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Abstract: Unmanned surface vehicles (USV) is the development trend of future ships, and it will be
widely used in various kinds of marine tasks. Obstacle avoidance is one key technology for autonomous
navigation of USV. Convolutional neural network based obstacle classification and detection method is
applied to USV visual images in environment sensing task. To solve the problem of low detection and
classification accuracy of obstacles in the visual inspection of USV, a bidirectional feature pyramid
networks is proposed combining hybrid network architecture of ResNet and improved DenseNet.
The proposed method can further enhance the detection and classification some types of obstacles by
using the underlying multi-layer detail features and high-level strong semantic features in the network
architecture. The detection and classification performance of the proposed method is evaluated on a
self built dataset. Ablation experiments and performance tests on open datasets are also employed. The
experimental results show that the proposed algorithm has best performance for obstacles detection,
and it is more suitable for autonomous navigation of USV.

Keywords: unmanned surface vehicle; convolutional neural network; obstacle detection; deep
learning; feature pyramid network

1. Introduction

In recent years, with the development of computer hardware and information technology,
unmanned surface vehicles (USV) has made rapid progress and development, and it is the
development trend of future ships. For example, USV can replace persons to perform a task that is
dangerous or requiring long-term attendance, thereby reducing casualties and costs. In the future,
USV will be widely used in marine tasks, such as environmental monitoring, search and rescue,
hydrological mapping, maritime supervision and so on [1, 2].

As a highly intelligent system, USV must have a stable and reliable autonomous navigation system
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to finish tasks. Obviously, only with the ability of environment perception, USV can deal with the
complex environment. The environmental perception of USV is to obtain environmental information
through multi-sensor fusion. The USV uses the highly effective computer vision method to simulate
the human vision intelligent behaviour, extract the information from the complex environment to
carry on the analysis and the processing, and enhances the environment perception ability. Obstacle
avoidance is one of the key technologies for USV. The research on the recognition and detection of
obstacle is mainly based on radar, infrared and visual images [3–5]. Compared with radar and infrared
method, visible light vision system can obtain obstacle target information, such as texture, shape and
so on, so as to improve the obstacle detection ability greatly. This paper studies the obstacle detection
and classification method based on visible light for USV.

The early existing methods of detecting marine targets are mostly based on simple image
processing and traditional machine learning [3–6]. These methods mainly use image pre-processing
to extract edge, shape, texture and other features for target detection, or select target sample on a
given image, then extract feature on the sample for training, and finally target detection by classifier.
The digital image processing method is simple in operation, but limited in function, easy to be
interfered by external factors, it is more suitable for the target detection of simple scene, and the
detection accuracy is low in the complex environment. The traditional target detection method based
on machine learning needs prior knowledge, manual extraction of features and other processes, its
procedures are cumbersome, real-time and not very suitable for complex and multi-target detection
tasks. Background subtraction methods were evaluated for object detection in a maritime environment
is discussed in [7]. An agglomerative clustering of temporally stable features is applied for object
detection in highly dynamic maritime environment in [8]. Adaptive hysteresis threshold method was
applied to saliency map for boat detection in [9]. A graphical model is developed for segmentation
obstacle in USV [10]. A stereo model instead of single view model is proposed for obstacles
extraction in [11]. A more comprehensive review of vision-based maritime object detection and
tracking can be found in reference [12].

In recent years, the target detection method based on convolutional neural network (CNN) has
emerged as a cutting-edge technology [13–17]. This kind of target detection algorithm based on deep
learning has strong intelligence ability and high detection efficiency [18]. For example, dual path
network (DPN) is developed to provide better performance for object detection in [19], a modified
VGG16 network architecture is proposed for visual object detection of marine surface objects in [20].
CNN was used for surface vehicle detection and tracking in [21], in which Faster R-CNN and YOLO
method were employed. Semantic segmentation networks including SegNet, ENet and ESPNet were
evaluated for maritime survellance in [22]. An improved Faster R-CNN method is developed for
maritime target detection, in which Resnet is used to extract feature and bacth normalization layer is
employed to optimize for Faster R-CNN [23]. An object detection method is proposed with fusing
region based recognition and regression based location is reported in [24]. Another maritime target
detection method based on hierarchical and multi-scale convolutional neural network is proposed
in [25]. It used multi-scale strategy to expand region proposal to multi convolutional layers of ResNet.
It also extracted target on the fourth layer instead of the last convolutional layer of R-CNN, and added
deconvolution operation with bilinear interpolation for small target perception.

Recently, a USV is developed by Harbin Institute of Technology and visual camera is installed on
USV for automatic obstacle avoidance [26]. Due to the obstacles are small in image and blurred in
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contour, it is the key to improve the accuracy of obstacles for USV. In this paper, the obstacle
detection algorithm based on convolutional neural network for USV is developed. A feature pyramid
method of hybrid network combining ResNet and DenseNet is proposed, which is more efficient for
the obstacle detection by using the underlying multi-detail features and high-level strong semantic
features in the network architecture. Experimental results show that this method has the highest
detection and classification performance than other CNN based methods and is more suitable for
USV.

2. Materials and methods

2.1. Convolutional neural network

As one of the most popular networks in the deep neural network, convolutional neural network is
widely used in many fields, especially in the field of image classification and detection [27–30]. The
traditional neural networks are all connected networks, the upper and lower neurons are fully
connected. With the increase of the network level, the number of parameters expands, and the
computational volume not only makes the network easy to fit, but also easily falls into the local
optimum. Convolution networks usually include input layer, convolution layer, pooling layer and
fully connected layer. The most important characteristics of convolution networks are weight sharing
and sparse connection, which can greatly reduce the number of parameters of training networks and
reduce the computational complexity.

Convolution kernel is the core of feature extraction in convolution network. The output pixels xl
j of

convolution layer are calculated as
xl

j = f (ul
j), (2.1)

ul
j =

∑
i∈M j

xl−1
i ∗W l

i j + bl
j, (2.2)

where f is the activation function, xl−1
i is an pixel in the upper feature image layer, W l

i j is the convolution
kernel, the symbol ∗ is the convolution operation, bl

j is the bias item, M j is the subset feature image
of upper layer, l is the layer number. This convolution process is to perform convolution operation of
convolution kernel to input layer image, and then the new feature image is obtained by data conversion
from activation function. And ReLU function as following is selected as the activation function

max(0, x) =

 0, i f x ≤ 0
x, i f x > 0

(2.3)

Pooling layer samples each input feature map through the following formula and outputs the
eigenvalue

xl
j = f (ul

j), (2.4)

ul
j = βl

jdown(xl−1
j ) + bl

j, (2.5)

where ul
j is the j-th channel activation of l-th down-sample layer, it is obtained from down-sampling

and the weighted calculation of the output feature map xl−1
j from the previous layer, β is the weights.
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The down symbol represents the down-sample function, it divides the input feature map into several
non-overlapping image blocks with size of n × n by sliding window, and then sums the pixels within
each image block to find the mean or maximum value, so that the output image is reduced to 1/n by
two dimensions.

The convolution kernel parameters can be trained through the following optimization loss function

C =
1

2m

∑
x
||y(x) − a(x)||2, (2.6)

where C is loss function, m is the sample number, x is samples, y is actual output, a is the network
output. The goal of network training learning is to minimize the objective function, which can be
accomplished by the reverse gradient descent method.

The most effective methods to improve convolutional neural networks are to improve the
performance of models by deepening the network hierarchy. However, when the network layer is
increased to a certain extent, the optimization function will fall into the local optimal, deviating from
the global optimal, and the deepening of the network accelerates the disappearance of the gradient. In
order to solve this problem, the deep residual network ResNet [31] and the densely connected
network DenseNet [32] are proposed to mitigate the effect of gradient disappearance. With the
deepening of the network, there are a lot of parameters to be trained in the network model. It is
difficult to learn better effect from the sample of small dataset, however, large-scale dataset can not
get more labeled samples by hand in some tasks. In this paper, transfer learning is used to improve the
learning efficiency for the problem of small sample data.

Transfer learning is to apply the knowledge learned in one mode to another related domain for
problem solving. The use of transfer learning in image detection means that the feature extraction part
of convolutional neural network is trained in another large-scale data set, the corresponding training
weight parameter is obtained, and then the training fine tuning of network model is carried out on the
basis of the weight of the training in the small scale dataset. Therefore, in order to improve the
learning efficiency of the deep neural network, we use the transfer learning in the application of the
deep learning neural network for the requirement of large data and the time consuming of training. In
this paper, ImageNet dataset is employed for transfer learning.

2.2. Faster R-CNN

Region convolutional neural network (R-CNN) uses deep learning for object recognition and
detection employing region search. Fatser R-CNN uses region proposal network (RPN) instead of
selective search to speed up the object recognition and detection [13]. RPN reduces the amount of
suggested box calculations by sharing the convolution layer and parallel computing. At the same
time, the target border is roughly corrected by the border regression in the RPN network, and then
corrected again in the final border return of the network, and the two fixes make the target more
accurate. The loss function of faster R-CNN is defined as

L ({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p∗i ) + λ
1

Nreg

∑
i

Lreg(ti, t∗i ) (2.7)

Lcls(pi, p∗i ) = − log
[
p∗i pi + (1 − p∗i )(1 − pi)

]
(2.8)

Lreg(ti, t∗i ) = R(ti − t∗i ) (2.9)
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R(x) =

 0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(2.10)

where i is the anchor index of batch, pi is the target prediction probability of the anchor i , if anchor
is positive, the true lable probability p∗i is 1, otherwise 0. ti is a vector which represents 4 parameters
coordinate, t∗i is the true boundary coordinate, Lcls(pi, p∗i ) is the classification loss, and Lreg(ti, t∗i ) is
regression loss. Ncls and Nreg are normalized, λ is balanced weights. The 4 coordinates are as follows

tx = (x − xa)/wa,

ty = (y − ya)/ha,

tw = log(w/wa),
th = log(h/ha).

(2.11)


t∗x = (x∗ − xa)/wa,

t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa),
t∗h = log(h∗/ha),

(2.12)

where the centre of the boundary is (x, y) , w and h is width and height. Faster R-CNN detection is
very accurate, but the detection speed is slow. In our USV application test, it can be performed about
5 frames per second, it cannot meet the real-time requirements of obstacle detection for USV.

2.3. Feature pyramid networks

Most deep learning recognition and detection algorithms use the top-level feature map for
prediction, but the actual bottom level feature map contains more detailed information and more
precise target location. Some other algorithms use multi-scale feature maps for prediction
respectively, but mainly use high-level feature map information, such as single shot multi-box
detector algorithm [33]. And network feature of feature pyramid networks (FPN) has the advantages
of independent forecasts on the feature map, it is due to the fact that different depth corresponds to the
different feature information [34].

The underlying high-resolution feature figure contains more details while the high-level
low-resolution feature figure contains more semantic information. By fusing feature information of
different layers, the efficiency of small target detection and recognition can be improved effectively. It
can be seen from the structure that the main network forms different scale and different layers of
pyramid feature map when propagating forward [34]. FPN propagates the multi-scale feature map
from the side to the back, and the feature map of each layer fuses with the lower layer by upper
sampling, and then the fused feature map of each layer is predicted separately. In the forward
propagation path of the main network, the scale of feature map decreases gradually, but the semantic
feature increases gradually. The reverse top-down path of FPN enhances the underlying semantic
features by fused with the underlying feature map through horizontal connection, and at the same
time makes better use of the underlying multi-details information. So CNN combined with FPN can
further improve the detection accuracy of small targets by using multi-scale feature information. And
in this paper, FPN is employed for obstacle detection and recogniton for USV.
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2.4. Proposed CNN method for obstacle recogniton of USV

2.4.1. Improved dense block

The gradient descent technique is employed in CNN. When input information and gradient
information are transferred layer by layer, the problem of gradient vanishment becomes more and
more serious as the number of layers increases. This will lead to the training failure of deep neural
network. The most effective way to avoid the disappearance of gradients is to establish direct
connections between layers that are not adjacent to each other. DenseNet adopts this approach and
achieves great success. In DenseNet, the input for each layer comes from the output of all the
preceding layers. Due to each layer is connected to input and loss, it can make gradient vanishment
weaken. DenseNet uses dense block to make the transmission of features and gradients more efficient,
this network architecture transmit and use features more effectively.

In DenseNet, the output of the l-th layer is

yl = Fl([x0, x1, ..., xl−1],Wl), (2.13)

where yl is the output of the l-th layer, Fl is a non-linear transformation function, xi is the input of the
l-th layer (i = 0, 1, ..., l − 1.), [x0, x1, ..., xl−1] refers to the concatenation of the features produced in
layer 0, 1, ..., l − 1, Wl is the parameters of Fl in the l-th layer.

In DenseNet, features of the previous layers are concatenated with the same weight, but not all these
previous features are useful. An improved architecture is proposed by adding the trainable weight
parameters to each skip connection [27, 28]. This is shown in Figure 1.

Figure 1. Improved dense block with trainable parameter.

The output of the l-th layer in this improved architecture is modified as

yl = Fl([x0kl,0, x1kl,1, ..., xl−1kl,l−1],Wl), (2.14)

where kl,0, kl,1, ..., kl,l−1 is the parameters which determinate weights of [x0, x1, ..., xl−1] when they
concatenate to the l−th layer. The improved dense block is efficient for image classification, and it is
employed in this paper for obstacle detection of USV.

2.4.2. Proposed network architecture

By analyzing the algorithm structure combining Faster R-CNN and FPN network, it can be seen
that the network uses the fusion of the feature map of each layer and that of the previous features layer
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to enhance the predicted feature information. To a certain extent improve the accuracy of the small
target detection and recognition, but it still has improvement space for network structure design. At
present, the improvement of deep learning target detection algorithm is mainly considered from two
aspects. On one hand, it can attain more detailed information by improving structure of the network.
On the other hand, it can assist recogntion of small target using the peripheral object information by
combining image context information and algorithm. Being combined with the context information,
just like human visual identification, when information such as appearance and color cannot be attained
due to far distance, small size and fuzzy contour, it can be conjectured through surrounding large
target object information. This idea is similar to the language prediction of recurrent neuron network
(RNN) used to establish data sequence and sequence data before and after have relatively stronger
correlation. Bidirectional RNN using both front and back information when makes sentence prediction.
The bidirectional RNN is shown in Figure 2.

Figure 2. Bidirectional RNN.

Therefore, the idea of improvement in this paper is getting inspiration from the structure of
bidirectional RNN, adding a bottom-up path to the top down path in the FPN structure, in order to
improve accuracy of marine obstacle detection and recogntion for USV. The structure design is shown
in Figure 3.

First, Resnet and DenseNet are used to construct a hybrid network combined with FPN, the output
feature map of each layer is improved according to bidirectional architecture. The proposed
bidirectional FPN architecture makes the features map of each layer not only be with the aid of the
upper high semantic features, but also use the lower level detail features to assist small target
classification and recognition of the current layer. Architecture in Figure 3 use the improved
DenseNet described before in the hybrid network. The output feature map of each layer in the
proposed bidirectional FPN is the sum of P2, P3, P4 and P5 of ResNet and DenseNet.

2.4.3. Network parameters

After reducing and enlarging, the shortest side of the input image is not less than 600 pixels and
the largest edge is not more than 1024 pixels, because size setting of image clipping does affect the
result of detection. Parameter limitation of 600 and 1024 has a relatively good effect. In RPN
network, non-maximum suppression (NMS) is used for border selection. The judgment threshold of
RPN target positive sample is set to 0.7 and negative sample is 0.3. In RPN, the proportion of border
of foreground target is set to 0.5. That is, the ratio of positive and negative samples of anchor is
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Figure 3. Proposed RFPN with hybrid network.

maintained at 1:1 after selection. There are 256 anchors that are selected here, with 128 positive
samples and 128 negative samples.

The training process uses subsection training method. Namely in every 10,000 times iteration
training, every 1,000 times save weight value once time. The maximum primary weight of mAP
(mean average precision) in the test results is found as the initial weight of the new training and repeat
the replacement of the optimal initial weight. Such segmented training can prevent network
over-fitting, speed up network convergence, improve the network performance of training quickly.
Replace the weight several times until the detection accuracy is no longer improved. Then the final
optimal training weight can be obtained.

3. Results and discussion

3.1. Dataset and methods

To estimate the proposed recognition method, some other methods are employed for test. Standard
Faster R-CNN [13] with VGG16 as backbone and Mask R-CNN [15], using ResNet101 as backbone
with FPN are employed to compare with the method proposed in this paper. Three state-of-the-art
object recognition methods reported in references are selected for comparison, they are improved Faster
R-CNN [23], fusion based method which fuses region based recognition and regression based location
[24], and CNN method based on multi-scale [25]. So five methods are used to compare with our
proposed method, they are Faster R-CNN, Mask R-CNN, improved Faster R-CNN, fusion, and multi-
scale method.

We collect 2,800 images using our own USV. As our images are collected by USV on a lake, the
content of the images are not rich enough. Some sample images are illustrated in Figure 4. We also
collect 9,300 marine images through the network. We select 8,400 images as training set, 2,100 as
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validation set and 1,600 as test set. As the purpose of our obstacle detection method is to support the
autonomous navigation of USV for the obstacle avoidance, we divide the target into four categories.
These four categories are aircraft, bird, ship and people. Then the prepared dataset is labeled with the
border and category name of the target object in each image through the image annotation software
LabelImg, and the labeling information is saved and transformed into the text format. Python program
is written to read text files and convert them into XML files in PASCAL VOC format. Finally, all the
labeled dataset is named USVD2018, and it is employed in our test experiments. Some sample images
in USVD2018 are illustrated in Figure 5.

Figure 4. USV captured image samples.

Figure 5. Some image samples in USVD2018 dataset.

3.2. Algorithm performance evaluation

According to whether the classification results are correct, TP, TN, FP, and FN can be determined.
TP means that the classification result is true and positive. Similarly, TN means true negative, and so
on.

Recall, precision, accuracy, specificity and F1-score are employed as classification performance
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indicators to evaluate different methods. They are defined as follows.

Recall =
T P

T P + FN
. (3.1)

Precision =
T P

T P + FP
. (3.2)

Accuracy =
T P + T N

T P + T N + FP + FN
. (3.3)

F1-score =
2T P

2T P + FP + FN
. (3.4)

Recall measures the proportion of actual positives that are correctly identified as such. Accuracy
is defined as the proportion of all samples that have been successfully classified. Precision is the
ratio of samples correctly classified as positive to all the samples which are classified. F1-score is
the harmonic mean of precision and sensitivity. When the above performance index is greater, the
classification performance is better.

3.3. Results and discussion

3.3.1. Experiments on USVD2018 dataset

Our proposed method and other methods are tested in our experiments using USVD2018 data set.
The performance indicators of each class are listed in Tables 1– 4. These data are also plotted in Figure
6. It is clear that our proposed method obtains the best values in all the evaluation indicators of four
categories. It can be seen from Tables 1 to 4 that the detection accuracy of aircraft is the highest in the
4 categories, since the large number of aircraft samples are used in data training. Correspondingly, the
detection rate of other categories is relatively low. Thus, it can be seen that the number and quality of
samples are the key factors in the training and learning process. It also shows that the performance of
our proposed method is the best, even if the number of samples varies.

Table 1. Aircraft class performance comparison.

Method Faster RCNN Mask RCNN Improved Faster RCNN Fusion Multi-Scale Proposed
Recall 0.8029 0.8743 0.8257 0.8886 0.8629 0.9257
Precision 0.7337 0.7927 0.7707 0.8141 0.8436 0.8594
Accuracy 0.8931 0.9225 0.9081 0.9313 0.9350 0.9506
F1 Score 0.7667 0.8315 0.7972 0.8497 0.8531 0.8913

Table 2. Bird class performance comparison.

Method Faster RCNN Mask RCNN Improved Faster RCNN Fusion Multi-Scale Proposed
Recall 0.7629 0.8114 0.7886 0.8229 0.8514 0.8629
Precision 0.7216 0.8068 0.7340 0.8205 0.8076 0.8603
Accuracy 0.8838 0.9163 0.8913 0.9219 0.9231 0.9393
F1 Score 0.7417 0.8091 0.7603 0.8217 0.8289 0.8616
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Table 3. Ship class performance comparison.

Method Faster RCNN Mask RCNN Improved Faster RCNN Fusion Multi-Scale Proposed
Recall 0.7620 0.8220 0.7840 0.8440 0.8660 0.8920
Precision 0.8355 0.8726 0.8340 0.8884 0.8819 0.9065
Accuracy 0.8788 0.9069 0.8838 0.9181 0.9219 0.9375
F1 Score 0.7970 0.8466 0.8082 0.8656 0.8739 0.8992

Table 4. People class performance comparison.

Method Faster RCNN Mask RCNN Improved Faster RCNN Fusion Multi-Scale Proposed
Recall 0.7800 0.8150 0.7575 0.8300 0.7975 0.8400
Precision 0.7980 0.8338 0.7995 0.8469 0.8351 0.8842
Accuracy 0.8956 0.9131 0.8919 0.9200 0.9100 0.9325
F1 Score 0.7889 0.8243 0.7779 0.8384 0.8159 0.8615

Figure 6. Performance comparison on USVD2018 dataset.

Figure 7 shows ship target detection samples. In the image on the left, there are four boats in
the relatively blurry background. Other methods do not correctly detect the smallest boat, while the
proposed method in this paper correctly detects all the boats. Similarly, in the image on the right,
other methods miss two small boats in a clear background, as well as one not obvious hinder ship in a
complex background. However, all the boats are correctly recognized by our proposed method.
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Figure 7. Ship detection result on USVD2018 dataset.

3.3.2. Ablation experiments

In order to verify the effectiveness of each part of the proposed method in this paper, ablation
experiments are used in this study.

Firstly, to verify the effectiveness of the proposed biderectional RNN network architecture,
experiments are performed without improved dense block. This experiment is performed with the
same condition as in above section. mAP (Mean Average Precison) is used to evaluate the obstacle
detection performance, and IOU = 0.5 is set as threshold. The results are listed in Table 5. It reveals
that the proposed method without improved dense block still has the best performance with the
highest mAP value.

Table 5. Performance comparison of the proposed method without improved dense block.

Faster Mask Improved Proposed without
Method RCNN RCNN Faster RCNN Fusion Multi-Scale improved dense block
mAP 0.8636 0.8926 0.8780 0.8948 0.9040 0.9380

To verify the effectiveness of the proposed improved dense block, the improved dense block is
applied to Faster R-CNN and Mask R-CNN respectively. The backbone network of these methods are
DenseNet101. Whether improved dense block is used in the proposed method is also shown in Table
6. When the improved dense block is applied to these methods, all the performances is improved. It
can be seen that the proposed improved dense block has the ability to improve the obstacle detection
performance.
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Table 6. Performance comparison of the improved dense block.

Method Without improved dense block With improved dense block
Faster RCNN 0.8761 0.8869
Mask RCNN 0.9002 0.9248
Proposed 0.9380 0.9463

3.3.3. Experiments on COCO dataset

In order to further compare the accuracy of different methods, they are also trained and tested on
a large-scale open source data set COCO. After 100 cycles and 1000 iterations per cycle, the test
results on COCO data are shown in Table 7. The threshold setting of IOU = 0.5 is selected by mAP
corresponding to different methods for comparison.

The experimental results show that the proposed algorithm performs better than other methods in
COCO data sets with 80 categories. COCO data sets have many kinds of objects to be recognized. The
average accuracy of 80 different types is calculated. The overall mAP is low when the training time
is limited, but the actual detection effect of this method is very good. Some test results are shown in
Figure 8. It can be seen that the detection effect of this method is better.

Table 7. Performance comparison of different methods on dataset COCO.

Method Faster RCNN Mask RCNN Improved Faster RCNN Fusion Multi-Scale Proposed
mAP 0.3742 0.4169 0.3804 0.4248 0.3740 0.4452

Figure 8. Detection results on COCO dataset.
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4. Conclusion

The obstacle detection method based on CNN for autonomous navigation of USV is discussed.
A feature pyramid method of bidirectional feature pyramid networks is developed combining hybrid
network architecture of ResNet and improved DenseNet. The results show that the proposed method
has the highest performance for obstacle detection and is more suitable for the application of USV.

This paper mainly discusses the detection of water surface obstacles for SUV applications. The
number of categories is very limited. The main problem of this method is that it can not detect untrained
categories. Therefore, obstacle classification of training is very important for this method. When more
classification types are trained, more types of obstacle can be detected and recognized. And more
samples are required for training. In the future, we will collect more samples and carry out more
detection research.
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2. D. NaÄŚ, N. MiÅąkoviÄĞ and F. MandiÄĞ, Navigation, guidance and control of an overactuated
marine surface vehicle, Annu. Rev. Control, 40 (2015), 172–181.

3. M. Schuster, M. Blaich and J. Reuter, Collision avoidance for vessels using a low-cost radar sensor
IFAC Proc. Vol., 2014 (2014), 9673–9678.

4. S. Kim and J. Lee, Small infrared target detection by region-adaptive clutter rejection for sea-based
infrared search and track, Sensors, 14 (2014), 13210–13242.

5. H. Wang, X. Mou, W. Mou, et al., Vision based long range object detection and tracking for
unmanned surface vehicle, 2015 IEEE 7th International Conference on Cybernetics and Intelligent
Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2015,
101–105. Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/7274604/.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 845–861



859

6. Y. Liu, L. Ma, W. Xie, et al., Parallel GPU computation model for block matching of speckle
tracing, J. Nonlinear Convex Anal., 20 (2019), 827–833.

7. D. Prasad, C. Prasath, D. Rajan, et al., Object detection in a maritime environment: Performance
evaluation of background subtraction methods, IEEE Trans. Intell. Transp. Syst., 20 (2019), 1787–
1802.

8. C. Osborne, T. Cane, T. Nawaz, et al., Temporally stable feature clusters for maritime
object tracking in visible and thermal imagery, 2015 12th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), 2015, 1–6. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/7301769.

9. T. Cane and J. Ferryman, Saliency-based detection for maritime object
tracking, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2016, 18–25. Available from: https://www.cv-
foundation.org/openaccess/content_cvpr_2016_workshops/w20/html/Cane_Saliency-
Based_Detection_for_CVPR_2016_paper.html.

10. M. Kristan, V. Kenk, S. KovaÄŊiÄŊ, et al., Fast image-based obstacle detection from unmanned
surface vehicles, IEEE Trans. Cybern., 46 (2016), 641–654.

11. B. Bovcon and M. Kristan, Obstacle detection for USVs by joint stereo-
view semantic segmentation, 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, 5807-5812. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/8594238.

12. D. K. Prasad, D. Rajan, L. Rachmawati, et al., Video processing from electro-optical sensors for
object detection and tracking in a maritime environment: A survey, IEEE Trans. Intell. Transp.
Syst., 18 (2017), 1993–2016.

13. S. Ren, K. He, R. Girshick, et al., Faster R-CNN: Towards real-time object detection with
region proposal networks, Advances in neural information processing systems, 2017, 1137–1149.
Available from: http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-
with-region-proposal-networks.

14. J. Redmon and F. Ali, YOLO9000: Better, faster, stronger, The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, 6517–6525. Available from: http://openaccess.thecvf.com/content_cvpr
_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_ 2017_paper.html.

15. K. He, G. Gkioxari, P. Dollar, et al., Mask R-CNN, The IEEE
International Conference on Computer Vision (ICCV), 2017, 2961–2969.
Available from: http://openaccess.thecvf.com/content_iccv _2017/html/He_Mask_R-
CNN_ICCV_2017_paper.html.

16. S. Pang, J. Coz, Z. Yu, et al., Deep learning to frame objects for visual target tracking, Eng. Appl.
Artif. Intell., 65 (2017), 406–420.

17. Y. Long, Y. Gong, Z. Xiao, et al., Accurate object localization in remote sensing images based on
convolutional neural networks, IEEE Trans. Geosci. Remote Sens., 55 (2017), 2486–2498.

18. Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, 512 (2015), 336–444.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 845–861



860

19. Y. Chen, J. Li and H. Xiao, et al, Dual path network, Advanced in Neural Information Processing
Systems, 2017, 4468–4476. Available from: http://papers.nips.cc/paper/7033-dual-path-networks.

20. A. Kumar and E. Sherly, A convolutional neural network for visual object recognition in marine
sector, 2017 2nd International Conference for Convergence in Technology (I2CT), 2017, 304–307.
Available from: https://ieeexplore_ieee.xilesou.top/abstract/document/8226141.

21. J. Yang, Y. Li, Q. Zhang, et al., Surface vehicle detection and tracking with
deep learning and appearance feature, 2019 5th International Conference on
Control, Automation and Robotics (ICCAR), 2019, 276–280. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/8813345.

22. T. Cane and J. Ferryman, Evaluating deep semantic segmentation networks for
object detection in maritime surveillance, 2018 15th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), 2018, 1–6. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/8639077.

23. H. Fu, Y. Li, Y. Wang, et al., Maritime target detection method based on deep learning, 2018 IEEE
International Conference on Mechatronics and Automation (ICMA), 2018, 878–883. Available
from: https://ieeexplore_ieee.xilesou.top/abstract/document/8484727.

24. L. Qu, S. Wang, N. Yang, et al., Improving object detection accuracy with
region and regression based deep CNNs, 2017 International Conference on
Security, Pattern Analysis, and Cybernetics (SPAC), 2017, 318–323. Available from:
https://ieeexplore_ieee.xilesou.top/abstract/document/8304297.

25. W. Chen, J. Li, J. Xing, et al., A maritime targets detection method based on hierarchical
and multi-scale deep convolutional neural network, Tenth International Conference on
Digital Image Processing (ICDIP 2018). International Society for Optics and Photonics,
2018, 1080616. Available from: https://www.spiedigitallibrary.org/conference-proceedings-
of-spie/10806/1080616/A-maritime-targets-detection-method-based-on-hierarchical-and-
multi/10.1117/12.2503030.short?SSO=1.

26. S. Jia, L. Ma and S. Zhang, Big data prototype practice for unmanned surface vehicle, ICCIP ’18
Proceedings of the 4th International Conference on Communication and Information Processing,
2018, 43–47. Available from: https://dl_acm.xilesou.top/citation.cfm?id=3290466.

27. L. Y. Ma, C. K. Ma, Y. J. Liu, et al., Thyroid diagnosis from SPECT images using convolutional
neural network with optimization, Comput. Intell. Neurosci., 2019 (2019), 6212759.

28. L. Y. Ma, W. Xie and Y. Zhang, Blister defect detection based on convolutional neural network
for polymer lithium-ion battery, Appl. Sci., 9 (2019), 1085.

29. S. Pouyanfar, S. Sadiq, Y. Yan, et al., A survey on deep learning: Algorithms, techniques, and
applications, ACM Comput. Surv., 51 (2019), 92.

30. W. Rawat and Z. Wang, Deep convolutional neural networks for image classification: A
comprehensive review, Neural Comput., 29 (2017), 2352–2449.

31. K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition,
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, 770–778. Available from: http://openaccess.thecvf.com/content_cvpr
_2016/html/He_Deep_Residual_Learning_CVPR _2016_paper.html.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 845–861



861

32. G. Huang, Z. Liu, L. Van Der Maater, et al., Densely connected convolutional
networks, The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, 4700–4708. Available from: http://openaccess.thecvf.com/content_cvpr
_2017/html/Huang_Densely_Connected_Convolutional_CVPR _2017_paper.html.

33. W. Liu, D. Auguelov, D. Erhan, et al., SSD: Single shot multibox detector,
European Conference on Computer Vision, 2016, 21–37. Available from:
https://link_springer.xilesou.top/chapter/10.1007/978-3-319-46448-0_2.

34. T-Y. Lin, P. Dollar, R. Girshick, et al, Feature pyramid network for object
detection, The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, 2117–2125. Available from: http://openaccess.thecvf.com/content_cvpr
_2017/html/Lin_Feature_Pyramid_Networks_CVPR _2017_paper.html.

c© 2020 the authors, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 1, 845–861

http://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and methods
	Convolutional neural network
	Faster R-CNN
	Feature pyramid networks
	Proposed CNN method for obstacle recogniton of USV
	Improved dense block
	Proposed network architecture
	Network parameters


	Results and discussion
	Dataset and methods
	Algorithm performance evaluation
	Results and discussion
	Experiments on USVD2018 dataset
	Ablation experiments
	Experiments on COCO dataset


	Conclusion

