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Abstract: Objective: Lung cancer is a deadly disease with the highest 5-year survival rate. Lung 

adenocarcinoma is the main subtype of non-small cell lung cancer (NSCLC). Correct staging is 

critical as the basis of treatment. So, the identification of genes associated with pathologic stages of 

lung adenocarcinoma is helpful in understanding the pathological mechanism and designing targeted 

therapeutic drugs. Methods: Random forest was suitable for high-dimensional data to identify 

variables associated with the outcome. The variable importance-based selection method was used to 

rank the candidate genes associated with pathologic stages of lung adenocarcinoma. Univariate 

regression was used to analyze the relationship between gene expression and prognosis. The 

protein-protein interaction network was used to show the interactions among the identified genes. 

The identified genes functional enrichment analysis was performed by GSEA software. Results: 

Twelve genes significantly associated with pathologic stages of lung adenocarcinoma were identified 

by random forest analysis. Eight of these genes were found to play roles in survival of patients with 

lung adenocarcinoma. Among the 12 genes, 4 genes such as CENPH, SRSF5, PITX2 and NSG1 

interacted with each other. And these genes were mainly enriched in p53 signaling pathway, cell 

cycle signaling pathway, JAK STAT signaling pathway and DNA replication signaling pathway. 

Conclusion: The identified genes may drive the changes among pathologic stages of lung 

adenocarcinoma and will be helpful in understanding the molecular changes underlying the 

pathologic stages. 
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1. Introduction  

Lung cancer is a deadly disease with a 5-year survival rate of less than 15% and has two main 

subtypes which are known as non-small-cell lung carcinoma (NSCLC) and small cell lung carcinoma 

(SCLC) [1,2]. Lung adenocarcinoma is the main subtype of NSCLC. Previous studies have shown 

that lung adenocarcinoma patients have a shorter survival time than patients with another subtype of 

NSCLC [3]. 

Cancer staging is the process of determining the extent to which a cancer has developed by 

growing and spreading and provides a standardized framework to define the spread of a tumor [4]. 

Correct staging is critical as the basis of treatment (particularly the need for pre-operative therapy 

and/or for adjuvant treatment, the extent of surgery). Thus, incorrect staging would lead to improper 

treatment. Previous studies have suggested that lung cancer stages are associated with the prognosis 

of patients [5,6]. Patients in the early stages of lung cancer tend to live longer than those in later 

stages. Thus, it is important to identify genes associated with cancer staging which would be helpful 

in understanding the pathological mechanism and designing targeted therapeutic drugs. 

Many gene selection methods are based on univariate rankings of gene relevance and arbitrary 

thresholds to select relevant genes. Most of these approaches can only be applied to two-class 

problems [7]. So, these methods do not suit to identify genes associated with pathologic stages of 

lung adenocarcinoma. Some methods can only distinguish genes with a linear correlation between 

expression levels and the outcome. However, the relationship between gene expression and outcome 

may be non-linear. Random forest is a machine learning method suited for classification in gene 

expression data [7,8]. It can be used when the number of observations is much smaller than the 

number of variables even when many of predictive variables are noise [7] and can be applied to 

problems containing more than two classes. And the returned variable importance is helpful in 

selecting the relevant genes which may be useful to predict the outcome. 

In this study, we used the significance threshold of 2.52 × 10
-5

 (0.05 19879, Bonferroni 

correction) in random forest to identify genes that may lead to pathological staging of lung 

adenocarcinoma., and the molecular mechanism related to pathological staging was further explored 

by PPI analysis and GSEA enrichment analysis. 

2. Materials and method 

2.1. Gene expression dataset 

The gene expression data of 572 patients and the corresponding clinical follow-up information 

were downloaded from the Cancer Genome Atlas (TCGA) databases. After removing those without 

pathologic stages information, totally 503 patients were included in this analysis. The RNA 

sequencing data of all patients’ tumor tissues were standardized and then normalized within and 

among the left samples. We defined that a gene was abundantly expressed when its expression level 

was above 0 and appeared in at least 50% of the total samples. 

2.2. Random forest 

Random forest is a machine learning approach used for classification and regression developed 



739 

Mathematical Biosciences and Engineering  Volume 17, Issue 1, 737–746. 

by Leo Breiman [9]. Based on a bootstrap sample of the data, each of the classification trees was 

split using a random subset of the candidate variables. To select the variables identified by random 

forest method, we used a computationally fast variable importance test method by conducting with 

standard procedure in R packages vita [10]. The previous study suggests that this method is a 

powerful approach suitable for high-dimensional data (e.g. gene expression data). Especially, when 

there are no predictor variables associated with the trait under a null model, the method vita is the 

most robust [10,11]. Unlike other permutation-based methods [12], vita approach only uses the 

existed data to estimate the null distribution of the variable importance [10]. In summary, the vita 

approach divides the whole data into two equally sized subsets, and two random forests are trained 

by using either of the two subsets. The variable importance is then calculated based on the other 

subset [10]. The variable importance showed the importance of each gene expression for 

classification into 4 stages. Finally, p values are calculated based on the distribution of variable 

importance [10]. 

2.3. Protein-protein interaction (PPI) network 

To evaluate the interaction between identified gens, we extracted a small PPI network from the 

whole PPI network which was downloaded from cisPath database with the following link 

http://www.isb.pku.edu.cn/cispath/ [13]. The cisPath database contains PPI data from UniProt [14], 

PINA [15], iRefIndex [16] and STRING database [17]. The method SubNet was used to extract the 

small PPI network [18]. The subnetwork was then visualized the networks by Cytoscape [19]. 

2.4. Single gene functional enrichment analysis by GSEA 

We performed Gene Set Enrichment Analysis (GSEA) with the software provided by the 

Massachusetts Institute of Technology [PMID：16199517]. GSEA is a computational method that 

determines whether a priori defined set of genes shows statistically significant, concordant 

differences between two biological states. In our study, the identified genes were analyzed by 

GSEA single gene functional enrichment analysis, and the enrichment results were shown by 

bubble diagram. 

3. Results 

Totally 503 patients were included in this analysis, after removing those without pathologic 

stages information. Details of clinical information were shown in Table 1. After removing those 

genes with low expression, totally 19,879 genes were contained in the analysis. So, the significant 

threshold of variable importance test was set to 2.52 × 10
-5

 (0.05/19879, Bonferroni correction). 

Based on this criterion, we identified 12 genes significantly associated with pathologic stages of lung 

adenocarcinoma. These genes with p value from the variable importance test were summarized in 

Table 2. 

With the 12 genes, we constructed a pathologic stage classifier which could accurately predict 

the multi-stages of each patient with the area under the curve (AUC) of 0.899 using the random 

forest method. The receiver operating characteristic (ROC) curve for pathologic stage I was shown in 

Figure 1. 
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Table 1. Clinical information of 503 patients. 

Characteristics Summary 

Lung adenocarcinoma patients N = 503 

Age 66.0 9.5 years 

Gender 45.6% Male; 54.4% Female 

Stage  

Stage Ⅰ 268 (53.3%) 

Stage Ⅱ 121 (24.1%) 

Stage Ⅲ 83 (16.5%) 

Stage Ⅳ 26 (5.2%) 

Table 2. Genes significantly associated with pathologic stages of lung adenocarcinoma. 

Gene names Variable importance p value 

ACSS1 2.12 × 10
-4

 2.16 × 10
-16

 

LOC101928882 1.87 × 10
-4

 2.19 × 10
-16

 

ZNF546 1.42 × 10
-4

 2.21 × 10
-16

 

KCNC1 1.39× 10
-4

 2.21× 10
-16

 

NSG1 1.38 × 10
-4

 2.21 × 10
-16

 

PITX2 1.25 × 10
-4

 2.22 × 10
-16

 

CENPH 1.25 × 10
-4

 2.22 × 10
-16

 

BCAT2 1.21 × 10
-4

 2.23× 10
-16

 

MEI1 1.20 × 10
-4

 2.23 × 10
-16

 

SRSF5 1.20 × 10
-4

 2.23 × 10
-16

 

ZNF432 1.20 × 10
-4

 2.23 × 10
-16

 

CNTN3 1.18 × 10
-4

 2.23 × 10
-16

 

Then, we found that ACSS1 (p < 0.001), CNTN3 (p = 0.009), BCAT2 (p = 0.032), MEI1 (p = 

0.03), NSG1 (p = 0.042), LOC101928882 (p < 0.001), ZNF546 (p = 0.037) and CENPH (p < 0.001) 

were associated with prognosis by univariate regression analysis of 12 genes (Figure 2). Also, we 

found that ACSS1, CENPH, CNTN3, KCNC1, MEI1, NSG1, SRSF5, ZNF432 and ZNF546 were 

significantly differentially expressed in different pathological stages (Figure 3). The gene expression 

of MEI1 and ACSS1 decreased with the occurrence and development of lung adenocarcinoma, while 

the gene expression of PITX2 and CENPH increased with the occurrence and development of lung 

adenocarcinoma. 

We used SubNet to extract the small network from the whole PPI network. The result was 

displayed graphically in Figure 4. The genes obtained from PPI network were intersected with 12 

genes screened by Random forest, and the four genes in the intersection were analyzed by GSEA 

single gene functional enrichment analysis, and the enrichment results were shown by bubble 

diagram as shown in Figure 5. Single gene functional enrichment analysis showed that CENPH and 

SRSF5 were mainly enriched on P53 signaling pathway and cell cycle signaling pathway, PITX2 was 
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mainly enriched on toll like receptor signaling pathway and JAK/STAT signaling pathway, and 

NSG1 was mainly enriched on JAK/STAT signaling pathway，DNA replication and cell cycle 

signaling pathway. 

 

Figure 1. The ROC curve for pathologic stageⅠ. 

 

Figure 2. Regression analysis of univariate variables of 12 genes. 
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Figure 3. The 9 genes express differentially in different pathological stages. A: MEI1, B: 

CSS1, C: CENPH, D: NSG1, E: ZNF432, F: ZNF546, G: CNTN3, H: SRSF5, I: KNC1. 
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Figure 4. The extracted PPI network. Genes in blue were identified by random forest approach. 

 

Figure 5. Gene function enrichment analysis. A: CENPH, B: SRSF5, C: PITX2, D: NSG1. 
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4. Discussion 

In this study, we identified 12 genes significantly associated with pathologic stages of lung 

adenocarcinoma based on the random forest method. Many of them were found to play an import 

role in the tumor process, such as growth and metastasis. 

Some of these genes were found to be differently expressed in tumor tissue compared with 

normal tissue. KCNC1 was found to be highly expressed in lung tumor tissue compared with normal 

tissues [20]. We found that the expression of KCNC1 was different in different cancer stages. NSG1 

was identified as a biomarker for lung cancer early diagnosis [21]. We compared the expression of 

NSG1 in early stage (stage Ⅰ) and later stages and found that the expression of NSG1 was 

significantly higher in early stage than later stages (p value = 0.00023). This also suggested that 

NSG1 was associated with different cancer stages. On the other hand, single gene enrichment 

analysis of NSG1 was carried out by GSEA, and it was found that NSG1 was mainly enriched on 

JAK/STAT signaling pathway，DNA replication and cell cycle signaling pathway. It suggested that 

NSG1 may regulate the occurrence and development of lung adenocarcinoma through the 

above signaling pathways. In both head and neck region of squamous cell carcinoma and lung 

cancer patients, the methylation status of PITX2 was significantly associated with the survival 

status [22–24]. Since lung cancer stages are associated with the prognosis of patients [5,6], it is 

consistent with our results. CENPH protein, together with CENPA protein and CENPC protein, is a 

fundamental component of the active kinetochore complex [25,26]. The expression of CENPH was 

much higher in NSCLC cell lines and tumor tissues. Patients with a higher expression level of 

CENPH tended to have worse overall survival compared with patients with lower expression levels 

of CENPH [27], and our study found that the gene expression level of CENPH increased with the 

occurrence and development of lung cancer. The expression of SRSF5 was found to be highly 

expressed in tumor tissue. Knockdown of SRSF5 gene expression significantly reduced NSCLC cell 

proliferation [28]. In addition, using GSEA enrichment analysis, we found that SRSF5 may regulate 

the proliferation of lung adenocarcinoma cells through p53 signaling pathway and cell cycle 

signaling pathway. 

Three of these genes were found to play important roles in the tumor process. With the help of 

acetate, glutamine supplementation is able to prevent loss of cell viability and support cell survival [29]. 

ACSS1, one type of acetyl-CoA synthetases, converted acetate to acetyl-CoA [30]. ACSS1 

incorporates fatty acids into membranes to store energy and paly roles in metabolism [31]. However, 

short chain fatty acids cannot prevent the loss of cell viability from glucose deprivation [29]. In vivo 

studies also suggested that ACSS1 was a key factor in tumor growth in mice [29]. Our study 

suggested that ACSS1 was associated with different cancer stages, and the gene expression level of 

ACSS1 decreased gradually with the occurrence and development of lung adenocarcinoma. 

Depletion of BCAT2 was found to be able to impair the ability of lung tumor cell line to form a 

subcutaneous and orthotopic tumor in recipient mice [32]. 

5. Conclusion 

In conclusion, we identified 12 genes associated with pathologic stages of lung adenocarcinoma 

by using random forest approach. Most of these genes were found to be important for cell 

proliferation or survival by previous studies. The left genes were warranted to find their significance. 
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These genes will be helpful in understanding molecular changes underlying the pathologic stages. 
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