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Abstract: This paper is concerned with how the singularity and delay in a feed forward neural network
affect generic dynamics and bifurcations. By computation of Hopf-pitchfork point in a two-parameter
nonlinear problem, the mode interactions in two parameters bifurcations with a single zero and a pair
of imaginary roots are considered. The codimension two normal form with Hopf-pitchfork bifurcations
are given. Then, the bifurcation diagrams and phase portraits are obtained by computing the normal
form. Furthermore, we find some interesting dynamical behaviors of the original system, such as the
coexistence of two unstable nontrivial equilibria and a pair of stable periodic orbits, which are verified
both theoretically and numerically. Through numerical simulation, we also find that this model has a
special signal enhancement property in Hopf bifurcation state. Using this feed-forward neural network,
we show that the gray scale picture contrast is strongly enhanced even if this one is initially very small.
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1. Introduction

The theories and applications of neural networks have been extensively developed after the works
of Cohen [1] and Hopfield [2]. The research of neural network is quite extensive, which reflects the
characteristics of the multi discipline cross technology field. Due to the finite propagating speed in
the signal switching and transmission between the neurons, time delay is inevitable in the neural net-
work and thus should be incorporated in the mathematical model. Different types of neural network
systems with time delays have been proposed and developed. In these models, various types of dynam-
ical behaviors including stability, chaos, and bifurcation were investigated (see [3–7]). Furthermore,
the wide applications including pattern recognition of speech and images, associative memory, signal
processing have been done (see [8]).

In the classical Hopf bifurcation theorem for ordinary differential equations, as a pair of complex-
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conjugate simple eigenvalues crosses the imaginary axis, there is born a unique branch of periodic
orbits near an equilibrium point. This paper investigates the Hopf-zero singularity case of feed-forward
neural networks model with delay, in which the purely imaginary eigenvalues at criticality and zero
coexist. In this case, the Hopf-pitchfork can occur. Hopf-pitchfork bifurcation has been investigated
for a long time as an important dynamical behavior [9–14]. In particular, there are some works on
Hopf-pitchfork bifurcation in systems with delay [16–18]. For example, in 2015, Wang et al. [15]
investigated Hopf-pitchfork bifurcation in a two-neuron system with discrete and distributed delays.
In 2012, Dong et al. [7] studied Hopf-pitchfork bifurcation in an inertial two-neuron system with time
delay.

This paper partly deals with a simple case of feed-forward system. We consider the following
two-neuron feed-forward neural network model


u̇1 = −u1 + (a + b)tanh(u1(t − τ)),

u̇2 = −u2 + atanh(u2(t − τ)) + btanh(u1(t − τ)).
(1.1)

There are many interesting properties in the feed-forward chain model which have great potential
application prospect. For example, signal propagation in the feed-forward neural network has been
discussed by some researchers, see [19–21]. In this paper, we will see that the simple model (1.1) can
show the complex dynamic properties. The rest of the article is organized as follows. In Section 2,
we derive the existence condition of the Hopf-pitchfork bifurcation with interaction coefficient and
delay as two parameters. In Section 3, we obtain and analyze the normal form and the unfolding
for Hopf-pitchfork bifurcation in the feed-forward neural network system with time delay, as well as
Hopf-pitchfork diagrams.

Studies have found that some neurons may exhibit forced vibrator behavior. This characteristic
of the system can detect and amplify signals of a specific frequency. M. Golubitsky [19] et al. con-
structed a nonlinear feed-forward network coupled oscillator mode, and utilized the inherent nonlinear
response near Hopf branch point of the oscillator to achieve a significant amplification effect on a small
frequency band width signal. In section 4 and 5, we discuss the existence and normal forms of Hopf
bifurcation. Through numerical simulation, we find that when Hopf branches occur, the model shows
properties similar to the conclusion of M. Golubitsky [19] et al..

Image enhancement is to highlight and strengthen the target area of the original image purposefully,
suppress the features that are not of interest, enhance the recognition of the image and improve the
visual effect of the image. Image enhancement allows the enhanced image to be inconsistent with
the original image. The final purpose of image enhancement is to facilitate the further analysis and
processing of images. Tiger and other animal images captured in the forest often have low contrast
due to natural factors such as trees, grass and equipment, which will further affect the effect of image
processing. In order to improve the sharpness of animal image and highlight its edge information.
In section 6, we use the feed forward neural network model to enhance the image. With the help of
dynamic properties, this algorithm can achieve a good signal amplification effect. Therefore, the image
enhancement effect is obvious, and it can improve the image clarity and contrast. In the final section,
we give some conclusions and future works.
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2. The existence of Hopf-pitchfork bifurcation

It is clear that (0,0) is an equilibrium point of Eq (1.1). The linearization of Eq (1.1) at the origin
leads to 

u̇1 = −u1 + (a + b)u1(t − τ),

u̇2 = −u2 + au2(t − τ) + bu1(t − τ).
(2.1)

The associated characteristic equation of Eq (2.1) takes the form

∆ = ∆1∆2 = (λ + 1 − (a + b)e−λτ)(λ + 1 − ae−λτ) (2.2)

In the following, if the characteristic Eq (2.2) has a simple root 0 and a pair of purely imaginary roots
±iω and all other roots of the characteristic equation have negative real parts, then the Hopf-pitchfork
bifurcation will occur. We make the following assumptions:

(H1) : a + b = 1.
(H2) : a < −1.

Lemma 2.1 If the assumption (H1), (H2) are satisfied, then all the roots of Equation (2.2) have negative
real parts except a single zero root and a pair of purely imaginary roots when

τ j =
1
ω

(
2 jπ + arccos

1
a

)
, ( j = 0, 1, · · · ),

ω =
√

a2 − 1.

Further, the transversality condition is satisfied at τ = τ j, ( j = 0, 1, · · · )

Re
(
dλ
dτ

)
τ=τ j

=
1

ω4 + ω2 > 0

Proof. Clearly, λ = 0 is a root of Eq (2.2), if a + b = 1. If τ = 0, then Eq (2.2) becomes λ = 0 or
λ = a − 1. There is no purely imaginary root for ∆1 = 0. We only need to consider ∆2 = 0. Let iω be a
root of ∆2 = 0, then

iω + 1 − ae−iωτ = 0.

Separating the real and imaginary parts we have the values of ω and τ are given by

τ j =
1
ω

(
2 jπ + arccos

1
a

)
, ( j = 0, 1, · · · ),

ω =
√

a2 − 1.

Through simple calculation, the transversality conditions are shown as follows:
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Re
(
dλ
dτ

)
τ=τ j

=
1

ω4 + ω2 > 0

Based on the work above, we can obtain the following Theorem.
Theorem 2.1 The system (1.1) undergoes Hopf-pitchfork bifurcation when the assumption (H1) and
(H2) are satisfied and τ = τ j( j = 0, 1, · · · ).

3. Normal form for Hopf-pitchfork bifurcation

In this section, Center manifold theory and normal form method [12, 22] are used to study Hopf-
pitchfork bifurcation. After scaling t → t

τ
, system (1.1) can be written as


u̇1 = τ

[
−u1 + (a + b)u1(t − 1) − a+b

3 u1(t − 1)3 + o(|u1|
3)
]
,

u̇2 = τ

[
−u2 + au2(t − 1) + bu1(t − 1) − b

3u1(t − 1)3 − a
3u2(t − 1)3 + o

((√
u2

1 + u2
2

)3)]
.

(3.1)

Suppose that the system (3.1) undergoes Hopf-pitchfork bifurcation at the critical point b = b0 =

1 − a, τ = τ0, with a pair of eigenvalues ±iτ0ω and one zero, and all other roots have negative real
parts. Let τ = τ0 + µ1, b = 1 − a + µ2, µ1 and µ2 are bifurcation parameters, choosing the phase space
C = C([−1, 0]; R2) with supreme norm and Ut is defined by Ut(θ) = U(t +θ),−1 ≤ θ ≤ 0 . Then system
(3.1) can be written as

dU(t)
dt

= L(µ)Ut + F(Ut, µ), (3.2)

where
L(µ)Ut = (τ0 + µ1)AUt + (τ0 + µ1)B(µ2)Ut(−1),

F(Ut, µ) = −τ0

( 1
3! (u

3
1) + o(‖u1‖)3

a 1
3! (u2(−1))3 + (1 − a) 1

3! (u3(−1))3 + o(‖U‖3)

)

A = −I2, B(µ2) =

(
1 + µ2 0

1 − a + µ2 a

)
Thus, system (3.2) becomes an abstract ODE in the space BC

dU(t)
dt

= Au + X0F̃(Ut, µ), (3.3)

whereA is defined by

A : C1 → BC, AU =
dU
dt

+ X0

[
L0u −

dU(0)
dt

]
and

F̃(U, µ) = [L(µ) − L(0)]U + F(U, µ)
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and the bilinear form on C∗ ×C (∗stand for adjoint) is

〈ψ, ϕ〉 = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

with ϕ ∈ C, ψ ∈ C∗.
Because L(0) has a simple 0 and a pair of purely imaginary eigenvalues ±iω and all other eigen-

values have negative real parts. Let Λ = (iωτ0,−iωτ0, 0) and P can be the generalized eigenspace
associated with Λ and P∗ the space adjoint with P. Then the C can be decomposed as C = P⊕Q where
Q = {ϕ ∈ C|(ψ, ϕ) = 0 f or all ψ ∈ P∗}.

Choose the bases Φ and Ψ for P and P∗ such that (Ψ(s),Φ(θ)) = I, Φ̇ = ΦJ, and Ψ̇ = −JΨ, where

J =


iωτ0 0 0

0 −iωτ0 0
0 0 0

.
By calculating we choose

Φ(θ) =

(
0 0 1

eiωτ0θ e−iωτ0θ 1

)
and

Ψ(s) =


D̄11e−iωτ0 s D̄11e−iωτ0 s

D11eiωτ0 s D11eiωτ0 s

D21 0


with D̄11 = 1

1+τ0+iωτ0
,D21 = 1

1+τ0
.

Let u = Φx + y, that is 
u1 = x3 + y1(θ),

u2 = eiωτ0θx1 + e−iωτ0θx2 + x3 + y2(θ).

Then Eq (3.3) is therefore decomposed into the system
ẋ = Jx + Ψ(0)F̃(Φx + y, µ),

ẏ = AQ1y + (I − π)X0F̃(Φx + y, µ).
(3.4)

Using the idea of Faria [22] , we know that Eq (3.4) can be written as
ẋ = Jx +

∑
j≥2

1
j! f 1

j (x, y, µ),

ẏ = AQ1y +
∑
j≥2

1
j! f 2

j (x, y, µ).
(3.5)

where f j(x, y, µ) are homogeneous polynomials of degree j in (x, y, µ) with coefficients in C3.
S 1 is spanned by

µix1e1, x1x3e1, µix2e2, x2x3e2, x1x2e3, µix3e3, x2
3e3, i = 1, 2
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with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .
S 2 is spanned by

x2
1x2e1, x1x2

3e1, x1x2
2e2, x2x2

3e2, x1x2x3e3, x3
3e3,

On the center manifold, Eq (3.5) can be transform as the following normal form

ẋ = Jx +
1
2!

g1
2(x, 0, µ) +

1
3!

g1
3(x, 0, 0) + h.o.t.

where

1
2! f 1

2 (x, 0, µ) =


D̄11τ0µ2x3 + D̄11[τ0µ2x3 − µ1(x1 + x2 + x3) + (1 − a)µ1x3 + aµ1

(
e−iωτ0 x1 + eiωτ0 x2 + x3

)
]

D11τ0µ2x3 + D11[τ0µ2x3 − µ1(x1 + x2 + x3) + (1 − a)µ1x3 + aµ1

(
e−iωτ0 x1 + eiωτ0 x2 + x3

)
]

D21τ0µ2x3


1
2!

g1
2(x, 0, µ) = Pro jS 1 × f 1

2 (x, 0, µ) =


a12µ1x1

ā12µ1x2

a21µ2x3


and a12 = D̄11iω, a21 = D21τ0 = τ0

1+τ0
.

1
3!

f 1
3 (x, 0, µ) =


D̄11

(
−
τ0
3 x3

3 + µ1µ2x3

)
+ D̄11[− τ0(1−a)

3 x3
3 −

τ0a
3

(
e−iωτ0 x1 + eiωτ0 x2 + x3

)3
+ µ1µ2x3]

D11

(
−
τ0
3 x3

3 + µ1µ2x3

)
+ D11[− τ0(1−a)

3 x3
3 −

τ0a
3

(
e−iωτ0 x1 + eiωτ0 x2 + x3

)3
+ µ1µ2x3]

−D21

(
−
τ0
3 x3

3 + µ1µ2x3

)


1
3!

g1
3(x, 0, 0) = Pro jS 2 × f 1

3 (x, 0, 0) =


b11x2

1x2 + b12x1x2
3

b̄11x1x2
2 + b̄12x2x2

3
b22x3

3


and b11 = −D̄11τ0(iω + 1), b12 = b11, b22 = − τ0

3(1+τ0) .
Hence Eq (3.5) can be written as

ẋ1 = iτ0ωx1 + a12µ1x1 + b11x2
1x2 + b12x1x2

3 + h.o.t,

ẋ2 = −iτ0ωx2 + ā12µ1x2 + b̄11x1x2
2 + b̄12x2x2

3 + h.o.t,

ẋ3 = a21µ2x3 + b22x3
3 + h.o.t.

(3.6)

Through the change of variables x1 = rcosθ − irsinθ, x2 = rcosθ + irsinθ, x3 = Z, the system (3.6)
becomes 

ṙ = Re(a12)µ2r + Re(b11)r3 + Re(b12)rZ2 + h.o.t,

Ż = a21µ21Z + b22Z3,

−θ̇ = τ0ω + Im(a12)µ2 + Im(b11)r2 + Im(b12)Z2.

Let Ẑ = Z
√
|b22|, r̂ = r

√
|Re(b11)|, (Re(b11) < 0, b22 < 0), after dropping the hats, the equation becomes:

ṙ = r(c1 − r2 − σZ2),

Ż = Z(c2 − Z2).
(3.7)

Mathematical Biosciences and Engineering Volume 17, Issue 1, 387–403.



393

where c1 = Re(a12)µ2, c2 = a21µ1, σ =
Re(b12)

b22
.

In Eq (3.7), M0 = (r,Z) = (0, 0) is always an equilibrium and the other equilibria are

M1 : (
√

c1, 0), f or c1 > 0;
M±

2 : (0,±
√

c2), f or c2 > 0;
M±

3 : (
√

c1 − σc2,±
√

c2), f or c2 > 0, c1 > σc2.

We obtain five distinct types of unfolding with respect to different signs in the system (3.7). Similar
to the work in [21], we have the following Theorem:

Theorem 3.1 The detailed dynamics of system (3.7) in D1 −D5 near the original parameters b0, τ0 are
as follows: (1) In D1, Eq (3.7) has only one trivial equilibrium M0, which is a sink.

(2) In D2, the trivial equilibrium (corresponding to M0) becomes a saddle from a sink, and a stable
periodic orbit (corresponding to M1) appears.

(3) In D3, Eq (3.7) has a pair of stable periodic orbits (corresponding to M±
3 ), a pair of unstable semitriv-

ial equilibria (corresponding to M±
2 ), an unstable periodic oribi(corresponding to M1), and an unstable

trivial equilibrium (corresponding to M0).

(4) In D4, the unstable periodic orbits (corresponding to M±
3 ) disappear, the periodic orbit (correspond-

ing to M1) becomes stable, and the semitrivial equilibria (corresponding to M±
2 ) become stable.

(5) In D5, the periodic orbit (corresponding to M1) disappears, the trivial equilibrium (corresponding
to M0) becomes a saddle from a source, and the semitrivial equilibria(corresponding to M±

2 ) remains
stable.

1c

2c

1D 2D

3D

4D5D
1 2c c

Figure 1. Bifurcation diagrams of Eq (3.7) with parameter (c1, c2) around (0, 0).

Choosing a = −2, b = 3. By direct calculation, we obtain ω = 1.732, τ0 = 1.209,D11 = 0.2384 +

0.2260i,D21 = 0.4527.

(1) Choosing µ1 = −0.05, µ2 = −0.1, In this case, c1 = Re(a12)µ2 = −0.0391, c2 = a21µ1 = −0.0274.
By Theorem 3.1, Figure 3 shows M0 is the only equilibrium in D1, which is a sink.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 387–403.
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Figure 2. Phase portraits in D1 − D5.

Figure 3. only one equilibrium M0 of system(1.1) in D1 , which is a sink. (µ1, µ2) =

(−0.05,−0.1) with the initial values (0.5,−0.2) .

(2) Choosing µ1 = 0.05, µ2 = −0.1, In this case, c1 = Re(a12)µ2 = −0.0391, c2 = a21µ1 = 0.0274.
By Theorem 3.1, the bifurcation occurs in D2. Figure 4 shows a stable periodic orbits appears.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 387–403.



395

Figure 4. a stable periodic orbits appears in D2 . (µ1, µ2) = (0.05,−0.1) with the initial values
(0.5,−0.2) for the red line and (−0.5, 0.2) for the blue line .

(3) Choosing µ1 = −0.05, µ2 = 0.1, In this case, c1 = Re(a12)µ2 = 0.0391, c2 = a21µ1 = −0.0274.
By Theorem 3.1, the bifurcation occurs in D5. Figure 5 shows two stable equilibria appear.

Figure 5. two stable equilibria appear in D5 . (µ1, µ2) = (−0.05, 0.1) with the initial values
(0.5,−0.2) for the red line and (−0.5, 0.2) for the blue line .

Mathematical Biosciences and Engineering Volume 17, Issue 1, 387–403.
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4. The existence of Hopf bifurcation

We make the following assumptions:

(H3) : −1 < a + b < 1.
(H4) : a < −1.

Lemma 4.1 If the assumption (H3), (H4) are satisfied, then all the roots of Equation (2.2) have negative
real parts except a pair of purely imaginary roots when

τ j =
1
ω

(
2 jπ + arccos

1
a

)
, ( j = 0, 1, · · · ),

ω =
√

a2 − 1.

Further, the transversality condition is satisfied at τ = τ j, ( j = 0, 1, · · · )

Re
(
dλ
dτ

)
τ=τ j

=
1

ω4 + ω2 > 0

Proof. Under the condition (H3) , the roots of ∆1 = 0 have negative real part. We only need to
consider ∆2 = 0 , then

iω + 1 − ae−iωτ = 0.

Under the condition (H4) ,separating the real and imaginary parts we have the values of ω and τ are
given by

τ j =
1
ω

(
2 jπ + arccos

1
a

)
, ( j = 0, 1, · · · ),

ω =
√

a2 − 1.

Through simple calculation, the transversality conditions are shown as follows:

Re
(
dλ
dτ

)
τ=τ j

=
1

ω4 + ω2 > 0

Based on the work above, we can obtain the following Theorem.
Theorem 4.1 (1) The system (1.1) undergoes Hopf bifurcation when the assumption (H3) and (H4)
are satisfied and τ = τ j( j = 0, 1, · · · ).

(2) Choosing a = −2, b = 2.5. By direct calculation, we obtain τ0 = 1.209, Choosing τ = 1 < τ0,
then all the oscillators 1 and 2 are stable, see Figure 6.
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x1
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Figure 6. The wave plot of oscillator 1 and 2 with a = −2, b = 2.5, τ = 1 < τ0.

(3) Choosing a = −2, b = 2.5. By direct calculation, we obtain τ0 = 1.209, Choosing τ = 2 > τ0,
then the oscillator 1 is stable and oscillator 2 is periodic, see Figure 7.

0 10 20 30 40 50 60 70 80

t

-1.5

-1

-0.5

0

0.5

1

1.5

x1
,x

2

x1
x2

Figure 7. The wave plot of oscillator 1 and 2 with a = −2, b = 2.5, τ = 2 > τ0.

5. Normal form for Hopf bifurcation

In this section, Center manifold theory and normal form method [22] are used to study Hopf bifur-
cation. After scalingt → t

τ
, system (1.1) can be written as

Mathematical Biosciences and Engineering Volume 17, Issue 1, 387–403.
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u̇1 = τ[−u1 + (a + b)u1(t − 1) − a+b

3 u1(t − 1)3 + o(|u1|
3)],

u̇2 = τ

[
−u2 + au2(t − 1) + bu1(t − 1) − b

3u1(t − 1)3 − a
3u2(t − 1)3 + o

((√
u2

1 + u2
2

)3)]
.

(5.1)

Denote τc = τ j( j = 0, 1, · · · ) , suppose that the system (5.1) undergoes Hopf bifurcation at the critical
point τ = τc, with a pair of eigenvalues ±iωτc , and all other roots have negative real parts. Choosing the
phase space C = C([−1, 0]; R2) with supreme norm and Ut is defined by Ut(θ) = U(t + θ),−1 ≤ θ ≤ 0 .

Let µ = τ − τc, then µ is the bifurcation parameter and the system (5.1) becomes
u̇1 = (µ + τc)[−u1 + (a + b)u1(t − 1) − a+b

3 u1(t − 1)3 + o(|u1|
3)],

u̇2 = (µ + τc)[−u2 + au2(t − 1) + bu1(t − 1) − b
3u1(t − 1)3 − a

3u2(t − 1)3 + o(
√

u2
1 + u2

2)3].
(5.2)

The linearization of system (5.2) at (0, 0) is
u̇1 = −τcu1 + τc(a + b)u1(t − 1),

u̇2 = −τcu2 + τcbu1(t − 1) + τcau2(t − 1).
(5.3)

Let
η(θ) = Aδ(θ) + Bδ(θ)

where δ(θ) is dirac-delta function and

A = τc

(
−1 0
0 −1

)
, B = τc

(
a + b 0

b a

)

Define X =

(
u1

u2

)
and F(X, µ) =

(
F1

F2

)
, where

F1 = −µu1 + µ(a + b)u1(t − 1) −
(µ + τc)(a + b)

3
(u1(t − 1))3 + h.o.t

F2 = −µu2 + µbu1(t − 1) + µau2(t − 1) −
(µ + τc)b

3
(u1(t − 1))3 −

(µ + τc)a
3

(u2(t − 1))3 + h.o.t

Then system (5.2) can be transformed into

Ẋ = LXt + F(Xt, µ). (5.4)

The bilinear form on C∗ ×C is

〈ψ, ϕ〉 = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

with ϕ ∈ C, ψ ∈ C∗.
Define the infinitesimal generatorA

Aϕ = ϕ̇ + X0[Lϕ − ϕ̇(0)]
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Let Λ = (iω,−iω) and P can be the generalized eigenspace associated with Λ and P∗ the space adjoint
with P. Then the C can be decomposed as C = P ⊕ Q where dim p = 2 and Q = (ϕ ∈ C : (ψ, ϕ) =

0 f or all ψ ∈ P∗).
Choose the base Φ and Ψ for P and P∗ respectively such that

(Ψ(s),Φ(θ)) = I, Φ̇ = ΦJ, Ψ̇ = −JΨ.

where I is 2 × 2 identity matrix and J =

(
iωτc 0

0 −iωτc

)
.

It can be computed directly that

Φ =

(
0 0

eiωτcθ e−iωτcθ

)
,Ψ =

(
−De−iωτcθ De−iωτcθ

−Deiωτcθ Deiωτcθ

)
,D =

1
1 + τcaeiωτc

.

We use the idea of Faria [22], Let

BC =

{
φ : [−1, 0]→ R2, φ ∈ C[−1, 0),∃ lim

θ→0−
φ(θ) ∈ R2

}
The elements of BC can be expressed as ψ = φ + X0α with φ ∈ C,α ∈ R2. Define the projection
π : BC → P by

π(φ + X0α) = Φ[(Ψ, φ) + Ψ(0)α)]

Let u = Φx + y with x ∈ R2 and y ∈ Q1 = {ϕ ∈ Q : ϕ̇ ∈ C}, namely,
u1 = y1(θ),

u2 = eiωτcθx1 + e−iωτcθx2 + y2(θ).

Let Ψ(0) =

(
ψ11 ψ12

ψ21 ψ22

)
=

(
−D D
−D D

)
, then system(5.2) can be decomposed as


ẋ = Jx + Ψ(0)F(Φx + y, µ),

ẏ = AQ1y + (I − π)X0F(Φx + y, µ).
(5.5)

Which can be rewritten as 
ẋ = Jx +

∑
j≥2

1
j! f 1

j (x, y, µ),

ẏ = AQ1y +
∑
j≥2

1
j! f 2

j (x, y, µ).
(5.6)

Where

f 1
2 (x, y, µ) =

(
ψ11F1

2(x, y, µ) + ψ12F2
2(x, y, µ)

ψ21F1
2(x, y, µ) + ψ22F2

2(x, y, µ)

)
,

f 1
3 (x, y, µ) =

(
ψ11F1

3(x, y, µ) + ψ12F2
3(x, y, µ)

ψ21F1
3(x, y, µ) + ψ22F2

3(x, y, µ)

)
,

f 2
2 (x, y, µ) = (I − π)X0

(
F1

2(x, y, µ)
F2

2(x, y, µ)

)
,
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f 2
3 (x, y, µ) = (I − π)X0

(
F1

3(x, y, µ)
F2

3(x, y, µ)

)
.

with
1
2! F

1
2(x, y, µ) = −µy1(0) + µ(a + b)y1(−1),

1
2! F

2
2(x, y, µ) = −µ(x1 + x2 + y2(0) + µby1(−1) + µa(e−iωτc x1 + eiωτc x2 + y2(−1),

1
3! F

1
3(x, y, µ) = −

τc(a+b)
3 (y1(−1))3,

1
3! F

2
3(x, y, µ) = − τcb

3 (y1(−1))3 −
τca
3 (e−iωτc x1 + eiωτc x2 + y2(−1))3.

Let M2 denotes the operator defined in V3
2 (C2 × Kerπ),with

M1
2 : V3

2 (C2) 7→ V3
2 (C2), and M1

2(p)(x, µ) = Dx p(x, µ)Jx − Jp(x, µ),

where V3
2 (C2) denote the linear space of the second order homogeneous polynomials in three

variables(x1, x2, µ), and with coefficients in C2. Then it is easy to check that one may choose the
decomposition

V3
2 (C2) = Im(M1

2) ⊕ Im(M1
2)c

The complementary space Im(M1
2)c spanned by the elements(

x1µ

0

)
,

(
0

x2µ

)
.

Let M3 denotes the operator defined in V3
3 (C2 × Kerπ),with

M1
3 : V3

3 (C2) 7→ V3
3 (C2), and M1

3(p)(x, µ) = Dx p(x, µ)Jx − Jp(x, µ),

where V3
3 (C2) denote the linear space of the three order homogeneous polynomials in three

variables(x1, x2, µ), and with coefficients in C2. Then it is easy to check that one may choose the
decomposition

V3
3 (C2) = Im(M1

3) ⊕ Im(M1
3)c

The complementary space Im(M1
3)c spanned by the elements(

x2
1x2

0

)
,

(
µ2x1

0

)
,

(
0

x1x2
2

)
,

(
0

µ2x2

)
.

Then the normal form of system (5.4) on the center manifold of the origin near µ = 0 has the form (see
[22]) 

ẋ1 = iωτcx1 + a11µx1 + a12x2
1x2,

ẋ2 = −iωτcx2 + a21µx2 + a22x1x2
2.

(5.7)

where a11 = D(−1 + ae−iωτc), a12 = D(−τcae−iωτc), a21 = a11, a22 = a12. Since x1 = x2, through the
change of variables x1 = w1 − iw2, x2 = w1 + iw2, and then a change to polar coordinates according to
w1 = r cos ξ,w2 = r sin ξ, system (5.7) becomes

ṙ = Re(a11)µr + Re(a12)r3,

ξ̇ = −Im(a11)µ − Im(a12)r2.
(5.8)
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Figure 8. Low-contrast image and its corresponding histogram.
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Figure 9. Output image and its corresponding histogram when a = −2, b = 2.5, τ = 2 > τ0.

6. Image contrast enhancement using the Feed-Forward neural networks

According to the property of system (1.1), neuron 2 can enhance the weak signal input by neuron 1
through coupling action. Using this property, we set up an algorithm for image enhancement:

The following are specific implementation steps of image contrast enhancement algorithm: Contrast
enhancement is a phenomenon of increasing gray difference in coherent regions. The image has low
contrast, does not present a clear scene, and contains no obvious objects. In a low contrast image,
the pixel values (grayscale) of all pixels are very similar. This means that the difference between any
two pixels of an image is small. Think of each pixel of an image as one oscillator with properties of
sections 4 and 5. The standard coding of images defines a white level for x = 1, and a black level
for x = 0, the other gray levels being included between these two values. The maximal values of
oscillators 1, 2 is 1, that is matching result to describe the pixels dynamics between the range [0, 1].
The input image of The tiger image is loaded (as initial conditions) in oscillator 1. Given the initial
value (x1i, 0), where x1i the initial gray level of the pixel and i will traverse all the pixel point.

The Figure 8 present a low-contrast tiger image, the neuron 2 has the effect of enhancing the
amplitude of the signal, so it can be used to enhance the contrast of the tiger image. Choosing
a = −2, b = 2.5, then τ0 = 1.209. Choosing τ = 2 > τ0, then the oscillator 1 is stable and oscil-
lator 2 is periodic, and can be use to enhance the contrast, see Figure 9.

It can be seen from the processed tiger image has a better processing effect and higher image con-
trast.
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7. Conclusion

In this paper, we have investigated the Hopf-pitchfork bifurcation of a simple feed forward neural
network system with time delay. By analyzing the distribution of the eigenvalues of the correspond-
ing transcendental characteristic equation of its linearized equation, we find the critical values for the
occurrence of Hopf-pitchfork bifurcation. Using the normal form method and the center manifold the-
orem, we have derived the normal form of the reduced system on the center manifold and discussed the
Hopf- pitchfork bifurcation with the parameter perturbations, and completely determined the stability
and bifurcation of the zero solution near the critical value.

In this paper, we also considered the application of Hopf bifurcation in image processing. The
results show that the contrast of gray image processed by oscillator 2 is enhanced. This is due to the
Hopf bifurcation caused by delay. This paper presents a novel image processing method based on
Hopf bifurcation. Numerical experiments show that this method has obvious advantages in processing
low-contrast images. Our work is helpful in the application of the complex phenomena of feed forward
neural network system.
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