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Abstract: Elasticity and viscosity of soft tissues can be obtained from the complex shear modulus
imaging (CSMI). CSMI is often used not only to investigate the structure of tissues but also to detect
tumors in tissues. One of the most popular ways to categorize the methods used in CSMI is into
quasi-static and dynamic methods. In the dynamic method, a force excitation is used to create the
shear wave propagation, and the particle velocities are measured to extract their amplitude and phase
at spatial locations. These parameters are then employed to directly or indirectly estimate the Complex
Shear Modulus (CSM) represented by elasticity and viscosity. Algebraic Helmholtz Inversion (AHI)
algorithm provides the direct estimation of CSM using the Finite Difference Time Domain (FDTD)
technique. The limitation of this method, however, is that the noise generated from measuring the
particle velocity strongly degrades the accuracy of the estimation. To overcome this problem, we
proposed in this paper an adaptive AHI (AAHI) algorithm that offers a good performance in CSMI
with a mean error of 2.06%.
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1. Introduction

Elasticity and viscosity are two tissue characteristic parameters; they can be used to detect tumors
in the human body [1]. In the last few decades, a number of researchers have adopted a detection
technique based on the tissue elasticity [2–7], namely the ultrasonic Shear Wave Elasticity Imaging
(SWEI). SWEI offers the possibility to image the elasticity of tissues and organs that the traditional
ultrasound cannot reach. Meanwhile, for a better understanding of the tissues, it would be beneficial to
simultaneously look at these two parameters due to the fact that certain tissues have similar elasticity
and different viscosity, for example, in Liver [1]. Many authors have developed different estimation
techniques for both the elasticity and viscosity [7–16].

Ultrasound Imaging and other methods such as Mammography, Clinical Examination and MR
Imaging can be used to diagnose the breast cancer [17]; among these, shear wave has recently been
employed to estimate CSM. In practice, the vibration force used to generate shear wave is in the range
50 − 250 Hz. In [15], the authors conducted an experiment in which they estimated the elasticity and
viscosity of a phantom sample. The true values of the elasticity and viscosity of a phantom sample
were known. The results showed that the true and the estimated values of the elasticity and viscosity
are quite closed at 150 Hz. In this paper, we propose using the same frequency of 150 Hz in order
to compare our results to the results of this study. The relationship between the speed and absorption
of shear wave is modeled by Greanleaf in [18]. In order to minimize the reflections, several authors
proposed using pulse excitation [19]. However, the influence of noise was more adverse than using
harmonic ones [20]. Another advantage of using harmonics is that a much larger amplitudes of shear
wave can be obtained. For these reasons, we used harmonic excitation in our work.

In 2004, the shear wave speed dispersion was established by Chen et al. using the relationship
between the propagation speed and the vibrating frequency; this speed dispersion was finally used
to estimate the CSM [8]. In 2007, Zheng et al. used the same technique proposed by Chen but
added a linear Kalman filter to minimize noise influence [20]. Recently, this method was used by
several authors [8, 10, 15, 20] where multiple datasets of distinct vibration frequencies must first be
obtained. In this paper, only a single-frequency excitation was needed, which tremendously improved
the acquisition time. Tran et al. [21] used the maximum likelihood ensemble filter for 1D to detect
tumors (if any) in the tissues. However, the propagation model using wave equation in [10, 14, 21] is
too simple to represent the actual propagation in heterogeneous tissues. In 2015, Qiuang et al. [22]
proposed a technique using Finite Element Method (FEM) to better produce numerical solutions for
the transversal shear wave propagation in any medium. However, FDTD is a more efficient method
with lower memory usage than FEM [23]. In [12], Orescanin et al. combined the FDTD method with
the AHI algorithm to estimate CSM. In this study, authors used a low-pass second-order Butterworth
filter to reduce the noise impact.

In our previous study [24], we integrated Least Mean Square (LMS) with AHI algorithms to esti-
mate 1D CSM. In fact, the 1D CSM estimation did not serve much purpose in the diagnosis. But the
findings of this study confirmed that the noise reduction of acquired data before estimating CSM will
produce better results. Thus, in this study, we proposed a method for 2D-CSM imaging of soft tissues
based on the integration between AHI and Normalize Least Mean Square (NLMS) algorithms. The
simulation scenarios were carried out in the MATLAB environment. An actuator was used to vibrate a
needle at the frequency of 150 Hz. This needle acted on the surface of tissue, leading to the generation
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and propagation of shear wave in the tissues. A Doppler device was then used to measure the particle
velocity of shear wave at 120 × 120 spatial locations. At each spatial location, the noise coming from
the measured particle velocity was reduced noise using NLMS. After that, CSM was directly estimated
by using the AHI algorithm. Finally, the 2D-CSM image was reconstructed. Our proposed method
NLMS/AHI offers a very low complexity compared to the previous methods. A scenario with a tumor
and noise environment was studied to evaluate the quality of the estimated CSM.

2. Method

2.1. Simulation model

The measurement system consisted of a vibrating needle, an actuator, and a Doppler ultrasound
device (see Figure 1). The actuator generated through a needle a mechanical vibration. Finally, we
assumed that the Doppler ultrasound device was used to measure the shear wave at each spatial location
in the region of interest [10]. In the later numerical simulation, the particle velocity which propagated
in tissues was modeled by using FDTD model. This particle velocity, after adding noises, simulated
the measured particle velocity (from the Doppler device). Thus the measured particle velocity was the
noisy particle velocity.

soft tissue

tumor

vibrating needle

Doppler ultrasound 

system

shear waves

shear waves

Actuator

Figure 1. Generation and measurement of shear wave.

In this paper, we estimated the elasticity µ and the viscosity η of the tissues, which were based on
the Kelvin—Voigt model as follows

G (x, y, ω) = µ (x, y) − iωη (x, y) , (2.1)

where ω is the angle frequency of the vibration signal, µ is the elasticity and η is the viscosity at the
spatial position (x,y).

A system of six first-order hyperbolic equations was used to describe wave propagation in 2D space
as shown in the following equations (2.2), (2.3), and (2.4) [12].

ρ∂tvz = ∂xσzx + ∂yσzy, (2.2)

∂tσzx = (µ + η∂t) ∂xvz, (2.3)
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∂tσzy = (µ + η∂t) ∂yvz, (2.4)

where vz is the particle velocity vector on the plane (x, y), σzx and σzy are two elements of the stress
tensor σ, ∂t denotes a partial derivative operator ∂/∂t which is applied to the parameters to the right
of the symbol, ∂x denotes a partial derivative operator ∂/∂x applied to the parameters to the right of
the symbol, ∂y denotes a partial derivative operator ∂/∂y applied to the parameters to the right of the
symbol, ρ is the density of the tissues.

We discretized vz, σzx and σzy in Eqs (2.2), (2.3) and (2.4) to obtain the following equations

vz (x, y, t) = vz (i∆x, j∆y, n∆t) = vn
z

∣∣∣i, j , (2.5)

σzx (x, y, t) = σzx (i∆x, j∆y, n∆t) = σn
zx

∣∣∣i, j , (2.6)

σzy (x, y, t) = σzy (i∆x, j∆y, n∆t) = σn
zy

∣∣∣i, j , (2.7)

where ∆x and ∆y are the distances between continuous spatial locations following the X-axis, and Y-
axis, respectively; ∆t is the sampling cycle, the index i denotes the spatial step following the X-axis,
the index j denotes the spatial step following the Y-axis, and the index n denotes the temporal step,
These parameters are illustrated in Figure 2.
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Figure 2. The particle velocity and stress tensor nodes on plane–(X,Y).

By applying the FDTD method in 2D medium, Equations (2.2), (2.3) and (2.4) are transformed into
Equations (2.8), (2.9) and (2.10), respectively.

vn+1
z |i, j = vn

z |i, j + ∆t
ρ∆x
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2
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2 , j
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2
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,

(2.8)
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(2.10)

The accuracy of numerical Eqs (2.8), (2.9) and (2.10) is the first order in time and space. The boundary
conditions were applied by using an absorption boundary layer. It will reduce the reflections. The
layer is defined by a loss profile chosen within a perfectly matched absorptive layer and the attenuation
factor τ which is given by [25]

τ(i) = τmax

(
i − ipml

Npml

)m

, (2.11)

where two constants are set as m = 2.15 and τmax = 0.11; the layer thickness in grid points Npml = 10;
and the term i − ipml indicates position within the perfectly matched absorptive layer.

2.2. Signal improvement using our proposed approach

FDTD and AHI can be used to directly estimate CSM at each point in the space (presented in detail
in section 2.3). In such an approach, one important point is to minimize the propagation of error,
which mean that the influence of measurement noise need to be reduced as much as before the direct
estimation. In our work, we propose to use adaptive filtering [26] which was proved to give a mean
error of 2.06%.

Figure 3 describes the LMS adaptive filter we used to eliminate noise from the noisy signal. The
adaptive filtering algorithm is described in Algorithm 1. The noisy particle velocity generation can be
described as follows: the Eqs (2.8), (2.9) and (2.10) were used to create the ideal particle velocity d(n)
in each spatial location. This signal was added by a Gaussian white noise v(n) to form a noisy particle
velocity vz(n). The level of noise which affected to the particle velocities at the different observed
locations was identical. Thus, the signal to noise ratio (SNR) reduced from the locations near to the
needle to the ones farthest away from the needle. In our simulation scenario, the average SNR of all
the spatial locations was 10.1 dB. The reference noise generation can be described as follows: when
the vibration needle stayed still, the measured signal was just the reference noise x(n) as indicated in
Figure 3. Note that x(n) was the Gaussian white noise that we measured when the vibration needle
stayed still, and v(n) was the Gaussian white noise that we measured when the vibration needle was
active. In Figure 3, Var variable was the estimated variance of noise in vz(n). Both x(n) and vz(n) were
applied to a filter in [27] (chapter 9, pages 505 to 515).

In practice, the shear wave was quickly attenuated with the distance from the position of the vibra-
tion needle. Due to this fact, the Signal-to-Noise Ratio (SNR) varied with the space points where we
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would like to estimate the CSM. The optimal step size, giving a trade-off between the speed of con-
vergence and residual error, depended on the SNR. Therefore, the commonly used modification of the
LMS algorithm was a normalized version of the step size. This leads to the normalized LMS (NLMS)
algorithm, in which the step size was scaled (divided) by an estimated power of the input data (i.e the
variable Var as shown in Figure 3). This observation required that we use a different step size β. The
complexity of this process suggested that we should use a simple structure for adaptive filtering with
fast convergence [28].

+

LMS

Noise Particle velocity

∑

( )x n

( )y n

( )zv n

( )zv n�

Var

( )v n
( )d n

Figure 3. Signal improvement using NLMS filter.

The NLMS algorithm which was used in this study is shown in Algorithm 1 below. We adjusted the
step size at each spatial location using the formula β =

β1
(ε+Var) , where β1 and ε are constant, and Var is

the variance of vz(n) which was estimated at each spatial location as shown in Figure 3.

2.3. 2D–CSM Imaging using NLMS/AHI algorithm

The filtered particle velocity was brought to the AHI algorithm [29] to directly estimate the CSM.
We assumed that the viscoelastic properties of the medium were isotropic and there was negligible
compression applied to the medium by the source. Thus, the particle velocity vector vz can be described
by the Navier wave equation in a homogeneous solid [12]. By combining (2.2), (2.3) and (2.4):

ρ
∂2vz

∂t2 = G′ (x, y, t)∇2vz, (2.12)
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Algorithm 1 NLMS algorithm for signal improvement
Step 1: Set up the parameters: step size β, filter order L, and noise variance.
Step 2: Start the simulation by assigning w(n) = 0.
Step 3: For n = 0, 1, 2, . . ..
3.1. Calculate the output y(n)
y(n) = w(n) ∗ x(n)
3.2. Calculate the error e(n)
e(n) = vz(n) - y(n)
3.3. Update the filter’s coefficient
w(n + 1) = w(n) + β e(n)x(n)
3.4. Extract the improved signal v̂z(n)
v̂z(n) = e(n)
3.5. Change the value of β based on the amplitude of vz(n)

where G′ (x, y, t) is the CSM in the time domain and ∇2vz is the Laplace operator of vz which is defined
as ∇2vz = ∂2vz/∂x2.

AHI algorithm was then used to solve (2.12), which then converted to the Helmholtz equation(
G (x, y, ω)

ρ
∇2 + ω2

)
Vz (x, y, ω)

∣∣∣ω=ω0 = 0, (2.13)

where G (x, y, ω) is the CSM in the frequency domain and is defined in (2.1), Vz (x, y, ω) is the temporal
Fourier transform of the particle velocity vz (x, y, t), Vz (x, y, ω) = Ft {vz (x, y, t)}, and ω0 is the angular
frequency ω0 = 2π f0. Solving (2.13), we could directly estimate CSM

G (x, y, ω) =
−ρω2

0Vz (x, y, ω0)
∇2Vz (x, y, ω0)

, (2.14)

Following (2.1), µ (x, y) and η (x, y) were real and imaginary parts of G (x, y, ω). Thus, elasticity and
viscosity of the tissues at each spatial point (x, y) were calculated as

µ (x, y) = <

{
−ρω2

0Vz(x,y,ω0)
∇2Vz(x,y,ω0)

}
,

η (x, y) = =
{
−ρω0Vz(x,y,ω0)
∇2Vz(x,y,ω0)

}
,

(2.15)

where Vz(x, y, ω0) was computed by using Fourier transform at the specific angular frequency
ω0; ∇2Vz(x, y, ω0) was computed by using the function Discrete Laplacian (The MathWorks)
del2(Vz(x, y, ω0)) which provided a discrete approximation of Laplace’s differential operator applied
to Vz(x, y, ω0).

Our proposed NLMS/AHI algorithm is summarized in Algorithm 2.

3. Simulation and results

3.1. Simulation

The researchers set up a simulation scenario to test the proposed method. Details are as follows: The
2D medium had a size of 120 × 120 mm, which contained a tumor at the coordinate (40 mm, 40 mm),
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Algorithm 2 NLMS/AHI algorithm for 2D-CSM imaging
Step 1: Initiate the parameters for simulation.
Step 2: Vibrate the needle at a frequency of f0=150Hz.
Step 3: Propagate the shear wave into the tissues.
Step 4: Use the Doppler ultrasound device to measure vz at 120 × 120 spatial locations.
Step 5: Extract the variance of noise and forward to the NLMS filter.
Step 6: Employ NLMS filter (as shown in Algorithm 1) in order to improve the SNR.
Step 7: Compute the temporal Fourier transform of the filtered signal.
Step 8: Directly estimate CSM in each spatial location using (2.15).
Step 9: Reconstruct the 2D-CSM image.

the radius of the tumor was 20 mm. The elasticity of the medium was µ1 = 6000 Pa and the viscosity
of the medium was η = 1.2 Pa.s, The elasticity and viscosity of the tumor were µ1 = 9000 Pa and
η = 1.8 Pa.s. The parameters of the medium and tumor are summarized in Table 1.

Table 1. Parameters of medium and tumor.

Coordinate
(mm,mm)

Radius
(mm)

µ1 (Pa) η (Pa.s)

Medium 6000 1.2
Tumor (40,40) 20 9000 1.8

The mass density of the medium was ρ = 1000 Kg/m3. On the 2D plane of the medium (tissue), the
particle velocity of shear wave was measured at locations which were equally spaced of 1 mm following
both the X–axis and Y–axis. Thus, the number of measured locations was 120×120 = 14400. Figure 4
illustrates the ideal–elasticity and ideal–viscosity images.
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(a) Ideal–elasticity image
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(b) Ideal–viscosity image

Figure 4. Ideal 2D image for the elasticity and viscosity of tissue.
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3.2. Results

The ideal particle velocity at a location was modeled following the FDTD method (as shown in
Figure 5 at the spatial location (56,56)). Combining with the Gaussian noise, it presented the measured
particle velocity using the Doppler system.
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v z (
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Ideal particle Velocity at the spatical location (56,56)

Figure 5. The ideal particle velocity at the spatial location (56,56) which is zoomed in the
range of 0.48 to 0.52 second.

Figure 6 indicates two signals of the particle velocity of the shear wave at the coordinate (56,56).
where the dotted–blue signal shows the measured particle velocity (affected by noise), while the
continuous–red signal shows the filtered particle velocity.
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Figure 6. The filtered particle velocity at the spatial location (56,56) which is zoomed in the
range of 0.48 to 0.52 second.

Figures 7(a) and 7(b) show estimated–elasticity and estimated–viscosity images of the tissues, re-
spectively. In both images, tumor is seen clearly in in terms of location and shape.
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Estimated−elasticity image
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(a) Estimated–elasticity image

Estimated−viscosity image
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(b) Estimated–viscosity image

Figure 7. Estimated 2D image for the elasticity and viscosity of tissue.

Observing 1D–data is easy to compare between the estimated and ideal values. Figure 8 illustrates
results of elasticity estimation on Line 10 and Line 40. In detail, Figure 8(b) indicates the result of
elasticity estimation on Line 10 which does not across tumor, Figure 8(c) shows the result of elasticity
estimation on Line 40 which crosses tumor.
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(b) Estimated–elasticity on Line 10
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Figure 8. Results of elasticity estimation on Line 10 and Line 40.

Figure 9 illustrates the results of viscosity estimation on Line 10 and Line 40. In detail, Figure 9(b)
indicates the result of viscosity estimation on Line 10, Figure 9(c) shows the result of viscosity estima-
tion on Line 40.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 404–417.



414

Estimated−viscosity image
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(b) Estimated–viscosity on Line 10
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Figure 9. Results of viscosity estimation on Line 10 and Line 40.

Observe Figures 8(b), 8(c), 9(b) and 9(c), it is clearly seen that the results of estimation were less
accurate at locations which were far from excited source (the right of figures). This can explain as
follows as shear wave was attenuated when it propagated in the tissues and it was a damped oscillation.
While CSM was estimated base on measurement of velocity of shear wave. At locations which were
far from excited source, velocity value was very small, thus CSM estimation was less accurate.

3.3. Performance

To evaluate the quality of 2D CSM estimation, the normalized error was used. This norm which
was applied to elasticity and viscosity images was calculated using the following equation (3.1).

εµ = 1
M×N

∑M
i=1

∑N
j=1
|µi, j−µ̂i, j |

µi, j
,

εη = 1
M×N

∑M
i=1

∑N
j=1
|ηi, j−η̂i, j |

ηi, j
,

(3.1)

where εµ and εη are the normalized errors of 2D elasticity and viscosity estimation, respectively, M×N
is the size of the images, µi, j and µ̂i, j are the ideal and estimated elasticity at the pixel (i, j), respectively,
ηi, j and η̂i, j are the ideal and estimated viscosity at the pixel (i, j), respectively.
The calculated results show that the normalized error εµ for 2D elasticity estimation was 1.63%, while
the normalized error εη for 2D viscosity estimation was 2.49%.

4. Discussions

It is noteworthy that the estimated images contain many interesting features. In Figures 7(a)
and 7(b), near the vibration needle, the reconstructed image is of very high quality, i.e. the recon-
structed image looks like the original one (used in the simulation scenario). The area where the es-
timation gives good result is the circle of radius of 120 mm centered around the needle position. At
spatial locations outside of this area, the estimation is not accurate because of the high attenuation of
the particle velocity. Combining different estimates of CSM with the varying positions of the vibration
needle is a good subject for future research.
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The propagation of noise in a scheme such as AHI and FDTD is a serious problem. Our research
showed that by filtering noise with NLMS, the situation was nicely ameliorated and the estimation
estimation error was reduced to 1.63% for elasticity and 2.49% for viscosity. In the existing research
works, for instance [12], the noise impact was reduced by applying a low-pass filter. With the same
simulation condition, in our study, the normalized error for 2D elasticity estimation was 4.15%, and
for 2D viscosity estimation was 6.24%. The reason is that, the low pass filter used in [12] could only
remove the high frequency noise.

While there are significant findings reported in our study, the study itself suffers from certain limi-
tations. Firstly, due to the variation of SNR in the measurement at each point in the space, if the step
size of the adaptive filtering is kept fixed, the efficiency of the filter would be reduced. In our work, this
parameter was changed depending on the position of the needle. Secondly, certain sets of data obtained
from the measurement need to be eliminated. In fact, to estimate CSM using AHI, it requires that the
Fourier transform Vz(x, y, ω0) be at the frequency ω0. The transient in the measurement process could
badly affect the estimation of Vz(x, y, ω0); consequently, the transient has to be eliminated before we
estimate Vz(x, y, ω0) (see step 7, Algorithm 2).

In addition, in the shear wave propagation model, we assumed that the reflections and the refractions
from the surrounding tissues are trivial, thus we ignored them. Finally, this research is only concerned
with numerical simulation. The estimation using experimental data is our next target.

5. Conclusion

This paper presented a method of constructing 2D CSM images using the estimation method AHI
in a noisy environment. In our method, we just measured the particle velocity at only one frequency
(150 Hz) at different positions in the focused area. Noise in the measurement of particle velocity was
eliminated by using a NLMS adaptive filter in order to improve the image reconstruction. The quality
of image reconstruction was improved by (1) Changing the adaptive filter step size at each point of
the observation space and (2) Eliminating the transient data before computing the Fourier transform
of the particle velocity at the frequency 150 Hz; this helped to improve the estimation of CSM using
Eq (2.15). These estimates computed at each point in the space as illustrated in Figure 2. were finally
used to reconstruct the CSM images. Our proposed method delivered a good performance by reducing
the estimation error to 1.63% for elasticity and to 2.49% for viscosity. The next steps in our future
research will be applying our proposed method to real data and extending it to 3D CSM imaging.
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