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Abstract: In this paper, we consider a diffusive SIS epidemic reaction-diffusion model with lin-
ear source in a heterogeneous environment in which the frequency-dependent incidence function is
S I/(c + S + I) with c a positive constant. We first derive the uniform bounds of solutions, and the
uniform persistence property if the basic reproduction number R0 > 1. Then, in some cases we prove
that the global attractivity of the disease-free equilibrium and the endemic equilibrium. Lastly, we
investigate the asymptotic profile of the endemic equilibrium (when it exists) as the diffusion rate of
the susceptible or infected population is small. Compared to the previous results [1, 2] in the case of
c = 0, some new dynamical behaviors appear in the model studied here; in particular, R0 is a decreasing
function in c ∈ [0,∞) and the disease dies out once c is properly large. In addition, our results indicate
that the linear source term can enhance the disease persistence.

Keywords: SIS model with linear source; frequency-dependent incidence function; basic
reproduction number; disease-free equilibrium and endemic equilibrium; global attractivity; uniform
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1. Introduction

In the study of transmission of infectious disease, people have realised that environmental hetero-
geneity and individual motility are significant factors that should be incorporated into the mathematical
models. In recent decades, more and more research works have been devoted to the investigation of
the dynamics of infectious disease modelled by reaction-diffusion systems in which the migration of
population and environmental heterogeneity are taken into account. One may refer to [1, 3–9] and the
references therein.

In a recent paper [1], Allen et al. investigated a frequency-dependent SIS (susceptible-infected-
susceptible) epidemic reaction-diffusion model, which reads as
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∂S
∂t
− dS ∆S = −β(x)

S I
S + I

+ γ(x)I, x ∈ Ω, t > 0,

∂I
∂t
− dI∆I = β(x)

S I
S + I

− γ(x)I, x ∈ Ω, t > 0,

∂S
∂ν

=
∂I
∂ν

= 0, x ∈ ∂Ω, t > 0,

S (x, 0) = S 0(x) ≥ 0, I(x, 0) = I0(x) ≥,. 0.

(1.1)

Here, S and I stand for the density of susceptible and infected population at location x and time
t respectively; the positive constants dS and dI represent the motility of susceptible and infected in-
dividuals, respectively; the function β(x) is the rate of disease transmission, and γ(x) is the recovery
rate of infected individuals, all of which are positive Hölder continuous functions on Ω. The habitat
Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, and the Neumann boundary condi-
tions mean that no population flux crosses the boundary ∂Ω. For realistic implication, the initial data
S 0 and I0 are assumed to be nonnegative continuous functions on Ω, and there is a positive number of
infected individuals, i.e.,

∫
Ω

I0(x)dx > 0.
It is easily seen from (1.1) that∫

Ω

(S (x, t) + I(x, t))dx =

∫
Ω

(S 0(x) + I0(x))dx, ∀t > 0,

which means that the total number of population is conserved.
Clearly, model (1.1) dose not account into account the birth rate of the susceptible population and

the death rate induced by disease. Indeed, these factors are important in the evolution of disease
transmission; see [7,10,11]. With such a consideration, in the paper [12], the authors studied a varying
total population model in which the linear external source term Λ(x) − S was introduced. That is, the
model (1.1) becomes the following:

∂S
∂t
− dS ∆S = Λ(x) − S − β(x)

S I
S + I

+ θγ(x)I, x ∈ Ω, t > 0,

∂I
∂t
− dI∆I = β(x)

S I
S + I

− γ(x)I, x ∈ Ω, t > 0,

∂S
∂ν

=
∂I
∂ν

= 0, x ∈ ∂Ω, t > 0,

S (x, 0) = S 0(x) ≥ 0, I(x, 0) = I0(x) ≥,. 0, x ∈ Ω.

(1.2)

where dS , dI , β, γ, S and I have the same epidemiological interpretation as in (1.1). The parameter
θ ∈ [0, 1] represent the number of infected population becomes susceptible. The positive functions
β, γ, Λ also be assumed to be Hölder continuous over Ω. In the linear external source term, Λ(x)
and −S , respectively, account for the birth rate of the susceptible population and the disease-induced
death rate. It is worth mentioning that in some cases, people ignore the effect of external source on the
infected population; one may see, for instance, [3, 9, 13] for related discussion.
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Different from model (1.1), a new feature in (1.2) is that the total population of susceptible and
infected individuals are varying with respect to time t > 0. On the other hand, the works in [14–17]
have shown that, in certain circumstances, the frequency-dependent incidence function S I

S +I used in
models (1.1) and (1.2) may not be appropriate to describe the transmission process of disease; instead
an alternate incidence function should be S I

c+S +I , where c is a positive constant. Based on model (1.2),
in this paper we are led to study the following SIS epidemic model:



∂S
∂t
− dS ∆S = a(x) − µ(x)S −

β(x)S I
c + S + I

+ γ(x)I, x ∈ Ω, t > 0,

∂I
∂t
− dI∆I =

β(x)S I
c + S + I

− [γ(x) + µ(x)]I, x ∈ Ω, t > 0,

∂S
∂ν

=
∂I
∂ν

= 0, x ∈ ∂Ω, t > 0,

S (x, 0) = S 0(x) ≥ 0, I(x, 0) = I0(x) ≥,. 0, x ∈ Ω.

(1.3)

In model (1.3), it should be noted that we also assume that the infected population allows the same
natural death rate as for the susceptible population, which is represented by the function µ(x). With
such a consideration, the system (1.3) is more realistic to describe the disease transmission in some
cases as suggested in [15–17]. From now on, we always assume that c is a nonnegative constant,
the positive function a(x) stands for the recruitment rate of the susceptible corresponding to births
and immigration; a(x) and µ(x) are also positive Hölder continuous functions on Ω. All the other
parameters have the same assumptions as in (1.1) and (1.2).

Since c > 0, the term S I
c+S +I is a smooth function of S and I in the first quadrant. By the standard

theory for parabolic equations, combined with our assumption on the initial data, it is well known that
(1.3) admits a unique classical solution (S , I) (namely, S , I ∈ C2,1(Ω × (0,∞)). Moreover, it follows
from the strong maximum principle and the Hopf boundary lemma for parabolic equations that both
S (x, t) and I(x, t) are positive for x ∈ Ω and t ∈ (0,∞).

The aim of the present paper is to provide the theoretical analysis of solution to (1.3) and its steady-
state (i.e., equilibrium) problem. The extinction or persistence behavior of the infectious disease in the
long run is one of our main focuses. Once the disease can persist, what we are particularly interested
in is the spatial distribution of the disease when the diffusion (migration) rate (represented by dS or
dI in our current context) is controlled to be small. Such information will be useful for decision-
makers to understand and predict the pattern of disease occurrence and then to take more effective
actions/measures to eradicate diseases; one may refer to Section 5 for further discussion.

We would like to mention that many research works have been devoted to the study of the related
epidemic systems; one may see, for instance, [18–34].

The rest of our paper is organized as follows. In section 2, we derive the uniform bounds of the
solution of (1.3) and discuss the uniform persistence in terms of the basic reproduction number. In
section 3, we study the global attractivity of the disease-free equilibrium and the endemic equilibrium
in some special cases. In section 4, we analyze the asymptotic profile of the endemic equilibrium (if it
exists) as the diffusion coefficient dS or dI goes to zero. Section 5 ends the paper with some discussion
of the epidemiological implications of the theoretical results obtained in this paper.
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2. Uniform boundedness and uniform persistence

In this section, we will establish the uniform boundedness of solutions to (1.3), and then study
the uniform persistence property. In the following, we use DFE and EE to represent the disease-free
equilibrium and the endemic equilibrium, respectively.

From now on, for notational simplicity, we denote

F∗ = max
x∈Ω

F(x) and F∗ = min
x∈Ω

F(x)

for any given function F ∈ C(Ω).

Lemma 2.1. Assume that dS = dI . For any solution (S , I) of (1.3), there holds

S (x, t) + I(x, t) ≤ max
{a∗

m
, s∗0 + (1 + ε1)I∗0

}
, ∀x ∈ Ω, t ≥ 0. (2.1)

Here, ε1 is any given positive constant so that 1 − ε1β
∗ > 0 and

m1 = min
{
µ∗ − ε1β

∗, (1+ε1)µ∗+ε1γ∗
1+ε1

}
.

Proof. Let dS = dI = d. For any given positive constant ε1 so that 1 − ε1β
∗ > 0, we set

V1(x, t) = S (x, t) + (1 + ε1)I(x, t).

In view of (1.3), we then have

∂V1

∂t
− d∆V1 = a(x) − µ(x)S + ε1β(x)

S I
C + S + I

− µ(x)I − ε1[γ(x) + µ(x)]I

≤ a(x) − (µ∗ − ε1β
∗)S −

(1 + ε1)µ∗ + ε1γ∗
1 + ε1

· (1 + ε1)I

≤ a(x) − m1V1.

It is easily seen that V1 and max{ a∗
m1
, S ∗0 + (1 + ε1)I∗0} is a pair of upper and lower solutions to the

initial-boundary value problem:

∂v
∂t
− d∆v = a(x) − m1v, x ∈ Ω, t > 0,

∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

v(x, 0) = S 0(x) + (1 + ε1) I0(x), x ∈ Ω.

By the comparison principle for parabolic equations, we obtain

S (x, t) + (1 + ε1)I(x, t) ≤ V1(x, t) ≤ max{ a∗
m1
, S ∗0 + (1 + ε1I∗0)}, ∀x ∈ Ω , t ≥ 0.

�

For the general case, we also derive the uniform boundedness of solution to (1.3). Indeed, we can
state the following result.
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Lemma 2.2. For any solution (S , I) of (1.3), there exists a positive constant M1 depending on initial
data such that

‖S (·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤ M1, ∀t ≥ 0. (2.2)

Moreover, there exists some positive constant M2 independent of initial data such that

‖S (·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤ M2, ∀t ≥ T, (2.3)

for some large T > 0.

Proof. For any fixed constant ε2 > 0 such that µ∗ − ε2β
∗ > 0, we denote

m2 = min{u∗ − ε2β
∗, µ∗+ε2(γ∗+µ∗)

1+ε2
}.

Then we set

V2(t) =

∫
Ω

[S (x, t) + (1 + ε2)I(x, t)]dx, t ≥ 0.

In view of (1.3), it can be easily shown that

dV2

dt
=

∫
Ω

a(x)dx −
∫

Ω

µ(x)S dx + ε2

∫
Ω

β(x)
S I

c + S + I
dx

−

∫
Ω

[µ(x) + ε2(γ(x) + µ(x)]Idx

≤

∫
Ω

a(x)dx − µ∗

∫
Ω

S dx + ε2β
∗

∫
Ω

S dx − [µ∗ + ε2(γ∗ + µ∗)]
∫

Ω

Idx

=

∫
Ω

a(x)dx − (µ∗ − ε2β
∗)

∫
Ω

S dx −
µ∗ + ε2(γ∗ + µ∗)

1 + ε2
· (1 + ε2)

∫
Ω

Idx

≤

∫
Ω

a(x)dx − m2V2,

from which it follows that
dV2

dt
+ m2V2 ≤

∫
Ω

a(x)dx ≤ |Ω|a∗.

Hence, we have

V2(t) ≤ V2(0)e−m2t +
|Ω|a∗

m2
(1 − e−m2t), t ≥ 0. (2.4)

Note that S and I are nonnegative. Thus together with (2.4), one can use [6, Lemma 2.1] (or [35])
with σ = p0 = 1 to derive (2.2). Moreover, the inequality (2.4) infers that

lim sup
t→∞

V2 ≤
|Ω|a∗

m
,

which is independent of initial data. Making use of [6, Lemma 2.1] again, we can derive (2.3).
�
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In what follows, we discuss the uniform persistence of solution. To this aim, we first consider the
elliptic problem:

−dS ∆S = a(x) − µ(x)S , x ∈ Ω;
∂S
∂ν

= 0, x ∈ ∂Ω. (2.5)

Obviously, (2.5) admits a uniform solution Ŝ > 0, and (Ŝ , 0) is a unique disease-free equilibrium of
(1.3), which we call as DFE.

We then define the basic reproduce number R0:

R0 = sup
ϕ∈H1(Ω),ϕ,0

{ ∫
Ω

βŜ
c+Ŝ
· ϕ2dx∫

Ω
dI |∇ϕ|2 + (γ + µ)ϕ2dx

}
. (2.6)

Indeed, one can follow the idea of next generation operators in [35] to introduce the basic reproduction
number, which coincides with the value R0.

It should be noticed that the basic reproduction number R0 defined by (2.6) implicitly depends on
the diffusion rate dS of the susceptible population; this qualitatively differs from the basic reproduction
number R0 defined in [1] and [12].

Let λ0 be the principal eigenvalue of the following eigenvalue problem
dI∆ψ −

(
γ + µ −

βŜ
c + Ŝ

)
ψ + λψ = 0, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(2.7)

Then, we have the following proposition; the proof is the same as [1, Lemma 2.3] and is omitted here.

Proposition 2.3. The following statements hold.

(a) R0 is a monotone decreasing function of dI with R0 → maxx∈Ω
βŜ

(c+Ŝ )(γ+µ)
as dI → 0 and R0 →∫

Ω

βŜ
(c+Ŝ )

/
∫

Ω
(γ + µ) as dI → ∞.

(b) If
∫

Ω

βŜ (x)
c+Ŝ (x)

dx <
∫

Ω
(γ(x) + µ(x))dx, and βŜ

c+Ŝ
− (γ + µ) changes sign, then there exists a threshold

value d∗I ∈ (0,∞) so that R0 < 1 for dI > d∗I and R0 > 1 for dI < d∗I .
(c) If

∫
Ω

βŜ (x)
c+Ŝ (x)

dx ≥
∫

Ω
(γ(x) + µ(x))dx, then R0 > 1 for all dI .

(d) R0 > 1 when λ∗ < 0, R0 = 1 when λ∗ = 0, and R0 < 1 when λ∗ > 0.
(e) R0 is a monotone decreasing function of c, and R0 < 1 if c > c∗ for some c∗ ≥ 0.

Proposition 2.4. If R0 > 1 then the DFE (Ŝ , 0) is unstable, and if R0 < 1, it is stable.

The proof of Proposition 2.4 is similar to the proof of [1, Lemma 2.4] and hence the details are
omitted.

In view of (2.3) of Lemma 2.2, we can establish the uniform persistence of (1.3) when R0 > 1. In
fact, according to the theory developed by Magal and Zhao (see [36, Theorem 4.5] or [37]), we can
conclude the following theorem.

Theorem 2.5. If R0 > 1, then there exists some real number η > 0 independent of the initial data, such
that any solution (S , I) of (1.3) satisfies

lim inft→∞ S (x, t) ≥ η and lim inft→∞ I(x, t) ≥ η uniformly for x ∈ Ω,

and hence, the disease persists uniformly. Furthermore, (1.3) admits at least one EE when R0 > 1.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 418–441.
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3. Global attractivity of the DFE and EE

This section is devoted to the study of the global attractivity of the DFE and EE of (1.3). In the
first subsection, we obtain the global attractivity of the DFE in the the nonhomogeneous environment.
In the second subsection, we will derive that the global attractivity of the EE in the homogeneous
environment.

3.1. Global attractivity of the DFE

For later purpose, we need a useful lemma; see [38, Lemma 2.5.1].

Lemma 3.1. Let a1 and a2 > 0 be any constants. Assume that ϕ, ψ ∈ C1([a1,∞)), ψ(t) ≥ 0 in [a1,∞)
and ϕ is bounded from below. If ϕ′(t) ≤ −a2ψ(t) and ψ′(t) ≤ K in [a1,∞) for some constant K, then
limt→∞ ψ(t) = 0.

Our main result of this subsection reads as follows.

Theorem 3.2. The DFE (Ŝ , 0) is globally attractive if one of the following conditions holds:

(i) β(x) ≤ γ(x) + µ(x), ∀x ∈ Ω;
(ii) c > c∗ for some constant c∗ > 0.

Proof. We first handle case (i). To verify our result, we construct the following Lyapunov function

V(t) =
1
2

∫
Ω

I2(x, t)dx, ∀t ≥ 0.

Hereafter (S , I) is the solution of (1.3).
Then some elementary calculation yields

V ′(t) =

∫
Ω

I
∂I
∂t

dx

=

∫
Ω

I
[
dI∆I +

β(x)S I
c + S + I

− (γ(x) + µ(x))I
]
dx

= −

∫
Ω

|∇I|2dx +

∫
Ω

β(x)S
c + S + I

I2dx −
∫

Ω

(γ(x) + µ(x))I2dx

≤ −

∫
Ω

|∇I|2dx +

∫
Ω

β(x)I2dx −
∫

Ω

(γ(x) + µ(x))I2dx

≤ −(γ(x) + µ(x) − β(x))∗

∫
Ω

I2dx ≤ 0.

This motivates us to define

ψ(t) = (γ(x) + µ(x) − β(x))∗

∫
Ω

I2dx ≥ 0, t ≥ 0.

Due to the Lemma 2.2, we know that both ‖S (·, t)‖L∞(Ω) and ‖I(·, t)‖L∞(Ω) are bounded. Thus, by [39,
Theorem A2], we have

‖S (·, t)‖C2+α(Ω) + ‖I(·, t)‖C2+α(Ω) ≤ C0, ∀t ≥ 1, (3.1)
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for some constant C0 > 0. In addition, using the second equation of (1.3), we can see that ψ′(t) is
bounded from above for t ∈ [1,∞). In view of Lemma 3.1 (by taking ϕ(t) = V(t)), we can conclude
that

I(·, t) −→ 0 in L2(Ω), as t → ∞. (3.2)

Moreover, in light of (3.1), it is clear that the set {I(·, t) : t ≥ 1} is compact in C2(Ω). Combining this
fact with (3.2), we assert that

I(·, t) −→ 0 in C2(Ω), as t → ∞.

Thus, for any small ε > 0, it follows that

I(x, t) ≤ ε, ∀x ∈ Ω, t ≥ T,

for some large T .
Using the above fact, it is easy to find that S is a lower solution of the following parabolic problem:

∂w
∂t
− dS ∆w = a(x) − µ(x)w + εγ∗, x ∈ Ω, t > T,

∂w
∂ν

= 0, x ∈ ∂Ω, t > T,

w(x,T ) = S (x,T ), x ∈ Ω.

(3.3)

Let w1 be the solution of (3.3). Then by the comparison principle, we have

S (x, t) ≤ w1(x, t), ∀x ∈ Ω, t ≥ T.

Similarly, we can find that S is an upper solution to

∂w
∂t
− dS ∆w = a(x) − µ(x)w − εβ∗, x ∈ Ω, t > T,

∂w
∂ν

= 0, x ∈ ∂Ω, t > T,

w(x,T ) = S (x,T ), x ∈ Ω.

(3.4)

Thus, by letting w2 be the solution of (3.4), we have

S (x, t) ≥ w2(x, t), ∀x ∈ Ω, t ≥ T.

It is standard to show that problem (3.3) and problem (3.4) exist a unique positive steady state,
denoted by Ŝ −(ε, x) and Ŝ +(ε, x), respectively. Moreover, we have

w1(x, t)→ Ŝ −(ε, x) and w2(x, t)→ Ŝ +(ε, x) uniformly on Ω, as t → ∞,

On the other hand, it is easy to check that

Ŝ −(ε, x), Ŝ +(ε, x)→ Ŝ (x) uniformly for x ∈ Ω, as ε→ 0.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 418–441.
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According to the arbitrariness of ε, we conclude that

S (x, t)→ Ŝ (x) uniformly on Ω, as t → ∞.

This proves our assertion in case (i).
We next consider case (ii). First of all, one can check the proof of Lemma 2.2 and claim that

S (x, t) ≤ C0, ∀x ∈ Ω, t ≥ 0, (3.5)

for some positive constant C0, depending on the initial data but independent of c ≥ 0. Hence, by (3.5),
it is easily noticed that I is a lower solution of the following parabolic problem:

∂w
∂t
− dI∆w =

β(x)C0

c + C0
w − [γ(x) + µ(x)]w, x ∈ Ω, t > 0,

∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

w(x, 0) = I0(x), x ∈ Ω.

(3.6)

Let w3 be the solution of (3.6). Since C0 does not depend on c, one can take c to be large so that

β(x)C0

c + C0
− [γ(x) + µ(x)] < 0, ∀x ∈ Ω.

Then, a simple analysis, together with the parabolic comparison principle, shows that

I(x, t) ≤ w3(x, t)→ 0 uniformly for x ∈ Ω, as t → ∞.

Now, in view of the above assertion, a similar argument as in case (i) allows us to conclude that

S (x, t)→ Ŝ (x) uniformly on Ω, as t → ∞.

This proves our assertion in case (ii). The proof is complete.
�

3.2. Global attractivity of the EE

In this subsection, we will consider the global attractivity of the EE by assuming that all of the
parameters a, β, µ and γ are positive constant (that is, the environment is spatially homogeneous).

In this situation, in view of (3.1), we can see that the unique DFE is given by (Ŝ , 0) = ( a
µ
, 0). And

the unique EE (S̃ , Ĩ) exists if and only if R0 =
β a
µ

(γ+µ)(c+ a
µ ) > 1, where

S̃ =
(γ + µ)(c + a

µ
)

β
=

1
R0
·

a
µ
, Ĩ =

a
µ
−

1
β

(µ + γ)(c +
a
µ

) =
(γ + µ)(c + a

µ
)

β
(R0 − 1).

Our result is stated as follows.

Theorem 3.3. Assume that the parameters a, β, µ and γ are positive constant and dS = dI . If R0 > 1,
then the EE (S̃ , Ĩ) is globally attractive.
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Proof. By setting dS = dI = d, we construct the following Lyapunov functional

W(t) =

∫
Ω

M(S (x, t), I(x, t))dx, ∀t > 0,

where

M(S , I) = (S − S̃ ) + (I − Ĩ) − (c + S̃ + Ĩ) ln
c + S + I
c + S̃ + Ĩ

+
2µ(c + S̃ + Ĩ)
β(c + Ĩ)

(
I − Ĩ − Ĩ ln

I
Ĩ

)
.

For simplicity, we note

g1(S , I) = a − µS − β
S I

c + S + I
+ γI, g2(S , I) = β

S I
c + S + I

− (γ + µ)I.

Then simple calculation gives

W ′(t) =

∫
Ω

[MS (S , I)S t + MI(S , I)It] dx

= d
∫

Ω

[MS (S , I)∆S + MI(S , I)∆I] dx

+

∫
Ω

[
MS (S , I)g1(S , I) + MI(S , I)g2(S , I)

]
dx.

Moreover, integrating by parts, we have∫
Ω

MS (S , I)∆S dx = −

∫
Ω

[
MS S (S , I) |∇S |2 + MS I(S , I)∇S · ∇I

]
dx,

∫
Ω

MI(S , I)∆Idx = −

∫
Ω

[
MIS (S , I)∇S · ∇I + MII(S , I) |∇I|2

]
dx.

It is easy to see that

MS S = MS I = MIS =
c + S̃ + Ĩ

(c + S + I)2 , MII =
c + S̃ + Ĩ

(c + S + I)2 +
2µ(c + S̃ + Ĩ)Ĩ
β(c + Ĩ)I2

.

Thus

d
∫

Ω

[MS (S , I)∆S + MI(S , I)∆I] dx

= −d
∫

Ω

{
c + S̃ + Ĩ

(c + S + I)2 |∇S |2 + 2
c + S̃ + Ĩ

(c + S + I)2∇S · ∇I

+

[
c + S̃ + Ĩ

(c + S + I)2 +
2µ(c + S̃ + Ĩ)Ĩ
β(c + Ĩ)I2

]
|∇I|2

}
dx

= −d
∫

Ω

{
c + S̃ + Ĩ

(c + S + I)2 |∇(S + I)|2 +
2µ(c + S̃ + Ĩ)Ĩ
β(c + Ĩ)I2

|∇I|2
}

dx
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≤ 0. (3.7)

In addition, by direct computations, we have

MS (S , I)g1(S , I) + MI(S , I)g2(S , I)

=
(
1 −

c + S̃ + Ĩ
c + S + I

)
g1 +

[
1 −

c + S̃ + Ĩ
c + S + I

+
2µ(c + S̃ + Ĩ)
β(c + Ĩ)

(
1 −

Ĩ
I

)]
g2

=
(
1 −

c + S̃ + Ĩ
c + S + I

)
(g1 + g2) +

2µ(c + S̃ + Ĩ)
β(c + Ĩ)

(
1 −

Ĩ
I

)
g2

=
(
1 −

c + S̃ + Ĩ
c + S + I

)
(a − µS − µI) +

2µ(c + S̃ + Ĩ)
β(c + Ĩ)

(
1 −

Ĩ
I

)[ βS I
c + S + I

− (γ + µ)I
]

=
(S − S̃ ) + (I + Ĩ)

c + S + I
[−µ(S − S̃ ) − µ(I − Ĩ)] +

2µ(c + S̃ + Ĩ)
β(c + Ĩ)

(I − Ĩ)
( βS
c + S + I

−
βS̃

c + S̃ + Ĩ

)
= −µ

[(S − S̃ ) + (I + Ĩ)]2

c + S + I
+

2µ(c + S̃ + Ĩ)
c + Ĩ

(I − Ĩ)
( S
c + S + I

−
S̃

c + S̃ + Ĩ

)
= −µ

(S − S̃ )2

c + S + I
−

2µ(S − S̃ )(I − Ĩ)
c + S + I

−
µ(I − Ĩ)2

c + S + I

+
2µ(c + S̃ + Ĩ)

c + Ĩ
(I − Ĩ)

(c + Ĩ)(S − S̃ ) − S̃ (I − Ĩ)
(c + S + I)(c + S̃ + Ĩ)

= −µ
(S − S̃ )2

c + S + I
−

2µ(S − S̃ )(I − Ĩ)
c + S + I

−
µ(I − Ĩ)2

c + S + I
+

2µ(S − S̃ )(I − Ĩ)
c + S + I

−
2µS̃ (I − Ĩ)2

(c + Ĩ)(c + S + I)

= −µ
(S − S̃ )2

c + S + I
−
µ(I − Ĩ)2

c + S + I
−

2µS̃ (I − Ĩ)2

(c + Ĩ)(c + S + I)
≤ 0.

Here, we have used the fact:

a = µ(S̃ + Ĩ), γ + µ =
βS̃

c + S̃ + Ĩ
.

According to (3.7), we thus derive that W ′(t) ≤ 0, ∀t > 0 along all trajectories. By a standard argument,
we can obtain

(S (·, t), I(·, t))→ (S̃ , Ĩ) in
[
L2(Ω)

]2
, as t → ∞.

Due to the Lemma 2.2, we know that both ‖S (·, t)‖L∞(Ω) and ‖I(·, t)‖L∞(Ω) are bounded. As a conse-
quence, by [39, Theorem A2], we have

‖S (·, t)‖C2+α(Ω) + ‖I(·, t)‖C2+α(Ω) ≤ C0, ∀t ≥ 1,

Thus, {(S (·, t), I(·, t)) : t ≥ 1} is compact in C2(Ω) × C2(Ω). Then, combining this with the above
L2-convergence, we obtain that

(S (·, t), I(·, t))→ (S̃ , Ĩ) in
[
C2(Ω)

]2
, as t → ∞.

Thus, the EE (S̃ , Ĩ) is globally attractive. �
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4. Asymptotic profiles of the EE

In this section, we consider the asymptotic behavior of the positive solution of the following elliptic
system: 

−dS ∆S = a(x) − µ(x)S −
β(x)S I

c + S + I
+ γ(x)I, x ∈ Ω,

−dI∆I =
β(x)S I

c + S + I
− [γ(x) + µ(x)]I, x ∈ Ω,

∂S
∂ν

=
∂I
∂ν

= 0, x ∈ ∂Ω,

(4.1)

when dS or dI goes to zero.

4.1. The case of dS → 0

Via a singular perturbational argument, it is easily seen that (2.5) has a unique positive solution Ŝ
which converges uniformly to Ŝ 1(x) =

a(x)
µ(x) as dS → 0. We also recall that λ0 is the principal eigenvalue

of problem (2.7). Then, it follows that

λ0 → λ̃, as dS → 0,

where λ̃ is the principle eigenvalue of the following eigenvalue problem
dI∆ψ −

(
γ + µ −

βŜ 1

c + Ŝ 1

)
ψ + λψ = 0, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(4.2)

In order to ensure that the elliptic system (4.1) admits a positive solution, we always assume λ̃ < 0
in this subsection. Then, we will investigate the asymptotic behavior of positive solution of (4.1) as
dS → 0 while dI > 0 is fixed.

Theorem 4.1. Fix dI > 0 and assume that λ̃ < 0. Let dS → 0, then every positive solution (S dS , IdS ) of
(4.1) satisfies (up to a subsequence of dS → 0)

(S dS , IdS )→ (WS ,WI) uniformly on Ω,

where

WS (x) = J(x,WI(x))

:=
1
2

{
a + γWI

µ
− (c + WI) −

βWI

µ

+

√[a + γWI

µ
− (c + WI) −

βWI

µ

]2
+

4(a + γWI)(c + WI)
µ

}
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and WI is a positive solution of
−dI∆WI =

β(x)J(x,WI)WI

c + J(x,WI) + WI
− [γ(x) + µ(x)]WI , x ∈ Ω,

∂WI

∂ν
= 0, x ∈ ∂Ω.

(4.3)

Proof. Mentioned as before, (4.1) has at least one EE for all small dS when λ̃ < 0. In what follows, we
divide the proof into three steps to derive the conclusion.

Step 1. A priori bounds for S , I. Integrating the first and the second equation of (4.1) over Ω,
respectively, we have∫

Ω

[
µ(x)S + β(x)

S I
c + S + I

]
dx =

∫
Ω

a(x)dx +

∫
Ω

γ(x)Idx (4.4)

and ∫
Ω

β(x)
S I

c + S + I
dx =

∫
Ω

[γ(x) + µ(x)]Idx. (4.5)

Inserting (4.5) into (4.4) gives∫
Ω

µ(x)Idx +

∫
Ω

µ(x)S dx =

∫
Ω

a(x)dx. (4.6)

From (4.6), we get ∫
Ω

Idx +

∫
Ω

S dx ≤
|Ω|a∗

µ∗
. (4.7)

It is obvious that the L1-bounds of S and I are independent of both dS and dI .
We write the I-equation as follows

∆I +
1
dI

[ β(x)S
c + S + I

− γ(x) − µ(x)
]
I = 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω.
(4.8)

Then, we apply the Harnack-type inequality (refer to [40] or [41, Lemma 2.2]) to (4.8) to assert that

max
Ω

I ≤ C min
Ω

I. (4.9)

Hereafter, the positive constant C is independent of dS > 0, and it may vary from place to place.
By (4.7) and (4.9), we can derive

I(x) ≤ max
Ω

I ≤ C min
Ω

I ≤
C
|Ω|

∫
Ω

Idx ≤ C, ∀x ∈ Ω. (4.10)
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Step 2. Convergence of I. From (4.10), we get∥∥∥∥∥ 1
dI

[ β(x)S
c + S + I

− γ(x) − µ(x)
]
I
∥∥∥∥∥

Lp(Ω)
≤ C, ∀ p > 1.

Applying the standard Lp-estimate for elliptic equations ( [42]), it follows that

‖I‖W2,p(Ω) ≤ C for any given p > 1.

Then, taking p to be sufficiently large and using the embedding theorem [42], we can see that

‖I‖C1+α(Ω) ≤ C for some 0 < α < 1.

Hence, there exist a subsequence of dS → 0, say di := dS ,i, satisfying di → 0 as i → ∞, and a
corresponding positive solution (S i, Ii) := (S dS ,i , IdS ,i) of (4.1) with dS = di, such that

Ii → WI uniformly on Ω, as i→ ∞, (4.11)

where WI ∈ C1(Ω) and WI ≥ 0. By (4.9), we know that

either WI ≡ 0 on Ω or WI > 0 on Ω. (4.12)

Suppose that WI ≡ 0. That is,

Ii → WI ≡ 0 uniformly on Ω, as i→ ∞.

Then for sufficiently small ε with 0 < ε < minx∈Ω a(x), we have 0 ≤ Ii(x) ≤ ε,∀x ∈ Ω, for all large i.
Combining this fact with the first equation of (4.1), for all large i, one sees that (S i, Ii) satisfies

−di∆S i ≤ a(x) − µ(x)S i + εγ∗, x ∈ Ω;
∂S i

∂ν
= 0, x ∈ ∂Ω.

This leads us to consider the following auxiliary system:

− di∆S i = a(x) − µ(x)S i + εγ∗, x ∈ Ω;
∂S i

∂ν
= 0, x ∈ ∂Ω. (4.13)

It is clear that (4.13) admits a unique positive solution, denoted by ui. A simple upper and lower
solution argument guarantees that

S i ≤ ui on Ω, for all large i. (4.14)

Similarly, for all large i, (S i, Ii) satisfies

−di∆S i ≥ a(x) − µ(x)S i − εβ
∗, x ∈ Ω;

∂S i

∂ν
= 0, x ∈ ∂Ω.

We also consider the following auxiliary system:

− di∆S i = a(x) − µ(x)S i − εβ
∗, x ∈ Ω;

∂S i

∂ν
= 0, x ∈ ∂Ω. (4.15)
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Let vi denote the unique positive solution of (4.15). Similarly as before, we have

S i ≥ vi on Ω, for all large i. (4.16)

By a singular perturbation argument as in [43, Lemma 2.4], it is easy to show that

ui →
a(x) + εγ∗

µ(x)
, vi →

a(x) − εβ∗

µ(x)
uniformly on Ω, as i→ ∞.

Hence, sending i→ ∞, by (4.14) and (4.16), we find

a(x) − εβ∗

µ(x)
≤ lim inf

i→∞
S i(x) ≤ lim sup

i→∞
S i(x) ≤

a(x) + εγ∗

µ(x)
on Ω.

Due to the arbitrariness of ε, we obtain that

S i →
a(x)
µ(x)

uniformly on Ω, as i→ ∞. (4.17)

We now consider the second equation of (4.1) and then know that Ii satisfies

− dI∆Ii =
β(x)S iIi

c + S i + Ii
− [γ(x) + µ(x)]Ii, x ∈ Ω;

∂Ii

∂ν
= 0, x ∈ ∂Ω. (4.18)

Define Îi := Ii
‖Ii‖L∞(Ω)

. Then ‖Îi‖L∞(Ω) = 1 for all i ≥ 1, and Îi solves

− dI∆Îi = [
β(x)S i

c + S i + Ii
− γ(x) + µ(x)]Îi, x ∈ Ω;

∂Ii

∂ν
= 0, x ∈ ∂Ω. (4.19)

As before, using the standard compactness argument for the elliptic equation, after passing to a further
subsequence if necessary, we assume that

Îi → Î in C1(Ω), as i→ ∞,

where Î ∈ C1(Ω) with Î ≥ 0 on Ω and ‖Î‖L∞(Ω) = 1.
Together with the fact Ii → 0 uniformly on Ω as i → ∞, from (4.17) and (4.19), one can show that

Î fulfills

− dI∆Î =
[β(x) a(x)

µ(x)

c +
a(x)
µ(x)

− γ(x) + µ(x)
]
Î, x ∈ Ω;

∂Î
∂ν

= 0, x ∈ ∂Ω. (4.20)

Applying the Harnack-type inequality ( [40] or [41, Lemma 2.2]) to (4.20), we obtain Î > 0 on Ω. This
implies that λ̃ of the eigenvalue problem (4.2) must be zero. It contradicts our assumption that λ̃ < 0.
Hence, the latter always holds in (4.12). That is

Ii → WI > 0 uniformly on Ω, as i→ ∞. (4.21)

Step 3. Convergence of S . Observe that S i fulfills
−di∆S i = a(x) − µ(x)S i −

β(x)S iIi

c + S i + Ii
+ γ(x)Ii, x ∈ Ω,

∂S i

∂ν
= 0, x ∈ ∂Ω.
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From (4.21), given any small ε > 0, it holds

0 < WI − ε ≤ Ii ≤ WI + ε, ∀x ∈ Ω, (4.22)

for all large i. For simplicity, denote W±,I = WI ± ε. Hence, we have

a − µS i −
βS iIi

c + S i + Ii
+ γIi ≤ a − µS i −

βS iW−,I
c + S i + W−,I

+ γW+,I

= µ
(J1,ε

+ (x,WI(x)) − S i)(S i − J1,ε
− (x,WI(x)))

c + S i + (WI − ε)
,

where

J1,ε
± (x,WI(x)) =

1
2

{
a + γW+,I

µ
− (c + W−,I) −

βW−,I
µ

±

√[a + γW+,I

µ
− (c + W−,I) −

βW−,I
µ

]2
+

4(a + γW+,I)(c + W−,I)
µ

}
,

for all large i.
Notice that J1,ε

+ > 0 and J1,ε
− < 0 on Ω. Then, given large i, we consider the following auxiliary

elliptic problem: 
−di∆z = µ

(J1,ε
+ (x,WI(x)) − z)(z − J1,ε

− (x,WI(x)))
c + z + W−,I

, x ∈ Ω,

∂z
∂ν

= 0, x ∈ ∂Ω.

(4.23)

It is easily observed that S i is a lower solution of (4.23). And any sufficiently large constant C > 0
satisfies S i ≤ C is an upper solution of (4.23). Therefore, (4.23) admits at least one positive solution,
denoted by Zi, which satisfies S i ≤ Zi ≤ C on Ω. By similar arguments as in the proof of [43, Lemma
2.4], we find that

Zi −→ J1,ε
+ (x,WI(x)) uniformly on Ω as i→ ∞.

Since S i is a lower solution of (4.23), we have

lim sup
i→∞

S i(x) ≤ J1,ε
+ (x,WI(x)) uniformly on Ω. (4.24)

On the other hand, from (4.22), for all large i, we have

a − µS i −
βS iIi

c + S i + Ii
+ γIi ≥ a − µS i −

βS iW+,I

c + S i + W+,I
+ γW−,I

= µ
(J1,ε

+ (x,WI(x)) − S i)(S i − J1,ε
− (x,WI(x)))

c + S i + (WI + ε)
,

where

J2,ε
± (x,WI(x)) =

1
2

{
a + γW−,I

µ
− (c + W+,I) −

βW+,I

µ
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±

√[a + γW−,I
µ

− (c + W+,I) −
βW+,I

µ

]2
+

4(a + γW−,I)(c + W+,I)
µ

}
,

with J2,ε
+ (x,WI(x)) > 0 and J2,ε

− (x,WI(x)) < 0 on Ω.
As before, for any given large i, we also consider the following auxiliary elliptic problem:

−di∆z = µ
(J2,ε

+ (x,WI(x)) − z)(z − J2,ε
− (x,WI(x)))

c + z + W+,I
, x ∈ Ω,

∂z
∂ν

= 0, x ∈ ∂Ω.

(4.25)

Observe that S i and 0 is a pair of upper and lower solution of (4.25). Hence, we can assert that (4.25)
admits at least one positive solution. Using a similar argument as before, we further get

lim inf
i→∞

S i(x) ≥ J2,ε
+ (x,WI(x)) uniformly on Ω. (4.26)

Notice that
J1,0

+ (x,WI(x)) = J2,0
+ (x,WI(x)) = J(x,WI(x)).

Due to the arbitrariness of ε, by (4.24) and (4.26), we derive that

S i(x)→ J(x,WI(x)) uniformly for x ∈ Ω, as i→ ∞.

In addition, by (4.18), we can easily see that WI satisfies (4.3). The proof is complete.
�

4.2. The case of dI → 0

In this subsection, we will analyze the asymptotic behavior of positive solution of (4.1) as dI → 0
with dS > 0 being fixed. According to Proposition 2.3(a) and Theorem 2.5, we need to assume that
{β(x)Ŝ (x)/c + Ŝ (x) > γ(x) + µ(x) : x ∈ Ω} is nonempty so that (4.1) has positive solution for all
small di.

As usual, we denote g+ = max {g, 0}. Our main result can be stated as follows.

Theorem 4.2. Fix dS > 0 and assume that {β(x)Ŝ (x)/c + Ŝ (x) > γ(x) + µ(x) : x ∈ Ω} is nonempty. Let
dI → 0, then every positive solution

(
S dI , IdI

)
of (4.1) fulfills(

S dI , IdI

)
→ (WS ,W I) uniformly on Ω,

where WS is the unique positive solution of
−dS ∆WS = a(x) − µ(x)WS −

β(x)WS W I

c + WS + W I + γ(x)W I , x ∈ Ω,

∂WS

∂ν
= 0, x ∈ ∂Ω,

(4.27)

and W I is a nonnegative function

W I =

{
[β(x) − γ(x) − µ(x)]WS − c[γ(x) + µ(x)]

γ(x) + µ(x)

}+

. (4.28)

Mathematical Biosciences and Engineering Volume 17, Issue 1, 418–441.



435

Proof. We divide the proof into four steps for clarity. In the following, let us denote m to be a positive
constant which does not depend on dI > 0 and may vary from line to line.

Step 1. Lower bound of S . Pick x1 ∈ Ω so that S (x1) = minΩ S (x). In light of the first equation of
(4.1), it follows from [44, Proposition 2.2] that

a(x1) − µ(x1)S (x1) −
β(x1)S (x1)I(x1)

c + S (x1) + I(x1)
+ γ(x1)I(x1) ≤ 0. (4.29)

By (4.29), we obtain

a∗ < a(x1) + γ(x1)I(x1) ≤ µ(x1)S (x1) +
β(x1)S (x1)I(x1)

c + S (x1) + I(x1)
≤ µ∗S (x1) + β∗S (x1),

from which we further have
S (x) ≥ S (x1) ≥

a∗
µ∗ + β∗

> 0. (4.30)

Step 2. W1,q-bound of S for some q ≥ 1. We now write the S -equation as
−dS ∆S + [µ(x) −

β(x)I
c + S + I

]S = a(x) + γ(x)I, x ∈ Ω,

∂S
∂ν

= 0, x ∈ ∂Ω.
(4.31)

From (4.7), we derive
∫

Ω
|a(x) + γ(x)I|dx ≤ m. Hence, by the L1-estimate theory for elliptic equations

(see [45, Lemma 2.2] or [46]), we get

‖S ‖W1,q(Ω) ≤ m, ∀ q ∈ [1,N/(N − 1)), (or ∀ 1 ≤ q < ∞ if N = 1). (4.32)

Step 3. Lp-bound of S and I. In view of (4.32), by the Sobolev embedding theorem, we can see that
W1,q(Ω) is compactly embedded into Lp0(Ω), ∀p0 ∈ [1,N/(N − q)). This implies that

‖S ‖Lp0 (Ω) ≤ m, ∀ 1 < p0 ≤
Nq

N − q
.

As q is close to N/(N − 1), it is clear that

‖S ‖Lp0 (Ω) ≤ m, ∀ 1 < p0 <
N

N − 2
. (4.33)

Notice that (4.33) holds for any 1 < p0 < ∞ when N = 2.
We now multiply the second equation of (4.1) by Ik for any fixed k > 0 and then integrate by parts

to obtain that

0 ≤ dIk
∫

Ω

Ik−1 |∇I|2 dx =

∫
Ω

β(x)S Ik+1

c + S + I
dx −

∫
Ω

[γ(x) + µ(x)]Ik+1dx.

By direct calculation, we get

[γ∗ + µ∗]
∫

Ω

Ik+1dx ≤ β∗
∫

Ω

S Ik+1

c + S + I
dx. (4.34)
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Taking 1
p0

+ 1
q0

= 1 (notice 1
q0−1 = p0 − 1) and k0 = 1

q0
, by (4.7), (4.33), (4.34) and Hölder inequality,

we have

[γ∗ + µ∗]
∫

Ω

Ik0+1dx ≤ β∗
∫

Ω

S Ik0+1

c + S + I
dx ≤ β∗

(∫
Ω

S p0dx
)1/p0

(∫
Ω

Idx
)1/q0

≤ m.

This means that
‖I‖Lk0+1(Ω) ≤ m. (4.35)

Then, we take k1 = (k0 + 1)/q0 = 1/q0 + 1/q2
0 . As before, by (4.34) and Hölder inequality, together

(4.33) and (4.35), we infer that

[γ∗ + µ∗]
∫

Ω

Ik1+1dx ≤ β∗
∫

Ω

S Ik1+1

c + S + I
dx ≤ β∗

(∫
Ω

S p0dx
)1/p0

(∫
Ω

Idx
)1/q0

≤ m,

that is,
‖I‖Lk1+1(Ω) ≤ m.

Repeating the iteration as above, we can easily see that

‖I‖Lk∞+1(Ω) ≤ m, (4.36)

where
k∞ =

1
q0

+
1
q2

0

+
1
q3

0

+ · · · =
1

q0 − 1
= p0 − 1.

Notice that (4.36) can be deduced through finitely many times of iterations with the help of (4.33).
Thus, we deduce

‖I‖Lp0 (Ω) ≤ m. (4.37)

Combining (4.33) and (4.37), from the equation (4.31) by using the well-known Lp-theory, one can
assert that

‖S ‖W2,p0 (Ω) ≤ m.

By the Sobolev embedding theorem again, W2,p0(Ω) is compactly embedded into Lp1(Ω), ∀p1 ∈

(1,N p0/(N − 2p0)). Observe that N p0
N−2p0

→ N
N−4 as p0 →

N
N−2 (see (4.33)). Thus, we have

‖S ‖Lp1 (Ω) ≤ m, ∀ 1 < p1 <
N

N − 4
or ∀ 1 < p1 < ∞ if N ≤ 4.

By a similar argument as in deducing (4.37), one gets

‖I‖Lp1 (Ω) ≤ m.

Making use of (4.31), the Sobolev embedding theorem and the well-known Lp-theory repeatedly, we
can eventually conclude that

‖S ‖Lp(Ω), ‖I‖Lp(Ω) ≤ m, ∀ 1 ≤ p < ∞. (4.38)

Step 4. Convergence of S and I. According to (4.38), for the equation (4.31), it holds that

‖S ‖W2,p(Ω) ≤ C, ∀ 1 < p < ∞.
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Then taking sufficiently large p, the standard embedding theorem enables us to conclude that, up to a
sequence of dI → 0, denoted by d j := dI, j, with d j → 0 as j→ ∞, the corresponding positive solution
sequence (S j, I j) := (S dI, j , IdI, j) of (4.1) with dI = dI, j fulfills

S j → WS in C1(Ω), as j→ ∞, (4.39)

where WS ∈ C1(Ω) and WS > 0 on Ω due to (4.30). Observe that I j fulfills
−d j∆I j =

β(x)S jI j

c + S j + I j
− [γ(x) + µ(x)]I j, x ∈ Ω,

∂I j

∂ν
= 0, x ∈ ∂Ω.

(4.40)

In light of (4.39) and (4.40), using a simple upper and lower solution similarly as in step 3 of Theo-
rem 4.1, we have

I j → W I in C1(Ω), as j→ ∞,

where W I is given by (4.28).
It is clear that WS satisfies (4.27). Moreover, by the expression of W I , we can see that (4.27) admits

a unique positive solution (refer to [47, Lemma A.1]). Thus, we can conclude that all the above limits
hold without passing to a subsequence. This proof is complete.

�

5. Discussion

In this paper, we have studied the SIS reaction-diffusion model (1.3) in which we have taken into
account the natural mortality of the susceptible and infected populations. First of all, we have estab-
lished the uniform bounds of solution to (1.3); see Lemma 2.1 and Lemma 2.2. Then, we define the
basic reproduction number R0 associated with (1.3):

R0 = sup
ϕ∈H1(Ω),ϕ,0

{ ∫
Ω

βŜ
c+Ŝ

ϕ2dx∫
Ω

dI |∇ϕ|2 + (γ + µ)ϕ2dx

}
.

It is worth mentioning that R0 depends on the diffusion rates dS and dI when c > 0, while R0

depends only on the diffusion rate dI when c = 0. Thus, compared with the model (1.2) (i.e., c = 0),
the parameters dS and c play vital roles in the dynamics of the infectious disease in (1.3). In particular,
we have proved that R0 is decreasing with respect to c ∈ [0,∞), and when c is larger than a value, the
basic reproduction number R0 < 1 so that the disease dies out in the long run; see Theorem 3.2(ii).

In another special case that β(x) ≤ γ(x) + µ(x), ∀x ∈ Ω, we have proved the global stability of the
disease-free equilibrium via a Lyapunov function method; see Theorem 3.2. On the other hand, when
the spatial environment is homogeneous, that is, all the parameters in (1.3) are positive constants, we
have shown the global stability of the endemic equilibrium provided that the diffusion rates are equal
and the basic reproduction number R0 > 1; see Theorem 3.3. This result means that the disease will
persist all the time. In the general situation of spatially heterogeneous environment, once R0 > 1, the
uniform persistence property has been proved so that the disease exists eventually in the whole habitat;
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refer to Theorem 2.5. We suspect that the uniform persistence property holds if R0 > 1 whereas the
disease extinction occurs if R0 ≤ 1; this is a challenging problem and deserves future investigation.

According to Theorem 2.5 as well as the above discussion, once R0 > 1, (1.3) has an endemic
equilibrium exists and the infectious disease will uniformly persist in space, and vice versa. Therefore,
it becomes important to understand how the heterogeneity of spatial environment and the mobility of
population dispersal (reflected by the change of the migration rates dI and dS ) prescribe the spatial
profile of the endemic equilibrium, because this will help decision-makers to predict the pattern of
disease occurrence and henceforth to conduct effective/optimal control strategies of disease eradication.
This leads us to explore the asymptotic behavior of endemic equilibrium with respect to small diffusion
rate dS or dI , which in turn will tell us the spatial distribution of susceptible and infected population

Theorems 4.1 and 4.2 show that as the mobility of the susceptible or infected population goes to
zero, the infectious disease will always exist in space at least in some region. Especially, it follows
from Theorem 4.1 that the disease exists in the entire habitat even if the mobility of the susceptible
is restricted to be small enough. This result is in sharp contrast with that of (1.1), as shown in [1] by
Allen et al, where they proved that as the mobility of the susceptible goes to zero, the density of the
infected population will vanish and so the disease dies out eventually. However, Peng in [12] showed
that, for the model (1.2) which also includes the linear external source term Λ(x)−S , the density of the
infected population will not vanish when the mobility of the susceptible or infected population goes to
zero; that is, the infectious disease will always exist.

The above results suggest that simply controlling the migration rate of the susceptible or infected
population can not eliminate the disease modelled by (1.2) and (1.3). In other words, the presence of
the linear external source term Λ(x) − S enhances the persistence of disease and the infectious disease
will become more threatening and hard to control. As a consequence, in such a situation, more effective
measures should be taken to eradicate diseases.
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