of the
other related problems in Section 5.1.

To date, the problem of finding a realization has used tools and techniques from different
mathematical disciplines, ranging from graph theory, combinatorics, linear algebra, to optimization.

4. Realizations of compartmental models and reversible systems

In this section, we consider two classes of examples: compartmental models and reversible
networks. Because of the simpler mathematical structure of compartmental models, the realization
problem can be solved even if the rate coefficients are unspecified parameters, i.e., symbolic. Then we
will look at an ad hoc method to find reversible realizations.

4.1. Compartmental models

A compartmental system is built using a subset of reactions of the form

X(m) −−−→ X(p), X(n) −−−→ 0, 0 −−−→ X(q).

It is closed if it only contains reactions of the first type, it is half-open if reactions of the second type
are also allowed, and it is open if reactions of the third type may occur. A generalized compartmental
system only consists of the reactions

ymX(m) −−−→ ypX(p), ynX(n) −−−→ 0, 0 −−−→ yqX(q)

with fixed positive integer numbers y1, y2, . . . , yN . (It is understood that all the complexes contain a
single species, and every species appear in a single complex.) It is closed, if it only contains reactions

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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of the first type, it is half-open if reactions of the second type are also allowed, and it is open, if
reactions of the third type also may occur.

First we give a complete, although ineffective solution of the first task of Problem 3 in a slightly
modified form. Modification means that the empty complex will be dealt with separately, because in
some calculations this implies simplification. First, we need two definitions.

Definition 8. [30, pp. 142,143] A matrix B ∈ RN×N is a compartmental matrix, if its off-diagonal
elements are nonnegative, while its diagonal elements are smaller than or equal to the negative of the
corresponding column sums: Bn

n ≤ −
∑

p,n Bp
n . It is a Kirchhoff matrix if it is a compartmental matrix

and its diagonal elements are equal to the negative of the corresponding column sums: Bn
n = −

∑
p,n Bp

n .

For example, the weighted Laplacian matrix of a reaction graph is Kirchoff.
Let M,N ∈ N; and suppose the vectors y1, y2, . . . , yN ∈ Z

M
≥0 are arbitrary nonzero vectors. Let us

write the reaction network we are interested in, in the form of

M∑
m=1

ym
q X(m)→

M∑
m=1

ym
n X(m) (n, q = 1, 2, . . . ,N; n , q), (4.1)

M∑
m=1

ym
q X(m)→ 0 (q = 1, 2, . . . ,N), (4.2)

0→
M∑

m=1

ym
n X(m) (n = 1, 2, . . . ,N). (4.3)

Let us introduce the notation (slightly different from the usual)

K :=
(

knq

)N

n,q=1
, u :=


k01

k02
...

k0N

 , v :=


k10

k20
...

kN0

 .
(Recall that Ak := K−diag(KT 1) is the weighted Laplacian of the reaction network.) Note that knq ≥ 0.
Then, the induced kinetic differential equation of the reaction network (4.1)–(4.3) is

ẋ = Y(K − diag(K>1 + u))xY + Yv with (Y = (y1, y2, . . . , yN)). (4.4)

Upon denoting Z := Y(K − diag(K>1 + u)),b := Yv one can say that (4.4) is of the form

ẋ = ZxY + b

so that there exists a compartmental matrix B ∈ RN×N and a nonnegative vector v ∈ RM
≥0 so that

Z = YB, b = Yv (4.5)

hold. If u = 0, then B is a Kirchhoff matrix. (One may call (4.2) outflow, (4.3) inflow, and they are
missing if u = 0 or v = 0, respectively.)

A partial answer to the realization problem follows.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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Theorem 3. Suppose that the differential equation

ẋ = ZxY + b

where Y = (y1, y2, . . . , yN),Z ∈ RM×N (with M,N ∈ N) has the property that there exist a
compartmental matrix B and a nonnegative vector v ∈ RM

≥0 so that (4.5) holds. Then the equation has a
realization of the form (4.1)–(4.3).

Proof. First we prove that the conditions of the theorem imply the differential equation is kinetic.
Suppose Zm

n < 0 for some indices m, n. Then,

Zm
n =

N∑
q=1

ym
q Bq

n =

N∑
q,n

ym
q Bq

n + ym
n Bn

n,

and the last sum being nonnegative, ym
n Bn

n should be negative, thus ym
n > 0.

The components of Y and v are nonnegative, thus the components of b = Yv are nonnegative, as
well.

Next, we construct the inducing realization in the following way. Let the reaction rate coefficients
of the reaction network (4.1)–(4.3) be defined as follows:

kqn := Bq
n (n, q = 1, 2, . . . ,N; n , q),

kn0 := vn (n = 1, 2, . . . ,N),

k0n := −Bn
n −

N∑
q=1

Bq
n (n = 1, 2, . . . ,N).

Then simple verification proves the statement. �

It may happen that a given kinetic differential equation has zero, one or an infinite number of
realizations with complexes, or columns of Y, determined by the exponents of its monomials, see
Supplementary Examples 11, 12 and 15.

For some nonlinear differential equations one can provide a zero deficiency realization. Additional
conditions may allow to have a realization which is also reversible or weakly reversible. One of the
early approaches to this problem was [31, Theorem 9], see also [19, Theorem 11.12] providing a
necessary and sufficient condition that a generalized compartmental system induces a given
differential equation. If the coefficients of the kinetic polynomial ODEs are known, then a deficiency
zero realization can be determined via mixed integer linear programming, if it exists [32]. Moreover,
weakly reversible deficiency zero realizations can be determined using simple linear
programming [33].

Theorem 4. Let M ∈ N; Z ∈ RM×M,Y ∈ ZM×M
≥0 ,b ∈ RM

≥0. The differential equation

ẋ = ZxY + b

is the induced kinetic differential equation of a

1. closed,

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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2. half open,
3. open

generalized compartmental system if and only if the following relations hold: all the columns of Y are
positive multiples of different elements of the standard basis:

Y =
[
y1e1 y2e2 . . . yMeM

]
; y1, y2, . . . , yM ∈ N;

and

1. bm = 0;−zm
m, z

m
p , βm :=

∑M
p=1

zp
m

yp
≥ 0; zm

m = −βmym;
2. bm = 0;−zm

m, z
m
p , βm ≥ 0; zm

m ≤ −βmym,∃m : zm
m < −βmym;

3. −zm
m, z

m
p , βm ≥ 0; zm

m ≤ −βmym,∃m : bm > 0;

respectively, where throughout m, p ∈ {1, 2, . . . ,M},m , p.

Proof. Necessity is obvious. Instead of direct calculations sufficiency can be learned from the
application of Theorem 3, as in this case Y – being diagonal with positive components – is invertible,
and its inverse can easily be calculated. �

Remark 1.
1. A necessary and sufficient condition of reversibility in the closed case is sign symmetry of the

coefficient matrix. Similar conditions can be formulated for the other two cases, as well.
2. Once we have a zero deficiency reversible realization, it is easy to check detailed balancing: only

the circuit conditions [34] are to be checked.

4.2. Finding reversible realizations

Let us study reversibility, another relevant property, in more detail, applying different methods—
without taking care of the value of deficiency.

An equivalent and useful characterization of the induced kinetic differential equation of reversible
reaction networks seems to be missing. What we only have is a heuristic algorithm without the proof
that it leads to a reversible realization if there exists one, and the realization is independent from the
order of the steps.

Example 2.
1. Consider the polynomial equation

ẋ = b + s − gx + sz − gxz (4.6)
ẏ = b + s + sx − gy − gxy (4.7)
ż = b + s + sy − gz − gyz (4.8)

with b, g, s > 0 (a transform of the first repressilator model in [14]). The canonical representation
of this equation is shown in Figure 1. It is a reversible reaction network with exactly those seven
complexes which are given as exponents of the monomials. It consists of a single linkage class
and has a three-dimensional stoichiometric space, and it is also a sparse realization. Reversibility
allows us to deduce the existence of a positive stationary point by the theorems of [16, 35]. In
the third part below a more systematic approach to this example will show an infinite number of
realizations (not necessarily reversible), actually we shall receive the dense realization.
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X + Z X + Y

Z X

0

Y

Y + Z

g

g

g

s

g

s

b+s

b+s

b+s

s

g

g

Figure 1. A reversible single linkage class reaction network of deficiency 3 to induce
Eq (4.6)–(4.8). This realization is sparse as opposed to the dense realization shown in
Figure 2.

2. To find a reversible realization one can also use a heuristic: one tries to collect pairs of reactant
and product complex vectors. Suppose our goal is to find a reversible reaction network inducing
(4.6)–(4.8). Let us rewrite it in the following form

b + s − gx + sz − gxz
b + s + sx − gy − gxy
b + s + sy − gz − gyz

 = gxz


−1
0
0

 + . . . .

Now we consider the exponent of the monomial as a reactant vector α and the vector with which
this monomial has been multiplied, as the reaction vector β − α, then one should have β =
−1
0
0

 +


1
0
1

 =


0
0
1

 , thus we need a term where the exponent of the monomial is β, and it is

multiplied by a positive constant and α − β. Thus we get:
b + s − gx + sz − gxz
b + s + sx − gy − gxy
b + s + sy − gz − gyz

 = gxz


−1
0
0

 + sz


1
0
0

 + . . . .

Repeating steps of this kind we arrive at the decomposition

gxz


−1
0
0

 + sz


1
0
0

 + gyz


0
0
−1

 + sy


0
0
1

 +

gxy


0
−1
0

 + sx


0
1
0

 + gx


−1
0
0

 + (b + s)


1
0
0

 +
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gy


0
−1
0

 + (b + s)


0
1
0

 + gz


0
0
−1

 + (b + s)


0
0
1


which again leads to the network in Figure 1.

Conjecture 1. If there exists a reversible realization then the above process (independently from
the order of actions) ends and necessarily provides one of them which may or may not depend on
the order of steps.

3. Finally, one can apply Theorem 3 to get all the realizations (with the exponents as complexes
only) and choose from them the reversible one(s). Suppose again that the Eqs (4.6)–(4.8) are
given, and our goal is to find a reaction network inducing it using Theorem 3. In this case we
have

Z =


−g 0 s −g 0 0

s −g 0 0 −g 0
0 s −g 0 0 −g

 , b =


b + s
b + s
b + s

 , Y =


1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


and we have to find a compartmental solution in B of the equation Z = YB, or

−g = −b21 − b31 − b61 − u1 s = b21 + b51 + b61 0 = b31 + b41 + b61

0 = b12 + b42 + b52 −g = −b12 − b32 − b42 − u2 s = b32 + b42 + b62

s = b13 + b43 + b53 0 = b23 + b53 + b63 −g = −b13 − b23 − b53 − u3

−g = −b24 − b34 − b64 − u4 0 = b24 + b54 + b64 0 = −b14 − b24 − b54 − u4

0 = −b25 − b35 − b65 − u5 −g = −b15 − b35 − b45 − u5 0 = b35 + b45 + b65

0 = b16 + b46 + b56 0 = −b16 − b36 − b46 − u6 −g = −b16 − b26 − b56 − u6.

which for the coordinates has the following consequences.

b31 = 0 b41 = 0 b61 = 0 b12 = 0 b42 = 0 b52 = 0 b23 = 0 b53 = 0 b63 = 0
b24 = 0 b54 = 0 b64 = 0 b35 = 0 b45 = 0 b65 = 0 b16 = 0 b46 = 0 b56 = 0

and then the equations reduce to

−g = −b21 − u1 s = b21 + b51 −g = −b32 − u2 s = b32 + b62

s = b13 + b43 −g = −b13 − u3 −g = −b34 − u4 0 = −b14 − u4

0 = −b25 − u5 −g = −b15 − u5 0 = −b36 − u6 −g = −b26 − u6

having the solution

b21 = g − u1 b51 = s − g + u1 b32 = g − u2 b62 = s − g + u2

b13 = g − u3 b43 = s − g + u3 b34 = g − u4 b14 = −u4

b25 = −u5 b15 = g − u5 b36 = −u6 b26 = g − u6

implying that
u4 = u5 = u6 = 0.
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Now the kinetic matrix of the dense realization (without inflow) is

−s − u1 0 g − u3 0 g 0
g − u1 −s − u2 0 0 0 g
0 g − u2 −s − u3 g 0 0
0 0 −g + s + u3 −g 0 0
−g + s + u1 0 0 0 −g 0
0 −g + s + u2 0 0 0 −g


under the conditions that

s − g ≤ u1 ≤ g s − g ≤ u2 ≤ g s − g ≤ u3 ≤ g

hold. To have no indices let us introduce α := u1, β := u2, γ := u3. Now consider two cases:

(a) If g ≥ s, take α, β and γ such that 0 ≤ α, β, γ ≤ s.
(b) If s ≥ g, take α, β and γ such that s − g ≤ α, β, γ ≤ s.

As to the inflow: the components of the solution v to Yv = b should fulfil

v1 + v4 + v5 = b + s v2 + v5 + v6 = b + s v3 + v4 + v6 = b + s,

which means that any v defines a solution for which

0 ≤ v4, 0 ≤ v5, 0 ≤ v6, v4 + v5 ≤ b + s, v5 + v6 ≤ b + s, v4 + v6 ≤ b + s

hold; and then v1 := b + s − v4 − v5, v2 := b + s − v5 − v6, v3 := b + s − v4 − v6.
Summing up, Figure 1 shows a sparse realization, while Figure 2 shows the dense realization. We
also obtain the condition of reversibility: α = β = γ = s and v4 = v5 = v6 = 0, and that it is
exactly the sparse realization which is reversible.

X + Y X + Z

X Z

0

Y

Y + Z

g

g

g−s+α

α

s−α

g−s+γ

γ

s−γ

b+s−v4−v5

b+s−v5−v6

b+s−v4−v6

v4

v6

v5

β

g−s+β
s−β

g

Figure 2. A weakly reversible single linkage class realization of deficiency 3 to induce
Eq (4.6)–(4.8). This realization is dense as opposed to the sparse realization shown in
Figure 1.
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In this example we were lucky to receive a canonical realization with so many nice properties. The
reader can easily verify that this is the case with the second three dimensional repressilator model and
with the six dimensional one of [14]: the canonical realization is again reversible, and thus assures the
existence of a positive stationary point.

Let us emphasize that via a known result in reaction kinetics we were able to assert the existence
of a positive solution to a second degree polynomial (in three variables), or to put it another way, we
could apply formal reaction kinetics in mathematics.

As to uniqueness of the stationary point: it does not follow from the mentioned theorems. One may
try several methods, see e.g., [36]. However, uniqueness of the reversible realization itself does follow
(in this special case) from the method based on Theorem 3.

5. On computing realizations of kinetic equations

In the previous section, we looked at two classes of systems with certain network properties, namely
that of (generalized) compartmental models (i.e., complexes consisting of a single species) and that
of reversible networks. In this section, we will provide an algorithmic approach to the realizability
problem when the coefficients in the ODE are given. To date, there are algorithms based on linear
programming (LP) and mixed integer linear programming (MILP) techniques. These are reviewed in
Section 5.1.

In the previous section, we only use the complexes that show up as exponents of monomials in
the kinetic differential equation. This may not necessarily be the case for more general examples [25].
However, once a set of complexes has been decided on (and must include the exponents of monomials),
the algorithms presented below can be used to compute realizations with desirable structural properties.

In Section 5.2, we consider ways to modify an existing realization while preserving dynamical
equivalence, including adding to/subtracting from the set of complexes. Finally, we consider cases
when a realization with certain properties (e.g., complex balanced) is independent of the choice of the
set of complexes.

5.1. Review of algorithms

Qualitative properties can be rewritten in terms of a mixed integer linear programming (MILP)
problem [27]. The works [37, 38] determine weakly reversible realizations, while [33] provides
reversible and detailed balanced realizations. The paper [39] finds detailed balanced subnetworks.

Recall the discussion about possibly enlarging the set of complexes (Problem 5) from Y to Y. We
write the dynamical equivalence conditions for finding a realization using linear programming method
with this predetermined complex set Y. Note that the columns of Y must also be columns of Y. We
want to find a realization of the kinetic differential equation ẋ = Z ·xY with the complex set Y. In other
words, we want to find a Kirchoff matrix Ak such that

Y · Ak · xY = Z · xY. (5.1)

We may add columns of 0 to the matrix Z and obtain Z, where the number of columns added is the
number of additional columns in Y compared to Y. Then Eq (5.1) becomes

Y · Ak · xY = Z · xY.
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Therefore, kinetic realizability using Y is equivalent to the feasibility of the following convex
constraint set

Y · Ak = Z (dynamical equivalence) (5.2)
[Ak]i j ≥ 0 for i , j (nonnegativity of rate coefficients) (5.3)

1> · Ak = 0 (column conservation in Ak) (5.4)

Next, we review algorithms for finding realizations with certain structural properties, namely,
reversible, weakly reversible, or complex balancing realizations. In Eqs (5.2)–(5.4) above, the
matrices Y and Z do not show up explicitly. Hence, to simplify notation, in what follows below, we
let Y denote the complexes to be considered, some of which may not appear explicitly in the
differential equation, and Z defines a kinetic differential equation (with possibly columns of 0 so that
Z is the same size as Y).

To find a reversible realization, consider the following feasibility problem [40]:

Y · Ak = Z
[Ak]i j ≥ 0 for i , j

1T · Ak = 0
[Ak]i j ≥ ε ⇐⇒ [Ak] ji ≥ ε for i , j. (5.5)

The statement (5.5) is the condition that the reaction step i→ j is present if and only if reaction j→ i is
present. This feasibility problem can be solved in the framework of mixed integer linear programming
(MILP).

To find a weakly reversible realization, consider the following feasibility problem [41]:

Y · Ak = Z
[Ak]i j ≥ 0 for i , j

1T · Ak = 0
ε[Ak]i j ≤ [A′k]i j, ε[A′k]i j ≤ [Ak]i j for i , j (5.6)
A′k · 1 = 0. (5.7)

The inequalities (5.6) ensure that the structure of Ak and A′k are the same, i.e., a reaction is present in
one if and only if it is present in the other. Since every weakly reversible network is complex balanced
for some choice of parameter (see also Theorem 8), the algorithm searches for a complex balanced A′k
(in Eq (5.7)), which shares the network structure we want but bears no relations in terms of the rate
coefficients we seek.

In this MILP problem, the decision variables are the off-diagonal entries of Ak and the
off-diagonals entries of another Kirchoff matrix A′k, while Z,Y are given matrices, and ε � 1 is a
fixed small constant. We will explore the relationship between finding weakly reversible and complex
balanced realizations in Section 6. More efficient methods to compute weakly reversible realizations
are available; for example, a polynomial time algorithm can be found in [42].
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To find a detailed balanced realization, supposed we have the numerical value of one stationary
concentration x∗ and consider [33]:

Y · Ak = Z
[Ak]i j ≥ 0 for i , j

1T · Ak = 0
[Ak] ji(x∗)yi = [Ak]i j(x∗)y j for each i , j. (5.8)

Finally, to find a complex balanced realization, supposed we have the numerical value of one
stationary concentration x∗ and consider [33]:

Y · Ak = Z
[Ak]i j ≥ 0 for i , j

1T · Ak = 0

−[Ak]ii(x∗)yi =
∑
j,i

[Ak]i j(x∗)y j for each i. (5.9)

Eqs (5.8), (5.9) are precisely the conditions for the stationary concentration x∗ to be detailed balanced
or complex balanced respectively.

5.2. Modifying networks while preserving dynamical equivalence

In this section, we introduce several modifications to an existing realization which preserves
dynamical equivalence. These include:

1. positive or convex combinations of realizations,
2. adding new reactions, and
3. eliminating complexes.

This list is non-exhaustive, but we hope that some of the ideas presented in this section will motivate
other types of modifications that preserve dynamical equivalences.

5.2.1. Positive and convex combinations of realizations

Suppose we have found several realizations (Y,A1
k), (Y,A2

k), . . . , (Y,AI
k) to the kinetic differential

equation ẋ = Z · xY. Then we can easily produce other realizations which may be simpler, or fulfil
some further properties [43].

Theorem 5. Suppose that A1
k ,. . . ,AI

k are realizations of a kinetic differential equation, with complex
set Y, and let Ak :=

∑I
i=1 αiAi

k for some αi > 0, i = 1, . . . , I.

1. Ak is a Kirchhoff matrix, and realizes the equation ẋ = (
∑

i αiY · Ai
k)x

Y.
2. If

∑I
i=1 αi = 1, then (Y,Ak) realizes the same kinetic differential equation ẋ = Z · xY.

3. If for all i = 1, . . . , I, the matrix Ai
k defines a reversible realization of some kinetic equation, then

Ak defines a reversible realization of some kinetic equation.
4. If for all i = 1, . . . , I, the matrix Ai

k defines a weakly reversible realization of some kinetic
equation, then Ak defines a weakly reversible realization of some kinetic equation.
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Proof.
1. Obviously, the off-diagonal terms of Ak are nonnegative. Also the column sums of Ak are

conserved. Thus Ak is Kirchoff. We see that

Y · Ak · xY =

I∑
i=1

αiY · Ai
k · x

Y.

2. This trivially follows from the calculation above.
3. For any p , q, if [Ak]pq > 0, then [Ai

k]pq > 0 for some 1 ≤ i ≤ I. Since Ai
k defines a reversible

realization, it must be the case that [Ai
k]qp > 0, hence [Ak]qp > 0, i.e., Ak defines a reversible

realization.
4. The proof is similar to the above. For any p , q, if [Ak]pq > 0, there must be some [Ai

k]pq > 0.
Since Ai

k defines a weakly reversible realization, the reaction q → p must be part of a cycle, i.e.,
the off-diagonal terms in Ai

k corresponding to the edges in this cycle are positive, hence those
positions in Ak are also positive. In other words, this particular cycle appears in the graph defined
by Ak as well.

�

5.2.2. Adding new reactions to a realization

Now we look at modifying an existing realization by adding new reactions. Suppose that Ak

defines a realization with complexes y1, y2, . . . , yN , and suppose that y is a convex combination of
the remaining complexes, i.e., y =

∑N
n=1 vnyn where vn ≥ 0 for n = 1, 2, . . . ,N and

∑N
n=1 vn = 1.

Then we can add the following reactions: for every n such that vn , 0, add a reaction from y to the
complex yn, with rate coefficient vn. These reactions together contributes 0 to the differential equation.

We wonder if we can add reactions in the opposite direction, i.e., reactions of the form yn → y.
There are cases when it is possible and cases when it is not. While we do not have an answer to this
question, we illustrate the complexity using two examples.

Example 3. First we show an example where adding a complex situated in the convex cone of the
original complexes seems to be superfluous: its effect on the induced kinetic differential equation can
be expressed only using reactions among the original complexes. Consider the system

0 2X

2X + 2Y2Y

To add the reaction step 2X→ X + Y to get the network

0 2X

2X + 2Y2Y

X + Y
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one must borrow from the reactions 2X→ 0 and 2X→ 2X + 2Y in the sense that

k1x2
(
−2
0

)
+ k2x2

(
0
2

)
︸                      ︷︷                      ︸

in first network

= (k1 − ε)x2
(
−2
0

)
+ (k2 − ε)x2

(
0
2

)
+ 2εx2

(
−1
1

)
︸                                                         ︷︷                                                         ︸

in second network

where 0 < ε < min{k1, k2}.

The example above may lead us to believe that it is always possible to add a reaction from some
yn on the boundary of the convex hull to some complex y in the interior of the convex hull of other
complexes. The example below illustrates that this is not always the case, and further work is needed
to explore when it is possible to add such a reaction.

Example 4. If one takes the system

0 2X

2X + 2Y2Y

and tries to add the reaction step 2X → X + Y (note that the new complex X + Y is a convex
combination of the old ones), there is no way of choosing the rate coefficients so as to get the induced
kinetic differential equation of the extended one.

5.2.3. Eliminating complexes from a realization

Perhaps instead of adding or removing reactions from an existing realization, one may want to
add or remove complexes from an existing realization. As noted in [25], it is always possible to add a
complex that has not appeared in the current realization, as long as the weighted sum of reaction vectors

is 0. For example, one can always add the reactions 0
k
←− X

k
−→ 2X without changing the induced kinetic

differential equation. The question lies, then, on when it is possible to eliminate a complex from your
realization.

Theorem 6. Suppose that (Y,Ak) is a realization with N + 1 complexes y1, . . . , yN , yN+1, where the
complex yN+1 participates in at least one reaction as a reactant complex. Suppose that the monomial
xyN+1 does not appear explicitly in the kinetic differential equation. Then the differential equation can
also be realized using only the complexes y1, . . . , yN .

Proof. We can write the complex matrix and Kirchoff matrix as

Y =
[

Y′ yN+1

]
, and Ak =

[
A′k v
u> −

∑N
n=1 vn

]
,

where u, v ∈ RN
≥0. Then the kinetic differential equation can be written as

dx
dt

= Y′A′kx
Y′ + Y′vxyN+1 + yN+1u>xY′ −

 N∑
n=1

vn

 yN+1xyN+1 .
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Since the complex yN+1 admits some outgoing reactions, we have that
∑N

n=1 vn , 0, and, using the fact
that the coefficient of xyN+1 is zero, we find yN+1 = 1∑N

n=1 vn
Y′v, and

dx
dt

= Y′
(
A′k +

1∑N
n=1 vn

vu>
)

xY′ .

We conclude that yN+1 is a convex combination of the remaining complexes. More importantly, the
Kirchoff matrix A′′k = A′k + 1∑N

n=1 vn
vu> gives a realization of the same kinetic equation with only the

complexes y1, . . . , yN . �

Remark 2. If xy appears explicitly as a term in the kinetic differential equation, then that complex
cannot be removed.

After seeing the procedure of eliminating extraneous complexes, one may be tempted to remove
all complexes that do not appear as exponents of monomials without ruining desirable properties (e.g.,
weak reversibility, complex balanced).

Indeed, if one is interested in finding a reversible, or weakly reversible, or detailed balanced, or
complex balanced realization, any complex that does not appear in the differential equation (after
simplification) can be eliminated from the network [23]:

Theorem 7. A kinetic differential equation ẋ = f(x) has a complex balanced realization if and only
if it has a complex balanced realization where the complexes (the columns of Y) are precisely the
monomials in f(x). Analogous results hold for detailed balanced, weakly reversible, and reversible
realizations.

As a consequence, the algorithms described in Section 5.1 can be used to determine whether a
given system of kinetic differential equations admits a complex balanced (or detailed balanced, weakly
reversible, or reversible) realization. This is a finite calculation as there is no need to compute using
different sets of complexes.

6. Relation between weakly reversible and complex balanced realizations for symbolic kinetic
equations

When we discussed the algorithm for computing weakly reversible realizations, the reader may
have noticed that we introduced an additional Kirchoff matrix A′k that does not appear in the realization
(Y,Ak). This reflects the fact that there is a subtle algebraic relation between weak reversibility and
complex balancing. In this section, we explore this relationship.

In order to study the possible network structures that can arise from kinetic differential equation to
those with unspecified coefficient, we make the following definition:

Definition 9. For a matrix Y ∈ ZM×N
≥0 we say that a sign matrix Zσ ∈ {0,+,−}M×N is kinetically

compatible with Y if Ymr = 0 implies Zσ
mr ∈ {0,+}. In such a case, let

Z(Y,Zσ) :=
{
Z ∈ RM×N : sign(Z) = Zσ

}
,

where sign(·) is the componentwise sign function.
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For any Y ∈ ZM×N
≥0 and kinetically compatible Zσ, the set Z(Y,Zσ) is an unbounded convex cone

in RM×N . According to [1], the differential equation ẋ = Z · xY is kinetic if Z ∈ Z(Y,Zσ) for any
kinetically compatible Zσ.

Example 5. The Lotka-Volterra equations

ẋ = αx − βxy

ẏ = δxy − γy

(with α, β, γ, δ > 0) can be written in this framework. Let

Y =

(
1 1 0
0 1 1

)
and Zσ =

(
+ − 0
0 + −

)
,

where clearly Zσ is kinetically compatible with Y. The matrix corresponding to the Lotka-Volterra

equations is Z =

(
α −β 0
0 δ −γ

)
, which belongs to the setZ(Y,Zσ).

We defined Z(Y,Zσ) in order to study possible behaviours a kinetic differential equation may
exhibit for some choice of rate coefficients.

Definition 10. Let Zσ be kinetically compatible with the matrix Y. We say that Z(Y,Zσ) has the
capacity to be complex balanced (or capacity to be weakly reversible) if there exists Z ∈ Z(Y,Zσ)
such that ẋ = Z · xY has a complex balanced (or weakly reversible) realization.

Theorem 8. Let Zσ be kinetically compatible with the matrix Y. The setZ(Y,Zσ) has the capacity to
be complex balanced if and only if it has the capacity to be weakly reversible.

Proof. It is known that complex balancing implies weak reversibility. Suppose there is some Z ∈
Z(Y,Zσ) with a weakly reversible realization (Y,Ak). Then there is a positive vector p in the kernel
of the Kirchoff matrix Ak. Fix an arbitrary positive state x∗. Consider the following scaled Kirchoff

matrix

A′k = Ak · diag
(

p
(x∗)Y

)
(6.1)

where the division p
(x∗)Y is componentwise. Then

A′k(x
∗)Y = Ak · diag

(
p

(x∗)Y

)
· (x∗)Y = Ak · p = 0,

i.e., A′k defines a complex balanced realization with stationary concentration x∗. �

7. On deficiency zero realizations and uniqueness

Recall that the deficiency of a reaction network is the nonnegative integer δ = N − L − S , where N
is the number of complexes, L is the number of linkage classes, and S is the dimension of the
stoichiometric subspace S. A network with lower deficiency tends to have nicer dynamical properties;
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for example, by the Deficiency Zero Theorem or Deficiency One Theorem. Let us formulate a
necessary and sufficient condition on network structure for zero deficiency [17].

We say that the vectors y0, y1, . . . , yN ∈ R
M are affinely independent if y1 − y0, . . . , yN − y0 are

linearly independent. Note that in this case y0 − yn, . . . , yi − yn, . . . , yN − yn are linearly independent for
any n = 1, 2, . . . ,N and i , n. Also, linearly independent vectors are affinely independent.

Theorem 9. A reaction network is deficiency zero if and only if

1. the complex vectors within each linkage class are affinely independent, and
2. the stoichiometric spaces belonging to the linkage class are linearly independent.

Proof. Consider the `-th linkage class. Let N` be the number of complexes in this linkage class, and
let S` be the stoichiometric space belonging to this linkage class. Let δ` := N` − 1 − dimS` be the
deficiency of the `-th linkage class. Finally, let S be the full stoichiometric space.

The deficiency of the entire network can be related to the deficiencies of the linkage classes:

δ = N − L − S =

L∑
`=1

(N` − 1 − dimS`) +

L∑
`=1

dimS` − dimS

=

L∑
`=1

δ` +

L∑
`=1

dimS` − dimS ≥
L∑
`=1

δ`.

Equality holds if and only if the stoichiometric spaces belonging to the linkage classes {S`}L`=1 are
linearly independent. In this case, δ = 0 if and only if all δ` = 0. Finally, δ` = 0 implies dimS` = N`−1,
i.e. the complexes in any given linkage classes are affinely independent. �

If we restrict ourselves to weakly reversible realizations, the deficiency δ is minimized if the set
of complexes are precisely the exponents of monomials [23]. Each additional complex that does not
appear as exponents of monomials increases the deficiency δ. It has been shown that any deficiency
zero realization with one strong terminal class is unique if the set of complexes is fixed [43]. Combining
these two facts, we have the following Proposition.

Proposition 1. Any weakly reversible deficiency zero realization with a single linkage class is unique.

The hypotheses of weakly reversible and deficiency zero in Proposition 1 are required as the
following examples illustrate.

Example 6. The reaction networks Y
k
←− 0

k
−→ X and 0

k
−→ X + Y are two different deficiency zero

realizations with one linkage class, although they are not weakly reversible.

Example 7. The reaction network 0
 X
 2X (with any rate coefficients) and the reaction network

0 X 2X

(for wisely chosen rate coefficients) are dynamically equivalent. Both are weakly reversible and with
one linkage class, but δ = 1.
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Example 8. Two dynamically equivalent weakly reversible realizations where one has δ = 1 are

0 X

Y X + Y

and

0 X

Y X + Y

with all rate coefficients are taken to be 1.

Nonetheless, Proposition 1 naturally leads us to the following conjecture, for which a proof has
been proposed [44]:

Conjecture 2. Any weakly reversible deficiency zero reaction network has a unique realization.

Throughout this work, we have seen over and over again that realizability (more precisely,
identifying the network structure) is an underdetermined problem. Is it possible to use this flexibility
in network structure to get more out information about a kinetic differential equation?

An idea comes to mind; we will formulate a conjecture following an example.

Example 9. Consider the mass action system

0 2X

X + Y X

k2

k4

k3

k1

for any rate coefficients k1, k2, k3, k4 > 0. This system has a weakly reversible, deficiency zero
realization:

0 2X

X + Y
k2

k1/2

k4

k3

k1/2

The induced kinetic differential equation of both systems is

ẋ = k2 − x2(k3 + 2k4), ẏ = k2 − k1xy + k3x2.

In particular, the latter mass action system is complex balanced for all choice of rate coefficients. This
implies that the kinetic differential equation enjoys all the dynamical properties of complex balanced
systems, although we could have been looking at the network that is not weakly reversible.

Conjecture 3. Consider a reaction network N1, and assume that there exists a weakly reversible
reaction network N2 of deficiency δ such that any differential equation induced by N1 and positive k
values can also be induced byN2 and positive k̂ values, and viceversa. Then, the set of rate coefficient
values of N1 for which N1 induces systems that have complex balanced realizations contains an
algebraic variety of codimension not larger than δ.
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8. Discussion

We have been talking about finding realizations (with certain network properties) of kinetic
differential equations. Starting with a system of polynomial differential equations (possibly with
symbolic parameters), one could try to find a (Feinberg-Horn-Jackson) reaction graph that induces the
differential equation under mass action kinetics. After fixing a set of complexes, algorithms exist to
find realizations (Section 5.1). Furthermore, conditions on the resulting reaction graph (e.g., weakly
reversible, complex balanced, omit certain reactions) can be incorporated into the algorithms.§

We also considered graph operations on the reaction network that will preserve the kinetic
differential equation. For example, in certain cases reactions can be added, and complexes can be
removed. Our discussion in Section 5.2 is far from complete; it would be interesting to further explore
the allowed operations while preserving dynamical equivalence.

In Section 6, we explored the relationship between weakly reversible and complex balanced
realizations. Hidden inside the proof of the main theorem in that section is the scaling equation (6.1).
We believe there is information hidden about the manifold in parameter space that decides whether or
not a kinetic differential equation can be complex balanced.

Finally, in our discussion of deficiency zero realizations and uniqueness, we posed two conjectures.
The first is that weakly reversible deficiency zero networks have unique realizations. The latter is
more complicated; it asks for what rate coefficients is the reaction network dynamically equivalent to
complex balanced.

As the reader can see, a theoretical understanding of the relationships between network structure,
the sign structure of the differential equation, and dynamical properties is lacking. We hope to see
further studies exploring the realizability problem.
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Supplementary

Examples: Realizations with a minimal number of complexes

Simple examples can be treated directly, without detailed application of Theorem 3.

Example 10. If the differential equation ẋ = kx is given (no matter what the sign of k is), then we might
try to look for an inducing reaction network consisting of the single complex X and find it impossible,
the minimal reason being that one cannot have a reaction network with less than two complexes. The
right hand side contains a single monomial, but the realization should contain more than one complex.

Example 11. If the differential equation

ẋ = −k1x + 2k2y, ẏ = 3k1x − k2y

is given with k1, k2 > 0, then at least three complexes are needed to realize the equation. How do we
prove this?

Two complexes are not enough. With the notations of Theorem 3 we have

Z =

(
−k1 2k2

3k1 −k2

)
,Y =

(
1 0
0 1

)
,b = 0 ∈ R2.

As Y is invertible, v = Y−10 = 0 should hold. However, YB = B = Z cannot hold, because Z is
not a compartmental matrix.

Three complexes are enough. Consider the realization

X + Y
2k1
←−−− X

k1
−−−⇀↽−−−

k2
Y

k2
−−−→ X + Y.

It is easy to find a realization with noninteger stoichiometric coefficients:

X
5k1
−−−→

4
5

X +
3
5

Y
5k2/2
←−−−− Y.

In the pioneering paper [3] this generalization to nonnegative real coefficients for complexes is allowed,
although here we restrict ourselves to nonnegative integer coefficients, which is a common assumption
in mass action kinetics.

8.1. More examples

Example 12. Invertibility of the complex matrix Y is not sufficient to have a realization with the
exponents of the monomials as complex vectors, as the following example shows.

ẋ = x3 − xy2, ẏ = 2x3

implies that

Y =

(
3 1
0 2

)
, Z =

(
1 −1
2 0

)
Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.
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and the (unique) solution to(
3 1
0 2

) (
−b21 − u1 b12

b21 −b12 − u2

)
=

(
1 −1
2 0

)
is

b12 = −1/3, b21 = 1, u1 = −1, u2 = 1/3,

with some negative numbers. We are forced to formulate a problem: Characterize those matrices with
nonnegative (integer) components the inverse of which multiplied with a matrix without negative cross
effect gives a compartmental matrix. As this problem again requires finding the feasible solutions of
a linear programming (more precisely, MIL) problem, there is not too much hope to find an explicit
symbolic solution, but at the same time one can have numerical solution(s) using LP-solvers.

Example 13. Consider the polynomial equation

ẋ = k1x2y5z − k−1x3y4z ẏ = −k1x2y5z + k−1x3y4z ż = 0

with k1, k−1 > 0. The canonical representation of this equation is

2 X + 5 Y + Z
k1
−−−→ 3 X + 5 Y + Z, 3 X + 4 Y + Z

k−1
−−−→ 2 X + 4 Y + Z,

2 X + 5 Y + Z
k1
−−−→ 2 X + 4 Y + Z, 3 X + 4 Y + Z

k−1
−−−→ 3 X + 5 Y + Z.

A reversible realization is

2 X + 5 Y + Z
k1
−−−⇀↽−−−

k−1
3 X + 4 Y + Z,

which has N = 2 complexes, L = 1 linkage class and a S = 1-dimensional stoichiometric space, thus
it has a deficiency 0 = N − L − S .

Direct calculation shows that the positive stationary points satisfy

k−1x∗ = k1y∗ and z∗ = z0.

By the Deficiency Zero Theorem [3–5] for one linkage class [7, 45], we know that within every
stoichiometric compatibility class, there is exactly one stationary point, which is globally stable.

Example 14. The canonical realization of the differential equation

ẋ = −4x + 2y + 3z ẏ = x − 5y + z + 1 ż = 2x + 3y − 4z

is the irreversible, deficiency three reaction network consisting of a single linkage class of Figure 3.
However, it is "obviously" the induced kinetic differential equation of the zero deficiency weakly
reversible reaction network in Figure 4. (Here again, the unique positive stationary point can
explicitely be determined.)

Let us see a nonlinear example.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 862–892.



891

X + Y Y

X 0 Y + Z

X + Z Z

2

3

5
1

4

2

1

3

4 1

Figure 3. The canonical realization of Example 14.

X

Z 0

Y

1

1

2

3

1

1

2

3

Figure 4. A weakly reversible compartmental realization of Example 14.

Example 15. The canonical realization of the differential equation

ẋ = −12x3 + 6y2, ẏ = 2x3 − 4y2 + 2 (8.1)

is the irreversible, deficiency 3 reaction network consisting of two linkage classes

0
2
−−−→ Y 2 Y

4
−−−→ Y 2 Y

6
−−−→ X + 2 Y

3 X
2
−−−→ 3 X + Y 3 X

12
−−−→ 2 X.

However, it is (much less) "obviously" the induced kinetic differential equation of the weakly
reversible, zero deficiency reaction network in Figure 5 consisting of a single linkage class. To show

3X 2Y

0

1

3

2

1

Figure 5. A weakly reversible, zero deficiency reaction network inducing Example 15.

this in a formal way, we apply Theorem 3.
With the notations of Theorem 3 we have

Z =

(
−12 6

2 −4

)
,Y =

(
3 0
0 2

)
,b =

(
0
2

)
.
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As Y is invertible, v = Y−1b =

(
0
1

)
should hold. The unique solution of(

3 0
0 2

) (
−b21 − u1 b12

b21 −b12 − u2

)
=

(
−12 6

2 −4

)
under the conditions b12, b21, u1, u2 ≥ 0 is calculated with or without the direct use of Y−1. Thus, the
unique reaction network to induce Eq (8.1) (only having the complexes defined by the monomials on
the right hand side) is seen in Figure 5.

Example 16. Now we show a network with three complexes inducing a differential equation having
two terms on the right hand side. The induced kinetic differential equation of the network

α1X
k1
−−−⇀↽−−−

k−1
β1X

k2
−−−⇀↽−−−

k−2
β2X

with α1 < β1 < β2 and
k2(β2 − β1) = k−1(β1 − α1) (8.2)

only has two terms on its right hand side of its kinetic differential equation:

ẋ = k1xα1(β1 − α1) + k−2xβ2(β1 − β2).

No wonder, as the condition (8.2) implies that β1 is a convex combination of α1 and β2.

Mass conserving realizations

The reaction (2.1) is mass conserving, if there exists a vector % ∈ RM
>0 such that for all r = 1, 2, . . . ,R

M∑
m=1

α(m, r)%m =

M∑
m=1

β(m, r)%m (8.3)

holds. Note that to ensure mass conservation the existence of a positive vector in the left kernel of the
span of the range of the right hand side is necessary but not sufficient, [21, p. 89].

Consider again the differential equation

ẋ = ZxY. (8.4)

According to the definition (8.3) the existence of a vector % ∈ RM
>0 such that

%>Z = 0 ∈ RR (8.5)

is a necessary condition of mass conservation. However, it is only sufficient with some restrictions.

Theorem 10. If (8.4) has a realization such that the number of linkage classes is equal to the number
of ergodic components (terminal strong linkage classes) and there exists a vector % ∈ RM

>0 such that
(8.5) holds, then this realization is mass conserving.

It is shown in [51] that the same kinetic model may have both mass conserving and non-mass
conserving realizations.
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