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Abstract: This paper studies an (n +4)-dimensional nonlinear viral infection model that characterizes
the interactions of the viruses, susceptible host cells, n-stages of infected cells, CTL cells and B
cells. Both viral and cellular infections have been incorporated into the model. The well-posedness
of the model is justified. The model admits five equilibria which are determined by five threshold
parameters. The global stability of each equilibrium is proven by utilizing Lyapunov function and
LaSalle’s invariance principle. The theoretical results are illustrated by numerical simulations.
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1. Introduction

In the last decades, many researchers have formulated various mathematical models to characterize
the human immune system reaction on invading viruses [1-6]. The two mean immune system reactions
are the cell-mediated immunity and the humoral immunity. The cell-mediated immunity is based on
Cytotoxic T Lymphocytes (CTLs) which kill the infected cells, while the humoral immunity is based
on antibodies which are produced by B cells and neutralize the free viruses from the plasma. Some
existing models describe the virus dynamics under the effect of cell-mediated immune response (see
e.g., [7-10], see also [11] and the references therein) or humoral immune response [12—17]. Wodarz
[18] has formulated a virus dynamics model with five compartments; susceptible cells (S), infected
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cells (1), virus particles (V), B cells (A) and CTL cells (B) as:

S (O =p—aS®-nSOV@),

I(1) = SV (@) = bI(t) — uC(OI(2),

V(i) = dI(t) — yA()V () — eV(5), 1.1)
A(r) = TA(D)V (1) — ZA®),

C(t) = cC)I, (1) — nC(?).

The model has been extended in [19-23], but with virus-to-cell transmission. Cell-to-cell infection
plays an important role in increasing the number of infected cells. Mathematical models of virus
dynamics with both virus-to-cell and cell-to-cell transmissions have been studied in several works (see
e.g., [24-34]). In very recent works [35], both CTL cells and B cells have been incorporated into the
viral infection models with both cell-to-cell and virus-to-cell transmissions. However, in [35], only
one class of infected cells (actively infected cells) is considered. It has been reported in [36] and [37]
that the time from the contact of viruses and susceptible cells to the death of the cells can be modeled
by dividing the process into n short stages I; — I, — .... — [,. In [38], virus dynamics models with
multi-staged infected cells, humoral immunity and with only virus-to-cell infection have been studied.

The aim of the present paper is to formulate a virus dynamics model by incorporating (i) multi-
staged infected cells, (i1) both cell-mediated and humoral immune responses (ii) both cell-to-cell and
virus-to-cell infections as:

S =p—aS@) —mS OV (@) — mS (1,1,

L) =mSOV(®) +mS O1(1) — bil (1),

I'k(t) = dk—llk—l(t) — bklk(l), k = 2, e 1 — 1,

(1) = dyi Ly s (1) = Dl (2) = pC(DOL (1), (1.2)
V(@) = d,1,(1) — yA@D) V() — eV(2),

A1) = TADV (1) — LA,

C(t) = cC(OI, (1) — nC(1),

where, I, k = 1,2,...,n represents the concentration of the i-th stage of infected cells. The model
assumes that the susceptible cells are infected by virus particles at rate 77,5 (#)V(¢) and by infected cells
at rate 17,8 (1) 1,(¢).

2. Well-Posedness of solutions

LetQ; >0, j=1,2,..,n+ 3 and define

O ={(S.11,.. [, VA C) R 1 0<S. [ <QLOS L Q0L CLQpy,
0<V<Qu0<A<Qus, k=2,...,n}.

Proposition 1. The compact set © is positively invariant for system (1.2).
Proof. We have

Sls=o=p>0, Ijilco=mSV+mSL, >0 ¥YS,V,I,>0,
I lp=o=di 11 20, VI 20,k=2,..,n,
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Viveo=dul, 20, VI, >0, Aly0=0, Clc=0.

This insures that, S(¢) > 0, I,(t) >0,k =1, ...,n, V(t) > 0, A(t) > 0, and C(¢) > O for all r > 0.
To show the boundedness of S (7) and I;(¢) we let ¥(¢) = S (¢) + I,(¢), then

‘Plzp—ozS—bIIlSp—qbl(S +11):P—¢1‘P1’

where ¢; = min{a, b,}. It follows that,

- 4 p
Yi()<e ¢"(‘I’ 0) — —)+ —.
] ] &) &

Hence, 0 < () < Q; if ¥{(0) < Q, for t > 0, where Q; = ﬁ. Since S (¢) > 0 and I,(¢) = O, then
0<S@),1(r) <Qpif S(0) + 1,(0) < Q. From the fourth equation of system (1.2) in case of k = 2, we
have

iz = d111 - bzlz < dIQI - bz[z.

e
It follows that, 0 < L, (1) < Q, if I,(0) < ,, where £, = ekl Similarly, we can show 0 < [;(7) <
2
1 Oy
Q if I (0) < Q, where O = %, k=3,..,n~ L. Further, we let ¥(r) = I,(t) + C(¢), then
k

¥, =d, 11,_; — b,l, - e <dp 11 — (In + EC) =d, Q1 — Vs,
o o

d,_1Q
where ¢, = min{b,, nr}. It follows that, 0 < ¥,(¢) < Q, if ¥,(0) < Q,, where Q,, = ;f

n—1 .
. Since
2
I,(t) > 0and C(¢) > 0, then 0 < [,(r) < Q, and 0 < C(¢r) < Q,,; if 1,(0) + f—;C(O) < Q,, where
Q= %Qn. Finally, let W5(r) = V() + %A(t), then

\P3 = dnln -V - y—gA < ann -3 (V + ZA) = ann - ¢3T3,
T T

d,Q,
where ¢; = min{e, {}. It follows that, 0 < W3(r) < Q,, if Y5(0) < Q,,,, where Q,., =
3

follows that, 0 < V(r) < Q,», and 0 < A(¥) < Q.5 if V(0) + %A(O) < Q,.», where Q, 5 = %Q,Hg. O

It

3. Threshold parameters and equilibria

In this section, we derive five threshold parameters which guarantee the existence of the equilibria
of the model.

Lemma 1. System (1.2) has five threshold parameters Ry > 0, R4 > 0, RS > 0, RS > 0 and
R9 > 0 with R < R such that

(i) if Ry < 1, then there exists only one steady state Dy,

(ii) if R? < 1 and RS < 1 < Ry, then there exist only two equilibria Py and b,

(iii) if R4 > 1 and RS < 1, then there exist only three equilibria Dy, D and D,

(iv) if R¢ > 1 and R4 < 1, then there exist only three equilibria Dy, D and D, and

(v) if R4 > 1 and RS > 1, then there exist five equilibria Do, D, D, D and D.
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Proof. Let (S,1,...,1,,V;A,C) be any equilibrium of system (1.2) satisfying the following
equations:

p—aS —mSV-mSI, =0, 3.1
mSV+mSI, — b1, =0, (3.2)
di11i-1 — byl = 0, k=2,..,n—1, (3.3)

dy11,-y — b1, — uCI, =0, (3.4)
d,l, —yAV — eV =0, 3.5)
TV-0A=0, (3.6)

(ol,—m)C =0. 3.7

We find that system (1.2) admits five equilibria.

n+3

. . eq e . /_/A
(i) Infection-free equilibrium By = (5,0, ..., 0,0), where Sy = p/a.
(ii) Chronic-infection equilibrium with inactive immune response P= (S, I}, ..., I,, V, 0, 0), where

- L b,‘ Sdn
s=[]Z2]———
(l_[d) 1d + 7728

- ead, bi || (md, +7728)So “rd;
i =———-— — — —|-11,k=1,2,...,n,
£ di (md, + 7723) ( ]( d )( [z’:l bi] )

Vo ad, (md, + 7728)50
md, +me

Therefore, D exists when

(md, +12€) So (714
—|>1.
Sdn ll:ll bi
At the equilibrium D the disease persists while the immune response is inhibited. The basic infection
reproductive ratio for system (1.2) is defined as:

_ (mdy+me)So (174
Ro = ed, l—[b,- '

i=1

The parameter R determines whether the disease will progress or not. In terms of R, we can
write

_ S,
§=22

Ro

k n

- ead, d; b;
L=——=2" 1] ]= “1Ro-1), k=1,2,...n,
7 dcnd, + me) (Hb](l d,-)( o= 1) "
_ ad,
V=—"  (Ro-1).

771dn+7728( ‘ )
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(iii) Chronic-infection equilibrium with only active humoral immune response P= (3, I, ..., I,, V, A, 0),
where

k
. d; 771("‘7727'1
S r____ [| |—] ) k=12 ..n-1,
at +md +mtl, b; dk aT + il + oty )

g% 4i- (‘”i 1),

T el
o —wyt ,/w% — 4w w3
I, = (3.8)

2’ZD'1

=

where

is the positive solution of
wlfz + wol, + w3 =0,
with

n

wy = (ﬁ%] d,m1, @5 = (n%

i=1 i=1 !

)dn (m{ + ar) — pme1, @3 = —nipd. (3.9

We note that D exists when ‘ig I, > 1. Let us define the active humoral immunity reproductive ratio

>

d.  di,
R = DT - Snln (3.10)
& &

A

. . . . . A &
which determines when the humoral immune response is activated. Thus, A = — (‘Rf — 1).

(iv) Chronic-infection equilibrium with only active cell-mediated immune response
b= (S’,Ivl, ...,Ivn, V.0, C‘), where

x eop o V_dnn_dnlv
 a(nd, + me) +asc” " o e e "

<

k

k
1_[% pr (md, + m2€) k=1,2,...n—1,
di [

L Lb; 7 (mid, + me) + aeo]’
. b, d, rd;
G ap (mdy + 12€) l_[_ 0
p | dn[7 (ndy + me) + aeo] i1 bi
y d, + n . .
We note that D exists when ap 126) Hi— . The active cell-mediated
d, 7 (md, + me) + aso| \i=i

immunity reproductive ratio is stated as:

RE = op (md, + ne) ﬁé _ Ro
U dylm(ndy +me) +aea | \LIbi) | x(ndy +me)”

[072>(0n

The parameter R¢ determines when the cell-mediated immune response is activated. Thus, C =

%(‘RIC — 1) and RE < R,.
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(v) Chronic-infection equilibrium with both active humoral and cell-mediated immune responses
b=(S.1,,...1,,V,A,C), where

§_ pTo P
Catc+mlo+mtn " o

k
- d; o (o + ntr)
I, = — ,k=1,2,....,n—1,
k (l_[ )dk[

_Lbi ato + nilo + nra|

o= bn| __opéo +mrm) ﬁ@ 1.
d,|ato + nilo + nr| b
A:f(d"’”_l).
y\eog

- + n
It is obvious that D exists when AUITCR o) HZ— > 1and < 4T, 1. Now we define
d,rato + mlo + myrr] \i=i

1 d; d, y
R = TP (méo +m77) l—[_l and R4 = D7T _ Ty
d.r[ato + mlo + nar| | b; eol ¢

where R refers to the competed cell-mediated immunity reproductive ratio and appears as the average
number of T cells activated due to infectious cells in the scene that the humoral immune response has
been constructed, while, R4 refers to the competed humoral immunity reproductive ratio and appears
as the average number of B cells activated due to mature viruses in the scene that the cell-mediated
immune response has been constructed. Clearly, D exists when ‘Rg > 1 and %;‘ > 1 and we can write

. b, _
C=2(RS-1)andA=2(R4-1).0
Y
The five threshold parameters are given as follows:

(nldn + 7728)S0 ﬁﬁ %A — dnT dnin %C — ap (nldn + 7728) . ﬁ
8dn ’ 8{ S‘A/ ’ ! dn [ﬂ- (nldn + 7728) + CZSO'] i

%0 = b,-

i=1

RE = op (mlo + nTm) ﬁd and RA = d.,nt T‘v/.
d,mt[ato + nlo + mrr] ] b; 80’§ l
We define the active humoral immunity reproductive ratio %humoral which comes from the limiting
(linearized) A-dynamics near A = 0 as:

%A

humoral —

<§I <

Lemma 2. (i) if R¢ < 1, then R? <1,

humoral

(ii) if R¥ > 1, then %Qumoral > 1,
(it if R4 = 1, then R = 1,

Proof. (i) Let R4 < 1, then from Eq. 3.10 we have I, < &¥. Then, using Eq. 3.8 we get

—w, + ,/w% — 4w w3 U

< —,
213'1 dn
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which leads to

(2w18\7

2
4 + wz) - (w% - 4wuv3) > 0.

Using Eq. 3.9 we derive

bi

:[:

]2 p (md, + me) — ead, (
1 -

d) n d
41727§8V (md, + nza)[ - d ) (i b_l) >0

ool P ndytme) (1"[1;"7) — ead,
= 4nrleV (md, +ma) || || |1- - - >0
i=1 di 1% (nldn + 7728)
n 2. _
N — b Vv
= 4 tleV (md, + me) 7 1-=|>0
-1 4i) L 1%
n 2
N —1 b A
== 4772T§8V (nldn + 7723) d_ [ %humoml] > 0.
i=1 !
Thus, Ry . < 1. Using the same argument one can easily confirm part (ii) and (iii). O

4. Global stability analysis
The global stability of the each equilibria will be investigated by constructing Lyapunov functions

using the method presented [39—45]. Let us define the function F : (0, c0) — [0, o0) as F(v) = v—1-Inw.
Denote (S,1y,...,1,,V,A,C) = (S(), [,(?), ..., 1,(t), V(t), A(t), C(t)). The following equalities will be

used:
U 0
[[2=1]]a=1 @.1)
i=1

S
|
—
T
_
Il
[\S)

& &
il
i)

+

—
| 5

P
i
T
Il
M=

—

TI

& &

—_——
T
T

iow
—_

Il
_ =

SRS

S

3

—

_|_
—
3
&I?

S

=

=~

1]
M:
TR
—T
SRS
N —

S

B

=

=2 \i=1 i=1 =2 \i=1
n—1 (k-1 n—1 n (k-1
— b; I; b; I b; I
— | di-1li-1 5 +[ _)dn—lln—l_n = [ _)dk—llk—l_’ 4.2)
=2 \i=1 d; Iy ;ld’ no = l;ld’ Iy
n—1 (k- lb n— lb,
Z 1—[ (di-1li=1 = bidy) = b1l — — dp-11-1, (4.3)
k=2 \i= di i=1 d;
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where I* € {f,f, f,f}.

Theorem 1. If R < 1, then the infection-free equilibrium Dy is globally asymptotically stable.

Theorem 2. Suppose that R{ < 1 and RS < 1 < Ry, then the chronic-infection equilibrium with
inactive immune response D is globally asymptotically stable.

Theorem 3. If R} > 1 and RS < 1, then the chronic-infection equilibrium with only active humoral
immune response D is globally asymptotically stable.

Theorem 4. Suppose that RS > 1 and R} < 1, then the chronic-infection equilibrium with only
active cell-mediated immune response D is globally asymptotically stable.

Theorem 5. If ‘R’z" > 1 and ‘Rg > 1, then the chronic-infection equilibrium with both active humoral
and cell-mediated immune responses D is globally asymptotically stable.

The proofs of Theorems 1-5 are given in a Supplementary.

5. Numerical simulations

In this section, we perform some numerical simulations in case of three stages of infected cells i.e.
n=3.

S=p-—aS-mSV-nSk,

L =mSV +mSEL - b1,

L =dI, - bD,

jg = d2[2 — b3[3 —/lCI3, (51)
V =dil; — yAV - gV,

A =TAV - A,

C =0CL —nC.

The threshold parameters Ry, R, RS, RS, and RY for system (5.1) are given by:

_didy(mdz +me) Sy g4 daT c_ didrop (md; + mre)
Ry = > ‘Rl =—b, ‘Rl - >
b1b2b38 Sé/ b1b2b3 [71' (T]]d3 + 7]28) + CZSO']
RE = didrop (Mo + natn)  and R4 = d37TT’
bibybsm [ato + nilo + ny1r] ol

where

. d\dyn,pt — b1bybs({n, + at) + \/—4b1b2b3d1d2C771T + (m,ptdidy — bibybs({n, + CYT))Z
T 2b1bybsn, T '

Table 1 contains the values of the parameters of model (5.1).

The results of Theorems 1-5 will be investigated by choosing the values of 7, 175, T and o under
three different initial conditions for model (5.1) as follows:

Initial-1: (S (0), 1,(0), 15(0), I5(0), V(0), A(0), C(0)) = (800,3,1,1,2,3,10), (Solid lines in the
figures)

Initial-2: (S(0), 7,(0), 1,(0), I3(0), V(0), A(0), C(0)) = (700,0.5,2,2,3,4,5), (Dashed lines in the
figures)

Initial-3: (S(0), 7,(0), 1,(0), I3(0), V(0), A(0), C(0)) = (300,0.1,0.5,0.5,1.5,2,2.5). (Dotted lines
in the figures)
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Table 1. Some values of the parameters of model (5.1).

Parameter Value Parameter Value Parameter Value
Jo, 10 b3 0.8 0% 0.05
a 0.01 d; 0.2 T Varied
m Varied d, 1 4 0.1
m Varied d3 o Varied
b, 0.6 u 0.1 b 0.1
by 0.7 g 1.5

Stability of D,: n; = i, = 0.0001, 7 = 0.001 and o = 0.01. For this set of parameters, we have
Ro =026 < 1, R} =0.10 < 1, R = 0.18 < 1 and RS = 0.31 < 1. Figure 1 illustrates that the
solution trajectories starting from different initial conditions reach the equilibrium
b, = (1000,0,0,0,0,0,0). This ensures that D, is globally asymptotically stable according to the
result of Theorem 1. In this situation the viruses will be died out.

Stability of D: n; = 1, = 0.001, 7 = 0.001 and o = 0.01. With such choice we get, RE=0.18<1
and R¢ = 048 < 1 < R, = 2.58 and D exists with D= (387.68,10.21,2.92,3.65,12.15,0,0).
Thus, Lemma 1 is verified. Figure 2 shows that the solution trajectories starting from different initial
conditions tend to P and this support Theorem 2. This case represents the persistence of the viruses
but with inhibited humoral and cell-mediated immune responses.

Stability of D: ; = 1, = 0.001, T = 0.07 and o = 0.05. Then, we calculate Ry = 2.58 > 1,
R = 294 > 1 and ‘Rg = 076 < 1. The numerical results show that
b= (787.99,3.53,1.01, 1.26, 1.43, 58.34, 0) which confirm Lemma 1. The global stability result given
in Theorem 3 is illustrated by Figure 3. This situation represents the case when the infection is
chronic and the humoral immune response is active, while the cell-mediated immune response is
inhibited.

Stability of D: 7, = 1, = 0.001, 7 = 0.05 and oo = 0.2. Then, we calculate Ry = 2.58 > 1,
R¢ =212 > 1 and R) = 0.83 < 1. The results presented in Lemma 1 and Theorem 4 show
that the equilibrium P exists and it is globally asymptotically stable. Figure 4 supports the results
of Theorem 4, where the solution trajectories of the system starting from different initial conditions
reach the equilibrium point b= (821.91,2.97,0.85,0.50,1.67,0,8.96). This situation represents the
case when the infection is chronic and the cell-mediated immune response is active, while the humoral
immune response is inhibited.

Stability of D: 17, = 7, = 0.001, 7 = 0.07 and o = 0.2. Then, we calculate Ry = 2.58 > 1 and
Ry = L17 > 1, R§ = 192 > 1 The numerical results show that
b= (838.32,2.69,0.77,0.50, 1.43, 5.00, 7.40) which ensure Lemma 1. Moreover, the global stability
result given in Theorem 5 is demonstrated in Figure 5. It can be seen that the solution trajectories of
the system starting from different initial conditions converge to the equilibrium D. This situation
represents the case when the infection is chronic and both immune responses are active.
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S(t)

0 100 200 300 400 500 600
t

(a) The behavior of susceptible cells

(f) The behavior of B cells (g) The behavior of CTLs

Figure 1. Solution trajectories of system (5.1) when R, < 1.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 575-605.



585

800 T T T T T T

700

600

400

300

0 100 200 300 400 500 600 700 800
t

200

(a) The behavior of susceptible cells
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(¢) The behavior of second stage of infected cells
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(f) The behavior of B cells (g) The behavior of CTLs

Figure 2. Solution trajectories of system (5.1) when R{ < 1 and R < 1 < R,
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Figure 3. Solution trajectories of system (5.1) when R{ > 1 and RS < 1.
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300 f L L L L L L
] 100 200 300 400 500 600 700 800
t
(a) The behavior of susceptible cells
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0 [ I;() l(‘lﬂ 1 5‘0 200 250 300 350 400 450 500 1 (‘)(l 2(‘10 3(‘)0 4(‘)0 5(‘]() 600
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(f) The behavior of B cells (g) The behavior of CTLs

Figure 4. Solution trajectories of system (5.1) when R¢ > 1 and R% < 1.
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Figure 5. Solution trajectories of system (5.1) when R4 > 1 and RS > 1.
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5.1. Comparison results
We consider system (5.1) under the effect of two types of treatment as:
S=p-aS-1-e)mSV-(1-emSkh,

1:1 = -e)mSV+U-e)nSh-b1,
L =d\I, - b,

j3 = d212 - b313 —[JCI3, (52)
V =dsI; — yAV — gV,

A =TAV - A,

C =oCI; - nC,

where, the parameter € € [0, 1] is the efficacy of antiretroviral therapy in blocking infection by
virus-to-cell mechanism, and €, € [0, 1] is the efficacy of therapy in blocking infection by cell-to-cell

mechanism [47].
The basic reproduction number of system (5.2) is given by

Rosole, ) =1 —e)Ro + (1 —e)Rp,

where

b1b2b38 ’ 0= b1b2b3 ‘
When the cell-to-cell transmission is neglected, system (5.2) leads to the following system:

R, = d\drd3m1 S o R didomsS o

S=p-aS-1-e)mSV,
L=~ e)mSV —bil,
L, =d I, — b1,

j3 = dzlz - b313 —,LlCI3, (53)
V = d313 — ’)/AV - 8V,

A =T1AV - A,

C =o0CI; —nC.

The basic reproduction number of system (5.3) is given by
‘Ro,(ss)(ﬂ) = (1 —e)Ror.

Without loss of generality we let €, = €, = €. Now we calculate the minimum drug efficacy € which
stabilize the infection-free equilibrium for systems (5.2) and (5.3). For system (5.2) one can determine
the minimum drug efficacy e(‘glfg) such that R 52)(€) < 1 for all e(‘g‘g‘) <e<las:

min 1
6(5.2) = max {1 - m, 0} . (54)

min

For system (5.3) the minimum drug efficacy e("s‘?g‘) such that R 53)(€) < 1, €53, < € < l1is given by:
= m {1 ! 0} (5.5
€53 =maxsl — ——,0;. .
-3 %01
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min min

Comparing Eqgs. (5.5) and (5.4) we get that €573 < €55,. Therefore, if we apply drugs with €
such that e(rg‘f;‘) <e< e(rg’f;‘), this guarantee that R s3)(€) < 1 and then D, of system (5.3) is globally
asymptotically stable, however, R 52 > 1 and then D, of system (5.2) is unstable. Therefore, more
accurate drug efficacy € is determined when using the model with both virus-to-cell and cell-to-cell
transmissions. This shows the importance of considering the effect of the cell-to-cell transmission in
the virus dynamics.

Now we perform numerical simulation for both systems (5.2) and (5.3). Using the values given in

Table 1 and choosing n7; = 0.001, 7, = 0.005, 7 = 0.07 and o = 0.2. Then we get
e = 0496, €% =0.7984.

Now we select € = 0.5 and choose the initial condition as follows:

Initial-4: (S (0), 1,(0), 15(0), 15(0), V(0), A(0), C(0)) = (900, 3,1,0.5,2,3,5).

From Figure 6 we can see that the trajectory of model (5.3) tends to Dy, while the trajectory of
model (5.2) tends to D. It means that if one design treatment using model (5.3) where the cell-to-cell
transmission is neglected, then this treatment will not suffice to clear the viruses from the body.

On the other hand, we choose € = 0.8 and consider the following initial condition:

Initial-5: (S (0), 1,(0), 15(0), 15(0), V(0), A(0), C(0)) = (920,0.5,0.5,0.5, 2,3, 3).

From Figure 7 we can see that the trajectories of both systems (5.2) and (5.3) tend to B,. Therefore,
this treatment will suffice to clear the viruses from the body.
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6. Conclusion and discussion

In this paper, we formulated and analyzed a virus dynamics model with both CTL and humoral
immune responses. We incorporated both virus-to-cell and cell-to-cell transmissions. We assumed
that the infected cells pass through n stages to produce mature viruses. We showed that the solutions
of the system are nonnegative and bounded, which ensures the well-posedness of the proposed model.
Further, we obtained five threshold parameters, R, (the basic infection reproductive ratio), R% (the
active humoral immunity reproductive ratio), ‘RIC (the active cell-mediated immunity reproductive
ratio), RS (the competed cell-mediated immunity reproductive ratio), and R4 (the competed humoral
immunity reproductive ratio). The global asymptotic stability of the five equilibria By, D, D, D, D was
investigated by constructing Lyapunov functions and applying LaSalle’s invariance principle. To
support our theoretical results, we conducted some numerical simulations. We note that the
incorporation of cell-to-cell transmission mechanism into the viral infection model increases the basic
reproduction number R, since Ry = Ry + Ry > Ry;. Therefore, neglecting the cell-to-cell
transmission will lead to under-evaluated basic reproduction number. Model with two types of
treatment was presented. We showed that more accurate drug efficacy which is required to clear the
virus from the body is calculated by using our proposed model.

There are some factors that can extend our model (1.2):

a. The infected cells may begin to present the viral antigen earlier than when they reach the terminal
stage n (i.e. at stage m where m < n). Therefore, infected cells 1,,, 1,11, ..., I, are subject to be targeted
by the CTL immune response.

b. Model (1.2) is formulated by assuming that the virus is purely lytic, that is, only the bursting cells
are capable of releasing the free virions. However, many viruses are somewhat mixed, in the sense that
they are partially lytic and partially budding, where the release of free virions can be from the infected
cells 1,,, Lyi1, ..., L.

c. The cell-to-cell infection mechanism can also be expanded to the contact between susceptible
cells with infected cells 1,,,, 1,11, ..., I,.

d. The loss of virions upon the infection could also be added to the model. In fact, there is some
speculation that the virions may be indiscriminately entering not only the susceptible cells, but also the
cells that are already infected [26, 53].

Then, taking into account the above factors will leads to the following model:

$()=p=aSO)-mSOVEW) = 3 mSOL).

1:1(f) =mS OV (@) + S (O1,(t) — b1, (1),
L(t) = di1,(t) — by 1r(1)

I:m—l(t) = dp-oly2(t) = b1 11 (D), (6.1)
L(t) = dy_1 L1 (t) — b () — i C (O (1), k=mm+1,..,n,
V(0) = 3 6li(0) = YAV (1) — V(1) = nS (V1) = V(2) ];1 2L (1),

k=m

A@t) = TAV (@) - ZAQ),
C(t) = Y, oCOI(t) — nC(1),

k=m
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n
where, ), .S I, represent the incidence rates due to the contact of the infected cells 1,,, 1,41, ..., I, with

k=m

susceptible cells. The term 77;S V is the loss of virus upon entry of a susceptible cell. The term V' 3} I}
k=1
represents the absorption of free virions into already infected cells /i, I, ..., I,. The production rate of

the viruses and the activation rate of the CTL cells are modeled by } 6;/; and ), oCI,, respectively.
K

The k-stage infected cells I;, are attacked by CTL cells at rate ka{CI:,l k=m,m -:1 1,...,n. Analysis of
system (6.1) is not straightforward, therefore we leave it for future works.

It is commonly observed that in viral infection processes, time delay is inevitable. Herz et al. [59]
formulated an HIV infection model with intracellular delay and they obtained the analytic expression
of the viral load decline under treatment and used it to analyze the viral load decline data in patients.
Several viral infection models presented in the literature incorporated discrete delays (see, e.g., [36]
and [44]) or distributed delays (see, e.g., [7,23] and [48-50]). In these papers, the global stability of
equilibria was proven by utilizing global Lyapunov functional that was motivated by the work in [51]
and [52]. Model (6.1) can be extended to incorporate distributed time delays. Moreover, considering
age structure of the infected class or diffusion in the virus dynamics model will lead to PDE model
[54-58]. These extensions require more investigations, therefore we leave it for future works.
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Supplementary

Proof of Theorem 1. Constructing a Lyapunov function:

S n k—lb US ’)/T]S ,U n—lb
_ D i 190 190 H i
(I)O(S,Il,...,ln,V,A,C)—SOF(S )+Z[n ]1k+ =V A+U( _]c. (6.2)

o/ =\ d e i=1

It is seen that, ®y(S, I, ..., I,l,VA C) > Oforal S,14,..,1,,VJA,C > 0, and ®, has a global
minimum at Dy. We calculate < along the solutions of model (1.2) as:

1

d;lzo (1——)S+11+Z[r| )Ik+[H%] ’71850 ymSo [HIS] 63

i=1 "

Using (4.3), we have

> (1]

i=1

k-1

Jlk =SV +mSI, — b1, +Z[]—[

1

n—1
b;
+ (HZJ (dn—lln—l - bnln - :uCIn)

i=1

n—1
b;
:msvmzsz,,—(]—[ ]d[— ( d—)

i=1

&IS‘
&I?

](dk—llk—l — bidy)

Then,
2 L i n—1
d®, :(1_ﬁ)(p—a5) '71_50dz s msol, -T2 dnln_ygmso (0.
dt S L d; o (Llg
Using S = p/a@, we obtain
d®d, (S —So)? " S (i 1b
i 1 7 a-=l 5 e 6.4
dt SRS + li:_lldi (Ro-1) TE o li:—lldi (6.4)

Therefore, 42 < 0 for all S, 1,,A,C > 0 with equality holding when S () = S and 1,(r) = A(¢) =
C(r) = Oforall t. Let Yy = {(S 0, L), ..., 1,(), V(r),A®®), C(t)) : d% O} and ‘I’O is the largest invariant
subset of Y. We note that, the solutions of system (1.2) are conﬁned to Ty [46]. The set Ty is invariant
and contains elements which satisfy I,(f) = 0. Then, 1,(f) = 0 and from Eq. 3.4 we have

0= jn(t) = dn—lln—l(t)'

It follows that, I,_;(#) = O for all z. Since we have I,_,(t) = 0, then [,_;(f) = 0 and from Eq. 3.3,
we have I,_(t) = d,_»1,., = 0 which yields 7,_,(t) = 0. Consequently, we obtain [;(f) = 0, where
k = 1,...,n. Moreover, since S () = S, we have S (¢) = 0 and Eq. 3.1 implies that

0=S@®=p—aSo—mS,V.
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which insures that V(r) = 0. Noting that Ry < 1, then D, is globally asymptotically stable using
Proof of Theorem 2. Let us define a function ®(S, I,

I, ..., 1,,V,A,C) as:
S n k-1 b I nS

@ = 5F () 2 nE(E)+ 2y

=5e(§)+ (115 ()

n—1
14 7771 bl
s e e
k=1 \i=1 € 4 lt—[d’
Calculating < & as:
d® S I
dtl (1 - g)(p aS —mSV -mS1l,) + (1 - —1)(7715V+ mS 1, — bily)
Lkl nly 7
1= = (dir Doy — by 1= 2| (dy11s-1 = byl, — uCl,
+kz;(l:[d]( )(klkl kk)+[l;ldl]( I)( n-1 uCI,)
S( v b
+’71_(1 ——)(dl — YAV - gV)+7’71 (VA — §A)+—(H—)(a’lnC—ﬂC). (6.5)
g l d,;
Collecting terms of Eq. 6.5 and using Eqgs. 4.2 and 4.3, we derive
do,
dr

b, I I
(1 - —)(p aS) +mS1, - [ﬂz)dnln —mS V[—i - nzSIn—i
i=1
- dilii e~ (1bi) - b, - mS
—Z[ﬂ ) +;[Dz)dk1k+[ﬂd—i uCL, + 2241
7715

7715
i=1
+mSV+ —yAV -

nin — _dnlnz
e £ \%4
n—1
I bi
A—— C.
TE { g (l_[ )

(6.6)

k n
__ _ b;| - b;
SV+nSI, = — di I = eV, k=1,.
nsvensii=([ 1o =[]
We obtain
dq)l S = = = S = Z bl 7]15
— (1 - §)(aS —aS)+(mSV +mS, )(1 - §) + ST, - [i=1 —i)dnln + 24,1,
SVI _ - SLI, _ o L I o __
SV =S, —=— — (1 SV + 1,81, e + SV+nS1,
m SVI, yp) Sl (771 yp) )k:Z Tl ”(771 Up) )
- mS b\ (- 7 mSy e
eV =120, (1,,——)C+ (V——)A. 6.7
n v 'u[ll:_lldi) o I T ©.7)
Since we have
- "1 b d,
517 —t
i di ) mdy + e
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then

Also we have when k = n,

d, V I 1% __ LV
_:T:_dnln_: SV_ .
e 1, £ \% n LV
Therefor Eq. 6.7 becomes
d® S —8)? - S svlp WLl LV
—1:—a¥+mSV (n+2)———Tl—Z_k Lk
dt S S SVI =) Lo, LYV
G = n = n—1 G
a7 S S LIy bili + mSY (& ¢
+mSL|n+1)— = - —— — = + —(l,-1,)C+ V-V)A
e 77 kZ_;Ik_llk ’H[Ddi]( Jer T (V-P)

S Svi ilk_ll_k_ln\_/
k:21_k—11k I_,,V

S S, <Ll + d, +
n+1)—2>— 1 klk]+3a'0_ (i 112€)

7]157 — A
S SLL ok (RS -1)c+ == (V-7V)A.

o (md, + m€) £
(6.8)

Since the arithmetical mean is greater than or equal to the geometrical mean, then

SVI, I, I,V S S I, ],
__1+Z_k1k - 2n+2and—+__1+ _klk2n+l.
Svh, ZLol LV S SLL  ZIl

From Lemma 2 we have V < V and since R¢ <1 < Ry then % < Oforall S, I, V,A,C > 0 with
equality holding when S(¢¥) = S, I,(t) = I, k = 1,2, ...,n, V(t) = V, and A(¢) = C(¢) = O for all ¢. It can
be easily verified that Y| = {}_)} is the largest invariant subset of
Ty = {(S@. 110, ... 1,(1). V1), A1), C(1)) : “2 = 0} [46]. Then, D is globally asymptotically stable
using LaSalle’s invariance principle. O

Proof of Theorem 3. The candidate Lyapunov function is

S n k_lb'
(S, I,....1,,V,A,C) = SF|= | + ZiliE
2( 1 ) (S) Z[ dl) k (

k=1

bi
d_l] C. (6.9)

dd;

We calculate TS

as:

dd S I
d_t2 = (1 - 5)(/)—05 —mSV—nzSInH(l - I—l)(mSV+nzSIn—b111)
1
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)(dn lln 1= b I ﬂCI)

A (ﬁ

ol (el b,
+ =1 = =) (o1 Lty = bid —l1-=
k:z[rldl)( )(klkl L) + d)( I
SV %
+’7;i ( —)(a’nl _ YAV - sV)+ ( ——)(TVA ZA)
U n—lb_
L Z\(eI,C - rC). 6.10
£ ({1 o
Collecting terms of Eq. 6.10 and using Eqgs. 4.2 and 4.3, we derive
dq)z Y A A L bl il il
l—=|e—aS)+mSV+nSI, - —\d L, —mSV——mSI,—
I ( S)(p as) +m m (l:ld) mSVE —mSh
- il [ ] [ = ] 5 ~ 1,
- + dklk-l- ,UCI +7]1 VT
Sl S (L1 L
SV Mlnf/ SV SV . Y% SV .
! V- SV +771 eVt 771 YA - Y ZA - )’771A VA
wly LV d|l, rd,I, d,l,
& 1 n—1
ymSV .~ un bi
_ - = Zlc 6.11
Using the equilibrium conditions for D
p=aS +mSV +nS1i,
k b n b
mSV+mSi, = (Dd—i]dklk = (i=1 d_l-) eV +yVA|, k=1...n (6.12)
We obtain
d(Dz SA N SA AAV A A In
—=1-=](aS —aS SV+mSL)I1——=|+mSV< +m81,+—
dr ( S)(CV a ) (771 Upl ( S) m v 2 i
([ |5 [t =8 Vorr =8 15— = (S V + mo81,) ) =
i=1 i I] SInI] k=2 k—llk
Ao . aody mSVy o oV
+n(mSV+mSL)+mSV— — — eV +yVA| —
(771 Up) ) m i di, [ Y ]V
AAIn‘A/ 7]1§V A AN e bl (A T
-mSV—+——|eV+yVA|l+ -\, -—=|C
™V T a, o7+ 7] “[Ddl o
——a/(S_S)2+( U emSi) (1= S) o (s ¥+ msi)
m M9 1y S m M9 1y An
nbl AASVI AASIni A A A A nl_i
[ |5t = m8 Vet =81 = = (S V + a8 1) D =
i=1 di SVI] Slnll =2 Ik—llk
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& n—1
. LV bi)(»
+n(mSV+mSL)-mS V3 +mSV+,u( ](zn_ﬁ)c. (6.13)

dt S SV S
Ao R Ay . An . s oL,V

_(UISV+UZSIH Aklk T]ISV+772SI,,)+T]1$V—T]15V,\
k_zlk—llk InV

n—1 i
u (]‘[%) (f,-1)C. (6.14)

S sSvi, &Il 1,,?/
S SV, Sihan LV

A A S Slnil g Ik—llk - 1 z
+mSLn+1)—=——F—- ) < + —
m [(n )= 3 i Z P Ik] ( d

n k=2 i=1

(6.15)

. ~ b, ) .
Thus, if %g < 1, then b dose not exist since C = — (%C - 1) < 0. This guarantee that C(¢) =

o (L) - Z)C(#) = o (I(t) — I,) C(6) < 0 for all C > 0 which implies that /, < I, Hence 22 < 0
for all S, I}, V,A,C > 0 with equality holding when S (¢) = S, I.(t) = Ik, =1,2,...n, V(t) = V, and
C(1) = 0 for all z. We note that, the solutions of system (1.2) are tend to ‘Y"z the largest invariant subset
of T3 = {(S (1), I (1), ... 1,(1), V(). A1), C(1)) : L2 = 0} [46]. For each element of ', we have I,(t) = I,

V(f) = V, then V(r) = 0 and from Eq. 3.5 we have
0=V =d,J, —yA®)V — eV =0,

which gives A(f) = A. Therefore, 'Y"Z = {}5} Applying LaSalle’s invariance principle we get D is
globally asymptotically stable. O
Proof of Theorem 4. Define a function ®5(S, 11, ..., 1,, V, A, C) as:

oSl 2t 2 et

k=1 \i=1 [

We calculate =2 as:

dd S I
d; (1 - E)(p —aS —-mSV-mSI,) + (1 - I—l)(mSV + 1281, — bily)
1
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v

k=l )i =l I
( d—i] (1 - I_];:) (di—1ly-1 — b)) + [Hd—l] (1 - I—”) (dn-11y-1 — byl — puCI,)

i=1 n

1 Y
(1 )(d] — YAV - eV)+7'71 (rVA - {A)+—(H§)(l——)(al€ 7C).

i=1
(6.16)
Collecting terms of Eq. 6.16 and using Eqs. 4.2 and 4.3, we derive

—_

n—

+

WM
(I\)

+
=
n (=

<|<<

n

dDs b; I,
1-= S SI, - 2ld,1, - SV—— SI,—
s ( S)(p asS)+m, [l;ldi) m m

I

l

n

n k-1 M k n—1 2 2 Y,
bi | di—11i-11x bi| v b; vy omS ms 14
ST+ ST |2 el + | ] 2w+ 22d,n, - 2 d, i,
k=2[ di) Iy [ di) o ( di)'u € € 4

i=1 k=1 \i=1 i=1

& n—1 n—1 n—1

v mS o ymS U [T 1bi bi LH bi | x
+mSV+ —yAV — A—— —|C - — —|C. 6.17
" € ’ g 0—(1:1 dl] 'u(l ldl) O-[IlZ—lldl ( )
Using the equilibrium conditions for D:
- . vy oy . d, d,
p:CKS'i'T]lSV-F?]QSIn, Inzz, V = T(:—n,
o e €
1

we obtain
d(l)3 S x Y Y . bl 7715'
7 :(1 §)(a'S CZS) (7]1SV+I]2SI)(1 ——)+I]2SI”—[1:1 Z)dnln-l_ d,l,
n—1 ¥ ¥ n ¥
bl v VVSVI VVSIn vV v v I_I
—ul| |5 |Ch - mS Vet =Sl — = (mSV +mS k) Y 7
i=1 i SVI] Slnll =2 k—llk
. Ly LV . S 1%
+n(m8V +mSL) - m3VE 4 SV + L LS (T——l)A. (6.18)
LV et \ ¢
Since we have in case of k = n
v - bi m S e bi ~
mS1I, — —\d.1, + d,l, — u —|ClI,
i1 di it di
oy (b S . b\ sy | 1
= UZSIn - [ E)dnln + L dnln _/J[ _] Cln] 2
i=1 i=1 1 n
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Then,
av;, (S -3) SV, Sk LV
= -« +m SV (n+2)———vv - ~ -3
dr S S SV Sl Lv
¥ S SLI Ll 77157{ A
+ 51, (n+l)——— 37 - ‘R (6.19)
1.1, Zlk 11k ( )

Hence, if ‘RA TV < 1, then dq)’ <Oforall §, I, V,A,C > 0 with equality holding when § (¢) =
L) = I, k =1, 2 ,n, V(t) = V and A(r) = O for all ¢. It can be easily verified that the largest
invariant subset of ‘r3 = {(S@. L(®), . L), VO, A(), C(1) : 9= = 0} is T} = {B] [46]. Applying
LaSalle’s invariance principle we get that D is globally asymptotlcally stable. O

Proof of Theorem 5. Define ®4(S, I, ...,1,, V,A, C) as:

oue st B(L13)el)- 0 ve ) 2w ) (1))

k=1 \i=1 ¢ k i

Calculatlng — as:

do, (1 )

dr

k=2
SV
oA

)(p aS —-mSV - nzSI)+(1——)(mSV+772SI—bll)

b, 1b; I
3)( - —) (di—11x- 1—bk1k)+(l—[d—]( - I_) (dy-11-1 — byl — puCl,)

| U

:Pv

n

SV

=

+

( ——)(TVA ZA)

—
[S—

- ‘—/) (dpd, — yAV — €V) + L

n—1 b[ ¢
[ﬂz_] (1 _ E) (@1,C - 7C). (6.20)

i=1

SHRS a

_l_

Collecting terms of Eq. 6.20 and using Egs. 4.2 and 4.3, we obtain

dd ~ ~ “1b; I
do, (1_—)(p—aS)+mSV+n2SIn—[nd)dI —mSV——nzSII

dr S 2 I,
C dolio e (b)) s (17b; . A
— + — |didy + —\uCl, +n,SV=
ST ([T Jan [T mse
SV ~~1,1\7 SV . Sv . SV Sv_ .
IR RV v A LR v IR v S LB S &/ LSRR
d.I, v 4l d.I, 7d,I, d.I,
PO n—1 n—1 1
ymSV .~ ur bi bi
+ A2 2 - = 6.21
7dyl, ¢ o [l;ldi] N[i:l ] (l_lld ( :

Using the equilibrium conditions for D:
p=aS +mSV+nSI, I,=
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i=1 ! i=1 ! i=1
We obtain
dd, S ~ ~ - S ~ ~ “ b,
— = (1 _ E)(as —aS)+(mSV+ nZSI,,)(l - E) +mSV+mSI, - ( 13 d,I,
~ - SVI ~- SII, - <\ L I . -~
—771SV~~ —n2 In~~ - 7]1SV+772S]n = n7715V+77251n
S I] Slnll ( )k=2 k—lIk ( )
~ & n—1
A - wo LV mSV . bi) ~
+mSV=— V+yVAl = —mSV—+ — eV + yVA| - —|ClI,. 6.22
mSVE =TT YA = -m 7y d”[ YVA] dily (6.22)
Since we have s
mSv - L= [8V+7VA] Z =0,
ntn V
and
. n bi n—1 b[ o In
T]zSIn - — dnln —-u —|CI, + 7]1S V=
=i di =i i n
T LS b)) ~s | 1
= T]]SV+7]251,,—( —)dnln—/.l[ Z)Cln]T:O
i=1 ¢ i=1 i n

A0, (s-3) o ( S) L oSVE, .. SLI
= -« + i SV+mSL)I1-=]-mSV=——-mS1,—
dr S (mSV +n:S1,) TSy T T L
. <\ o L . ~ = <LV .
—(mSV+nzSIn ~k Ik 77ISV+772SI,,)—771SV~ +mSV
= L1 1k LV

n

§ Svi Lol LV
(M+2) - —Zer— ) T -2
S Il LV

= —a———+nSV
S k=2
S s, <L
S SLi ) Lioidy

) (6.23)

Hence, d% < 0 for all S,I,V,A,C > 0 with equality holding when S(t) = S, I,(t) = I, k =
1,2,....n, and V() = V for all . It can be easily verified that the largest invariant subset of T, =
{(S@. L@, ... L), V(0. A@®), C(1)) : 9 = 0} is (', = {D} [46]. LaSalle’s invariance principle implies

that D is globally asymptotically stable. O
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