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Abstract: Epigenetics is the study of heritable changes in gene expression or cellular phenotype
caused by mechanisms other than changes in the underlying DNA sequence. Genomic imprinting is an
epigenetically regulated process by which imprinted genes are expressed in a parent-of-origin-specific
manner. It can be confounded with a phenomenon, allelic expression imbalance (AEI), which, in this
paper, refers to asymmetric expression of the two alleles of a heterozygous subject at a single nucleotide
polymorphism not caused by imprinting (non-imprinting AEI). Since existing methods in the literature
are not amenable to distinguishing imprinting from non-imprinting AEI for data without replicates,
we propose AIJ, a joint test for simultaneous detection of imprinting and non-imprinting AEI that
accounts for potential confounding using RNA-seq data based on a reciprocal cross design. Through
a simulation study, we show that AIJ is more powerful compared to two frequently used methods that
do not account for confounding. To illustrate the practical utility of AIJ, we applied the method to a
mouse dataset and identified genes with the imprinting effect and/or non-imprinting AEI phenomenon,
with some already confirmed in an existing database. The results are also largely consistent with a
study on human data for a set of orthologous genes, affirming earlier conclusion in the literature that
non-imprinting AEI events are evolutionarily conserved.
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1. Introduction

Epigenetics is the study of heritable changes in gene expression or cellular phenotype caused by
mechanisms without changing the underlying DNA sequence [1]. Genetic imprinting, a frequently
studied epigenetic effect, is an epigenetically regulated process by which imprinted genes are expressed
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in a parent-of-origin-specific manner [2]. This phenomenon results in unequal expression of the same
allele inherited from different parental origins. Paternal (maternal) imprinting means that an allele
inherited from the father (mother) is expressed less than mother (father). It is estimated that about
1% of mammalian genes are imprinted [3], and genetic imprinting has been implicated in a number
of developmental disorders and childhood cancers [4, 5]. Due to the prominent role played by genetic
imprinting in childhood diseases, a number of imprinting studies have been performed using a recip-
rocal cross design (RCD; Table 1) of pure-strain parents taking advantage of the availability of next
generation sequencing (NGS) technology. Examples include studies to identify imprinted genes in
mice brain development [6, 7] and in whole-body Drosophila [8]. Other reciprocal cross designs have
also been used to study imprinting effects, including the reciprocal backcross design [9,10] and the F-2
intercross design [10].

On the other hand, allelic expression imbalance (AEI) is a phenomenon, which, in this paper, refers
to asymmetric expression of the two different alleles of a heterozygous subject at a single locus that is
not the consequence of imprinting. This may be more specifically referred to as non-imprinting AEI,
for which the imbalance is caused by factors other than imprinting, such as genetic variation or random
monoallelic expression [11]. Nevertheless, for brevity, we simply refer to it as AEI where ambiguity
does not arise. This particular type of AEI can be ascertained with a RCD: in the situation where
the expression does not follow the expected 1:1 ratio for neither of the two crosses whereas the two
ratios are the same, then a non-imprinting AEI effect is established; If the 1:1 ratio is not observed in
neither crosses and the two ratios are not equal, then both imprinting and non-imprinting AEI exist.
To elaborate, for a gene that is imprinted but has no AEI of any kind, its mRNA expressions only
depend on the parental origin, irrespective of the allelic types. On the other hand, for a gene that is
not imprinted but has AEI, the expressions only depend on the types of alleles, regardless of whether
these alleles are inherited from mother or father. Nevertheless, phenotypically, an imprinting effect
may appear as AEI if parental origin of the alleles are not taken into account. Conversely, AEI may be
mistaken as imprinting if the potential of allelic expression imbalance is not considered when studying
imprinting effects using RNA-seq data from an RCD experiment.

The existence of AEI is prevalent and has been implicated in a number of biological processes. For
example, studies have shown that Zellweger Spectrum Disorder [12], inherited retinal diseases [13],
breast cancer [14], acute coronary syndromes [15], Lynch syndrome [16], type 2 diabetes [17, 18],
and Crohn’s disease [19], are all associated with AEI. Taking advantage of NGS technology, studies
of AEI using RNA-seq data have also been carried out quite early on [20]. Because both genetic
imprinting and non-imprinting AEI involve distortion of allelic expression, the direct way to test them
is to analyze gene expression data, which can be accomplished by using RNA-seq, an NGS technology
for profiling an entire transcriptome. Using RNA-seq, gene expression levels of all transcripts can be
quantified as the total number of reads mapped to that gene. Many of the RNA-seq data generated from
a reciprocal cross experiment have only been used to study imprinting but not AEI [9, 10, 21], despite
the potential of confounding. A couple of more recent methods do consider both imprinting and AEI
jointly, although replicated samples are required [8, 22].

Despite the fact that it has become much more affordable to obtain RNA-seq data, many studies
still do not have replicates [23–25]. On the other hand, from a personalized medicine perspective, there
are no biological replicates, and one would have to be content with studies of a single sample [26, 27].
As such, methods have been proposed for detecting differential expression without replicated samples
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[23, 28]. However, such methods are not amenable to joint imprinting and AEI analysis.
To tease out AEI from imprinting and to increase statistical power for analyzing non-replicated

data, in this paper, we propose AIJ, AEI-Imprinting-Joint test, a simultaneous test for detecting ge-
netic imprinting and AEI jointly based on mouse RNA-seq reads generated from a RCD experiment.
Through a simulation study, we show that AIJ is more powerful compared to two commonly used
methods that do not account for confounding. To illustrate the practical utility of AIJ, we applied the
method to a mouse dataset and identified genes with imprinting and/or AEI.

2. Method

2.1. Reciprocal cross design, notation, and existing hypotheses

We consider two pure mouse strains, denoted by S 1 and S 2. Since pure strains have homozygous
genotypes at any single nucleotide polymorphism (SNP) locus, for convenience, we simply use S 1 and
S 2 to denote the alleles (at any SNP locus) as well, albeit a slight abuse of notation. Then we consider
a cross in which S 2 is a female mouse while S 1 is a male mouse (top line of Table 1). Let a and b
denote the number of S 1 and S 2 alleles (i.e. the numbers of reads containing the S 1 and S 2 alleles),
respectively. Then, n1 = a + b is the total number of reads that cover this SNP [7]. Consequently,
p̂1 = a/n1 provides an estimate for p1, the relative expression level of the paternal allele S 1. We also
consider a cross in which S 1 is a female mouse while S 2 is a male mouse (bottom line of Table 1), a
reciprocal of the first cross, hence the name reciprocal cross design. Using similar notation, we let c
and d be the number of S 1 and S 2 alleles, respectively, and we use n2 = c+d to denote the total number
of reads that cover this SNP. Then p̂2 = c/n2 provides an estimate for p2, the relative expression level
of the maternal allele S 1.

Table 1. RNA-seq read distributions from a reciprocal cross design of pure strains.

Cross∗ S 1 Allele Reads S 2 Allele Reads Total Reads Proportion
S 2 × S 1 a b n1 = a + b p̂1 = a/n1

S 1 × S 2 c d n2 = c + d p̂2 = c/n2

∗Each crosse is arranged as female × male.

In Wang et al. [6], the intended use of the RNA-seq data from a RCD experiment was to study the
imprinting effect, hence the null and alternative hypotheses were

H0 : p1 = p2 versus H1 : p1 , p2. (2.1)

It is clear from the above setup that the test for imprinting is regardless of whether there is any AEI.
When there are both imprinting and AEI but the imprinting effect is “weaker” in magnitude than AEI
(i.e. both p1 and p2 are < 0.5 or > 0.5), then the test may suffer from power loss. If there is no
imprinting but there is AEI, then there is no power to detect such a phenomenon since the test is not
designed for it.

On the other hand, if one is interested in testing for AEI assuming no imprinting, then it is in
fact sufficient to carry out the experiment running only one of the two reciprocal crosses specified in
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Table 1. Specifically, the appropriate hypotheses to test for AEI [20] are given in (2.2) and (2.3), for
data generated from the S 2 × S 1 or the S 1 × S 2 crosses, respectively:

H0 : p1 = 0.5 versus H1 : p1 , 0.5, (2.2)
H0 : p2 = 0.5 versus H1 : p2 , 0.5. (2.3)

Surprisingly, in Gregg et al. [7], which also used RCD to study imprinting effects, tests for both (2.2)
and (2.3) were carried out to detect imprinting effects: a conclusion of the existence of imprinting is
made only when both null hypotheses are rejected and when the estimated proportions p̂1 and p̂2 are
of different directionality (i.e. p̂1 > 0.5 and p̂2 < 0.5 or p̂1 < 0.5 and p̂2 > 0.5). Since a SNP with
both imprinting and AEI may lead to both p1 and p2 being less than 0.5 or greater than 0.5, the test
proposed by Gregg et al. [7] would have no power for detecting SNPs under such a scenario, which in
fact does occur in real data frequently (see results in the real data analysis and discussion - Sections 4
and 5).

2.2. Hypotheses for joint testing of AEI and imprinting

For joint testing of imprinting and AEI as proposed in the current paper, the hypotheses of interest
are

H0 : p1 = p2 = 0.5 versus H1 : p1 , 0.5 or p2 , 0.5. (2.4)

The above null hypothesis H0 stipulates no imprinting nor AEI, whereas the alternative hypothesis
signifies either imprinting or AEI, or both. The alternative hypothesis can be further decomposed into
three specific cases:

H1.A : p1 = p2 but neither equal to 0.5 (no imprinting but AEI)
H1.B : p1 , p2 and one equals to 0.5 but not both (imprinting but no AEI)
H1.C : p1 , p2 and neither equal to 0.5 (both imprinting and AEI)

To better understand H1.B, suppose p1 = 0.5. Then, there is no distortion of the 1:1 expression
ratio, indicating that there is no AEI of any kind. This, together with p2 , 0.5, implies that there is
imprinting but no non-imprinting AEI. For H1.C, on the other hand, p1 , p2 implies that there must
be imprinting effect, which, coupled with the fact that neither of the two crosses observes the 1:1 ratio,
indicates that there is also non-imprinting AEI.

Figure 1(a) is a schematic diagram depicting the division of the p1 − p2 plane into the H0, H1.A,
H1.B, and H1.C (encompassing both H1.C1 and H1.C2) regions. Comparing the hypotheses specified
in (2.4) with those in (2.2) and (2.3) combined, one can see that the null hypotheses are the same,
whereas the alternatives in (2.2) and (2.3) jointly only cover part of the alternative hypothesis in (2.4);
namely, they do not cover H1.B in (2.4). On the other hand, the decision rule in Gregg et al. [7] injects
the restriction on the opposite directionality of p1 and p2. Therefore, its actual alternative specifies
parameters falling into the H1.C1 region only, leaving the rest of the area on the p1 − p2 plane as the
de facto null. Thus, the actual null and alternative hypotheses tested in Gregg et al. [7] are not those
expressed in (2.2) and (2.3) combined.

In the next three subsections, we will describe the tests used by Wang et al. [6] and Gregg et
al. [7] (as they will be used for comparison), followed by the description of our proposed AIJ testing
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procedure. In describing each of these three methods, we will discuss their rejection regions as well as
formulas for computing the p-values. Note that we selected to compare with these two tests since they
are capable of handling non-replicated data. This issue will be elaborated in the Discussion (Section 5).

2.3. Storer-Kim test

The Storer-Kim (SK) test is an approximate unconditional test for the equality of two binomial
proportions [29]. Compared to the Fisher’s exact test, SK has been shown to be more powerful for study
designs in which the conditional assumption is violated in general [30]; its greater power for analyzing
NGS data has also been confirmed for a DNA methylation study [31]. Further, SK is computationally
much less expensive than its exact version, and its empirical type I error rate rarely exceeds the nominal
level [29]. These desirable properties led to its use by Wang et al. [6] for testing the hypotheses in (2.1).

Let X and Y be the random variables denoting the S 1 allele counts from the two crosses, with x
and y denoting their realizations, respectively (note that the observed counts a and c in Table 1 are
the specific realizations from the RCD experiment). Then X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2). The
p-value of the SK test can then be found as follows:

PS K =

n1∑
x=0

n2∑
y=0

b(x, n1, p̂)b(y, n2, p̂)I(|Z(x, y, n1, n2)| ≥ |Z(a, c, n1, n2)|),

where p̂ = (a + c)/(n1 + n2); b(x, n1, p̂) and b(y, n2, p̂) are the probability mass function of Bin(n1, p̂)
and Bin(n2, p̂) evaluated at x and y, respectively; I(·) is the usual indicator function taking values of 1
or 0; and Z(x, y, n1, n2) = (x/n1 − y/n2)/

√
(1/n1 + 1/n2)p̂(1 − p̂). For a preset significance level α, H0

is rejected if PS K ≤ α.

Given n1, n2, and α, the rejection region is:

RS K =

{
(x, y) :

∣∣∣∣∣ x
n1
−

y
n2

∣∣∣∣∣ ≥ f (n1, n2, α)
}
,

where f (n1, n2, α) is a function of the parameters. This rejection region is shown schematically in
Figure 1(b) for a set of parameter values, which is comprised of the upper and the lower triangles
(the regions shaded blue, yellow, brown, and gray - essentially regions in the x − y plane for which
|x/n1 − y/n2| is greater than a constant, with the boundaries for the two triangles being parallel lines).
This rejection region makes intuitive sense for testing the hypotheses in (2.1): a SNP is declared to
have an imprinting effect if the observed proportions of the S 1 allele in the two crosses are substantially
different.
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Figure 1. Depiction of hypotheses, rejection regions, and two specific data examples. (a).
Division of the p1− p2 planes into the H0 (red), H1.A (yellow), H1.B (green), and H1.C1 and
H1.C2 (blue) regions, where the last three together represent the three cases of the alternative
hypothesis H1. The white ellipsoid denotes a confidence region for a SNP. (b) Depiction of
the rejection regions for a specified α level and a pair of n1 and n2 values. SK: two triangles
in the top left and bottom right; TCS: two rectangles in the top left and bottom right; AIJ:
all in the x − y plane except the ellipsoid in the center. An observed data point (a, c) is also
indicated.

2.4. Two-Chi-Squares test

The Two-Chi-Squares (TCS) test is a procedure employed by Gregg et al. [7] to test the two sets
of hypotheses specified in (2.2) and (2.3). Although TCS tests these two sets of hypotheses separately,
each with the usual Chi-square test, the conclusion is drawn jointly based on the results from these
two tests, plus an additional constraint as discussed earlier. Using the same notation as in Section 2.3,
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we note that X and Y follow binomial distributions Bin(n1, 0.5) and Bin(n2, 0.5) under the respective
null hypothesis. Without loss of generality but noting the symmetry given the two-sided nature of
the alternative hypotheses, we assume that the observed counts a and c are less than n1/2 and n2/2,
respectively. Then the p-values for testing (2.2) and (2.3) are calculated, respectively, as

PTCS 1 =

a∑
x=0

b(x, n1, 0.5) +

n1∑
x=n1−a

b(x, n1, 0.5),

PTCS 2 =

a∑
y=0

b(y, n2, 0.5) +

n2∑
y=n2−a

b(x, n2, 0.5),

where b(x, n1, 0.5) and b(y, n2, 0.5) are the probability mass function of Bin(n1, 0.5) and Bin(n2, 0.5)
evaluated at x and y, respectively.

A SNP is concluded to have an imprinting effect if both PTCS 1 and PTCS 2 are less than a preset
significance level α, and furthermore, (p̂1 − 0.5)(p̂2 − 0.5) < 0, where p̂1 = a/n1 and p̂2 = c/n2.
The last expression implies that a SNP is said to have an imprinting effect if the maternal allele is
significantly overexpressed while the paternal allele is significantly underexpressed, or vice versa. Note
that this imposes a stronger condition than the usual definition of imprinting, and the conclusion is thus
confounded with the existence of AEI. For instance, p1 = 0.5 and p2 < 0.5, or p2 = 0.5 and p1 < 0.5
are indicative of maternal and paternal imprinting, respectively, but the TCS testing procedure will fail
to detect variants with such effects. Further, p1 < p2 < 0.5 may arise if both paternal imprinting and
AEI (with the S 1 allele expressed less than the S 2 allele) exist.

Given n1 and α, the rejection region for (2.2) is all x’s such that x < f (n1, α) or x > n1 − f1(n1, α),
where f1 is a function of the parameters that determines the boundaries of the region. Similarly, given
n2 and α, the rejection region for (2.3) is all y’s such that y < f (n2, α) or y > n2 − f2(n2, α), where f2

is a function defined similarly to f1. The overall rejection region, however, needs to take the additional
constraint of opposite directionality into consideration, and is thus given as

RTCS = {(x, y) : (x < f1(n1, α), y > n2 − f2(n2, α)), (x > n1 − f1(n1, α), y < f2(n2, α))}.

Shown schematically in Figure 1(b), this rejection region is composed of the upper-left and lower-right
rectangles (the regions shaded by yellow, brown, and red - essentially the yellow rectangles without
the corners being cut off). Since two separate Chi-square tests are performed compared to a single test
for KS (and AIJ to be discussed in the following subsection), we need to adjust the significance level
in order for the tests to be comparable. Given the symmetry of the two tails of each Chi-square test,
we have

P(RTCS | p1 = p2 = 0.5) = 2
(
α

2

)2
,

where α is the common nominal significance level for test (2.2) and (2.3). For example, if we set
α = 0.05, then the overall significance level for the TCS test is αTCS = 0.00125. Therefore, in order to
compare the power of the tests, we need to set the significance level for SK and AIJ to be αTCS as well.

2.5. AEI-Imprinting-Joint test

We propose an AEI-Imprinting-Joint (AIJ) test, which will not only address the potential con-
founding issue, but will also lead to an increase in statistical power for testing for imprinting regardless
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of whether AEI exists. To describe it intuitively, our proposed test rejects the null hypothesis H0 in
(2.4) if either p̂1 or p̂2 is significantly away from 0.5. Using the same notation as above, under the
null hypothesis, both X and Y follow independent binomial distributions Bin(n1, 0.5) and Bin(n2, 0.5),
respectively; hence, the probability for X = x and Y = y is

Px,y =

(
n1

x

)
0.5n1

(
n2

y

)
0.5n2 .

Let P(k) be the sorted Px,y’s from the smallest to the largest, k = 1, 2, · · · , (n1 + 1) ∗ (n2 + 1). Given a
significance level α, let s be the largest integer such that

∑s
k=1 P(k) ≤ α. Then, we define the rejection

region of AIJ as follows:
RAIJ = {(x, y) : Px,y ≡ P(k) where k ≤ s}.

This rejection region, shown schematically in Figure 1(b), is the region in the x− y plane (composed of
the areas shaded yellow, blue, and green) outside of the ellipsoid centered at (n1/2, n2/2). Therefore,
an observed pair of value (a, c) from a RCD experiment is rejected if it is significantly away from the
center of the x − y plane.

Let

S =

{
(x, y) :

(
n1

x

)(
n2

y

)
≤

(
n1

a

)(
n2

c

)}
.

Then the p-value is:

PAIJ =
∑
x,y∈S

(
n1

x

)(
n2

y

)
(0.5)n1+n2 ,

where the sum is over all pairs of (x, y) in the set S .
When H0 is rejected, further analysis may be carried out to delineate the three possible cases

as detailed in H1.A, H1.B, and H1.C. We describe one simple procedure in the following; another
potential approach is also proposed in the Discussion Section. We first construct the confidence interval
(CI) for p1 and p2 (CIp1 and CIp2) as follows, noting the binomial distributions and the natural bound
for a probability:

CIp1 : (max{ p̂1 − zα/2
√

p̂1(1 − p̂1)/n1, 0},min{ p̂1 + zα/2
√

p̂1(1 − p̂1)/n1, 1}),

CIp2 : (max{ p̂2 − zα/2
√

p̂2(1 − p̂2)/n2, 0},min{ p̂2 + zα/2
√

p̂2(1 − p̂2)/n2, 1}).

If the rectangle formed by these CIs, CIp1× CIp2 , intersects with the diagonal line of the p1 − p2 plane,
then H1.A (no imprinting but AEI) is concluded. If the rectangle does not intersect with the diagonal
line but intersects with either the p1 = 0.5 or p2 = 0.5 line (but not both), then H1.B (no AEI but
imprinting) is concluded. Finally, if the rectangle does not intersect with the diagonal line, nor the
p1 = 0.5 or p2 = 0.5 lines, then A1C (both imprinting and AEI) is concluded.

3. Simulation study

3.1. Settings

We first compare the proposed joint test, AIJ, with the SK and the TCS tests through a simulation
study. The simulated data sets were modeled after the Gregg et al. [7] RNA-seq data obtained from
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an RCD experiment to study murine embryonic day 15 (E15) brains. The Gregg [7] dataset consists
of data for approximately 200,000 SNPs after quality control. The total RNA-seq read counts and
the number of reads covering each SNP, (n1, n2) and (a, c), are available. Further details about the
dataset are provided in the application (Section 4). In our simulation, about 10% of the total read
counts (20,000 pairs of (n1, n2)) were first randomly selected under each of the five scenarios specified
in Table 2. Among them, 16,000 pairs (80%) were designated for studying the type I error rates, in
which the observed counts a and c were generated under H0: p1 = p2 = 0.5, and the actual n1 and
n2. For the remaining 4,000 pairs, the observed counts a and c were generated under H1. To better
understand the performance of the three comparison methods, we divided these 4,000 pairs into four
regions (scenarios) representing the various parameter ranges under the three detailed cases of the
alternative. These four regions are shown and labelled in Figure 1(a) as we described before, and their
descriptions and pair distributions as provided in Table 2. The relative proportion of pairs distributed
to these five scenarios (H0 plus the four under H1) are roughly according to the results from the real
data analysis (Section 4).

Table 2. Simulation scenarios under both H0 and H1 and the number of SNPs under each
scenario.

Hypothesis Characterization Range of p1, p2 valuesa # SNPsb

H0 No imprinting and no AEI p1 = 0.5 and p2 = 0.5 16,000
H1.A No imprinting but AEI p1 = p2 , 0.5 1,000
H1.B Imprinting but no AEI p1 = 0.5 or p2 = 0.5 600
H1.C1 Imprinting and AEI (p1 − 0.5)(p2 − 0.5) < 0 300
H1.C2 Imprinting and AEI (p1 − 0.5)(p2 − 0.5) > 0 2100

aFor H1.C2, it is obvious that we also assume that p1 , p2. bThe number of SNPs is distributed roughly according to the data in [7].

3.2. Study of type I error rates

A simulated dataset under H0 is displayed in Figure 2(a). The two axes specify the ranges of p1

and p2 (both between 0 and 1). The value in each square displays the number of SNPs falling into it,
with the total being 16,000. The range of p1 (and p2) was divided into nine intervals, with the interior
boundary values starting at 0.15 and ending at 0.85 with an increment of 0.1. We see that the middle
interval (0.45, 0.55) is further split into two, (0.45, 0.5) and (0.5, 0.55), to accommodate the nature
of the TCS test, as the decision on whether a SNP has an imprinting effect is based on the opposite
directionality of the estimated p̂1 and p̂2 (one has to be greater than, and the other smaller than 0.5). We
first note that for easy visualization of results, the block sizes were not drawn to proportion. We further
note that, in the observed counts displayed, although we set p1 = p2 = 0.5, the distribution covers a
wide range due to random sampling from the binomial distributions. For simplicity, we consider the
middle four squares as constituting the null hypothesis, referred to as the H0 region (the area in red).
As such, many SNPs are located outside of the region despite there are no imprinting nor AEI for these
SNPs. We applied the three comparison methods, TCS, SK, and AIJ, to analyze this dataset by setting
the significance level to be 0.00125 for all three tests, and the results are presented in Figure 2(b-d),
respectively. We can see that the number of false rejections for TCS, SK, and AIJ are 10, 22, and 22,
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respectively, leading to the empirical type I error rates of 0.00063, 0.0014, and 0.0014 (displayed on
the first row in Table 3). These results show that, while SK and AIJ appear to have the correct size, the
TCS test seems to be quite conservative.
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Figure 2. A simulated dataset under H0 and results from the three tests. (a) Simulated data,
with the number in each square denoting the number of SNPs with the estimated (p1, p2)
falling in it; (b)-(d) Testing results, with the number in each square denoting the number of
SNPs rejected.

Table 3. Comparison of type I error rate and power among the three tests studied under
various H1 scenarios∗.

Scenario AIJ TCS SK
H0 0.0014 0.00063 0.0014
H1.A 0.639(0.011) 0 0
H1.B 0.443(0.017) 0.012(0.004) 0.319(0.017)
H1.C1 0.711(0.023) 0.494(0.025) 0.713(0.022)
H1.C2 0.736(0.014) 0 0.183(0.011)

∗ The first row of the table shows the empirical type I error rate of a simulated dataset when the nominal level is set to be 0.00125. The
remaining rows of the table give the average and standard deviation (in parentheses) of power over 1000 replications for each scenario
and each method.

3.3. Study of power under four scenarios

A simulated dataset under H1.A is displayed in Figure 3(a). These data were simulated under
binomial Bin(n1, p1) and binomial Bin(n2, p2), where p1 = p2, representing the scenario where there
is AEI but no imprinting (Figure 1(a)). The total number of SNPs studied under this scenario is 1000
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(Table 2). The results from applying the three tests to this dataset are shown in Figure 3(b–d). We can
see that SK detected one significant SNP while TCS detected none. On the other hand, AIJ detected
645 significant SNPs, giving a 64.5% power.

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

104

32

7

2

0

1

0

0

0

0

28

50

20

6

0

0

0

0

0

0

8

23

60

34

5

1

3

0

0

0

2

7

23

36

8

2

3

2

0

1

1

1

7

10

2

2

5

4

0

1

0

1

6

4

7

4

11

9

2

0

0

0

1

2

4

7

30

30

8

1

0

1

0

0

4

6

15

52

26

4

0

0

0

0

2

0

9

31

62

18

0

0

0

0

1

1

3

10

26

101

(a) Data

p2

0.1 0.9

0.
1

0.
5

0.
9

104

31

5

0

0

0

0

0

0

0

27

46

9

3

0

0

0

0

0

0

6

17

38

15

0

0

0

0

0

0

1

2

9

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

9

7

3

1

0

0

0

0

0

1

3

38

17

3

0

0

0

0

0

0

4

23

59

18

0

0

0

0

0

1

2

9

26

101

(d) AIJ

p1

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

p1

(b) TCS

p1

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.5

p1

(c) SK

Figure 3. A simulated dataset under H1.A and results from the three tests. (a) Simulated
data, with the number in each square denoting the number of SNPs with the estimated (p1, p2)
falling in it; (b)-(d) Testing results, with the number in each square denoting the number of
SNPs rejected.

The alternative hypothesis under the H1.B case specifies that there is imprinting but no AEI (either
p1 = 0.5 or p2 = 0.5 but not both; Figure 1(a)). A simulated dataset with 600 pairs of SNPs from the
RCD experiment is displayed in Figure 4(a). The results from applying the three tests to this dataset
are shown in Figure 4(b-d). We can see that TCS detected only 7 SNPs (power 1.2%), while SK
was much more powerful, detected 187 (power 31.2%) significant SNPs. AIJ detected 261 (power
43.5%), which is a bit more powerful than SK, and much better than TCS which has practically no
power. There are several regions in the p1 − p2 plane that represent the alternative hypothesis under
scenario H1.C (i.e., having both imprinting and AEI). Since the two H1.C1 regions are different from
the four H1.C2 regions in terms of their “proximity” to the other alternative scenarios (Figure 1(a)),
they were studied separately. A simulated dataset for 300 SNPs in the H1.C1 regions is shown in
Figure 5(a), and the results for the three tests are provided in Figure 5(b–d). A total of 149 (power
49.7%), 213 (power 71.0%), and 215 (power 71.7%) significant SNPs were detected by TCS, SK, and
AIJ, respectively. These results show a marked improvement for both the TCS and SK tests, which is
expected because the counts are mainly located in the top-left or bottom-right corners, where both SK
and TCS were designed to detect (see rejection regions for these two tests in Figure 1(b)). Nevertheless,
TCS continued to lag behind despite the much improved performance over those in the other alternative
hypothesis scenarios. Finally, we considered the four H1.C2 regions. A simulated dataset for a total

Mathematical Biosciences and Engineering Volume 17, Issue 1, 366–386.



377

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

0

0

2

12

10

15

13

2

0

0

0

1

6

11

13

16

10

3

0

1

1

2

2

10

13

13

9

3

1

0

6

3

7

9

12

18

9

3

1

2

6

6

7

9

1

6

7

4

5

8

7

2

4

7

5

3

1

5

2

6

4

3

7

13

11

15

15

8

3

7

0

2

1

11

13

13

13

6

4

1

0

0

1

6

13

13

15

3

0

0

0

0

1

17

10

18

12

1

0

0

(a) Data

p2

0.1 0.9

0.
1

0.
5

0.
9

0

0

1

10

9

12

10

1

0

0

0

0

2

7

8

9

6

1

0

1

1

2

0

3

2

5

4

0

0

0

4

1

0

0

1

1

0

0

1

2

6

5

1

0

0

0

0

1

4

7

4

2

2

0

0

0

0

2

2

6

4

2

2

0

3

2

1

0

1

6

0

2

0

2

2

5

3

1

2

1

0

0

0

4

7

11

6

2

0

0

0

0

1

14

9

12

9

1

0

0

(d) AIJ

p1

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

p1

(b) TCS

p1

p2

0.1 0.5 0.9

0.
1

0.
5

0.
9

0

0

0

5

9

11

11

1

0

0

0

0

0

3

3

6

4

1

0

1

0

0

0

0

1

5

4

0

0

0

4

0

0

0

0

0

0

1

1

2

4

4

1

0

0

0

0

0

3

6

3

2

2

0

0

0

0

1

1

4

4

2

2

1

1

0

0

0

1

4

0

2

0

2

2

3

1

0

0

0

0

0

0

3

6

8

0

0

0

0

0

0

1

15

9

12

4

0

0

0

0.5

p1

(c) SK

Figure 4. A simulated dataset under H1.B and results from the three tests. (a) Simulated
data, with the number in each square denoting the number of SNPs with the estimated (p1, p2)
falling in it; (b)-(d) Testing results, with the number in each square denoting the number of
SNPs rejected.
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Figure 5. A simulated dataset under H1.C1 and results from the three tests. (a) Simulated
data, with the number in each square denoting the number of SNPs with the estimated (p1, p2)
falling in it; (b)-(d) Testing results, with the number in each square denoting the number of
SNPs rejected.
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Figure 6. A simulated dataset under H1.C2 and results from the three tests. (a) Simulated
data, with the number in each square denoting the number of SNPs with the estimated (p1, p2)
falling in it; (b)-(d) Testing results, with the number in each square denoting the number of
SNPs rejected.

of 2100 SNPs is given in Figure 6(a) as an illustration, and the results for the three tests are provided
in Figure 6(b–d). A total of 1 (power 0.0005%), 381 (power 18%), and 1575 (power 75%) significant
SNPs were detected by the TCS, SK, and AIJ, respectively. The superior performance of AIJ over the
other two tests is not surprising either given the rejection regions of these three tests (Figure 1(b)).

From the results described above and presented in Figures 3–6, AIJ is seen to have much higher
overall power than the other two tests. To ensure that the performance of these tests are consistent
from replicate to replicate, we performed these analyses for a total of 1000 replications for each of
the alternative hypothesis scenarios considered. The results, expressed as average power and standard
deviation (SD), are given in Table 3. One can see that the average powers for all scenarios are very
close to the powers for one replicate reported in Figures 3–6, and all with small SD’s. It is worth
pointing out again that the better performance of AIJ is not at the expense of type I error rate, as it
closely tracks the nominal level (Table 3).

4. Analysis of a mouse dataset

To further evaluate the methods on a real dataset, we considered the RCD experiment carried out
by Gregg et al. [7] to identify imprinted genes. Illumina RNA-seq experiments were performed on
murine E15 brain tissues obtained from the reciprocal cross progeny of CAST (CAST/EiJ) and C57
(C57BL/6J) mice. SNPs were identified by separately sequencing the CAST and C57 transcriptomes
of the pure-bred parents, and the subsequent base calls were used to distinguish transcription from
maternal and paternal allele. As such, for each SNP, the counts of the CAST allele transmitted from
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Table 4. Comparison of analysis results of the [7] E15 data with imprinted genes in mouse
brain tissues from the Morison database.

No. Gene Morison SK TCS AIJ
1 Grb10 P P P P
2 Kcnk9 P P P P
3 H13 P P/Ma P/Ma P/Ma

4 Mcts2 M M M M
5 Blcap P P P P
6 Calcr P P P P
7 Sgce M M M M
8 Peg10 M M M M
9 Copg2 P P P P
10 Nap1l5 M M M M
11 Zim5 P P P P
12 Usp29 M M M M
13 Ube3a P M/Pb P/Mb P/Mb

14 Ndn M M M M
15 Mkrn3 M M M M
16 Lgf2 M M M M
17 Rasgrf1 M M M M
18 Xlr3b P P P P
19 Ppplr9a P P M/Pc

20 Cntn3 P P
21 Sfmbt2 M
22 Gatm P
23 Xlr4c P

aFor each of the three tests, there were multiple SNPs implicated, with the majority pointing to paternal imprinting. bFor TCS and
AIJ, the majority of the SNPs detected to have a significant imprinting effect in that gene point to paternal imprinting, while this is the
opposite for the SNPs detected by SK where the majority point to maternal imprinting. cThe majority of the SNPs detected point to
maternal imprinting.

the male (a) and from the female (c) mouse were recorded (Table 1). As in the simulation study, we
set the nominal significance level for all three tests to be 0.00125 for comparison purpose. Among the
more than 200,000 SNPs contained in the dataset, 1,915, 3,695, and 37,258 SNPs were inferred to be
significant by TCS, SK, and AIJ, respectively. To gain a better understanding of some of the SNPs
identified, we compare the results with a very small but well-curated database of confirmed imprinted
genes [3]. In the database, there are 49 imprinted genes in mouse brain tissues. Among them, 23
are present in the E15 data of Gregg [7]; that is, the E15 data contain SNPs that belong to 23 of
the 49 imprinted genes in the database. The names of these 23 genes, along with their directionality
(maternally or paternally imprinted) from the Morison database, are provided in Table 4. For our
analysis, a gene is concluded by a particular method to be imprinted if the null hypothesis was rejected
for at least one SNP within the gene. Further, for the purpose of comparison, a SNP concluded to have

Mathematical Biosciences and Engineering Volume 17, Issue 1, 366–386.



380

a significant effect is said to have a paternal (maternal) imprinting effect if p̂1 < p̂2 ( p̂1 > p̂2). The
results from the three tests are given in the the last three columns in Table 4. As we can see from the
table, the AIJ test identified one more imprinted genes than SK and two more than TCS. Based on
these results, two observations are noteworthy. First, although the difference in the numbers appears
to be small, the results are not surprising. Since the confirmed genes collected in the databases were
selected most likely based on traditional methods such as the TCS and SK, these methods are expected
to performed well in this set of genes. As such, it is reassuring to see that AIJ performs equally well
for this set of genes, and in fact slightly better. Second, the directionality of imprinting effects for the
SNPs within a gene are consistent for most of the genes and are the same as the results in the database.
For those few where not all the SNPs have the same directionality of imprinting effects, most of the
SNPs agree with the results in the database.

Given that AIJ detected many more significant SNPs than the other two tests, we are interested in
investigating the properties of these SNPs that lead to such a result. A closer inspection shows that, for
the AIJ test, about 3,000 of the SNPs detected to be significant fall into the H1.C1 region (as marked in
Figure 1(a)), which is comparable to the number detected by SK. This is completely consistent with the
results from the simulation study, which shows that SK and AIJ have similar power for detecting SNPs
falling into the H1.C1 region. However, a super majority of the significant SNPs (about 33,000, or 89%
of all detected) fall into the H1.A or H1.C2 regions (Figure 1(a) - AEI with or without imprinting), for
which SK and TCS has little to no power, according to our simulation study (Table 3). Let us consider
the CD81 gene as an example to demonstrate this point. This gene has been implicated to be maternally
imprinted in non-brain, but not brain, tissues of mice [3], and several SNPs in this gene were detected
only by AIJ. In particular, shown in Figure 1(b) is a SNP whose observed counts in the reciprocal
experiment were (a, c) = (13, 21) with coverage (n1, n2) = (56, 67), leading to an estimate of p̂1 = 0.23
and p̂2 = 0.31. This pair of estimated values place the SNP in the green region of the p1− p2 plane (the
rejection region of AIJ only); therefore it was only detectable by AIJ, but not the other two tests. With
a nominal significance level of α = 0.05, the confidence intervals for p1 and p2 were estimated to be
(0.14, 0.32) and (0.22, 0.41), respectively. Since the rectangle formed by these two intervals intersect
with the p1 = p2 line but neither the p1 = 0.5 nor the p2 = 0.5 lines, this SNP is deemed to exhibit
AEI but no imprinting effect, leading to the conclusion for H1.B, which is consistent with the Morison
database.

5. Discussion

There has been a great deal of interest in detecting imprinted genes as such genes play a crucial
role in normal mammalian development as well as diseases. For mouse models, reciprocal cross de-
sign aided by RNA-seq has been used to study imprinting effect, and statistical methods have been
employed for such tasks. However, as we have shown in this paper, with RNA-seq data from RCD,
one cannot simply separate the effect of imprinting from the non-imprinting AEI phenomenon using
these methods. To address this challenging issue, we have proposed AIJ, a statistical method that can
jointly test for imprinting and non-imprinting AEI. Through simulation and real data analysis, we show
that AIJ can be much more powerful than the two commonly used methods for imprinting testing that
do not require replicated samples. Although it is not surprising that AIJ has power for detecting AEI
when imprinting does not exist, AIJ also has much greater power for detecting imprinting in the pres-
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ence of non-imprinting AEI when the proportions of allelic expression of the allele of interest are both
above, or below the expected 1/2 for both reciprocal crosses. Examining the range of the proportions
under the various scenarios of the alternative and the rejection regions of the tests (Figure 1) clearly
supports the above conclusion.

Table 5. Comparison of analysis results of E15 mouse data with those from the human dataa.

AIJ Results for Mouse Data
Chuang Results for
Human Data

Non-imprinting AEI Imprinting Imprinting & Non-
imprinting AEI

Imprinting Glul, Pard3
Non-imprinting AEI
(genetic variants)

Cox7a2l, Retsat, Supt16h,
Bptf, Ndrg1, Trappc4, Tspan9,
Ust, Zbtb44, Actn4, Edf1d,
Pdxdc1, Sirpa, Pip4k2a, Pms2

Ube2d3 Tspyl4

Non-imprinting AEI
(random monoal-
lelic experssion)

Ifitm2, Pip4k2a Zdhhc17

aGenes whose classifications are consistent between the AIJ results and those of Chuang are in bold.

To further interpret our results, we turn to a recent human study as little is available in the liter-
ature for differentiating AEI caused by imprinting or non-imprinting factors in mice. In this human
study, Chuang et al. [11] used family trios to identify various causes of expression asymmetry. They
considered imprinting, genetic variation, and random monoallelic expression as the underlying causes.
For comparison purpose so that the terminologies are similar, asymmetry expression due to imprinting
in the Chuang et al. study is simply termed imprinting here whereas that due to the other factors is
referred to as non-imprinting AEI. Although the Chuang et al. study is on human data, we nonetheless
believe that it is reasonable to use their results for comparison since the majority of the SNPs identified
in both studies are non-imprinting AEIs and since non-imprinting AEIs are shown to be evolutionar-
ily conserved [11]. Specifically, we look into 22 orthologous genes in the E15 mouse data that have
been implicated by AIJ and were also identified to have imprinting effect or non-imprinting AEI phe-
nomenon by Chuang et al. [11] using the human data. Of these 22 genes, the results from Chuang et al.
are as follows: 2 were inferred to have imprinting effects on gene expression; whereas the remaining
20 were classified as non-imprinting AEI (17 were believed to be caused or likely caused by genetic
variation whereas 3 were believed to due to random monoallelic expression). Of the 2 genes inferred
to have an imprinting effect by Chuang et al., both were inferred to have non-imprinting AEI by AIJ,
and we note that it appears that neither genes have been found to be imprinted when we searched the
literature. In comparison, among the 20 genes that were seen to exhibit non-imprinting AEI in Chuang
et al., 17, 2, and 1 were inferred to have non-imprinting AEI only, imprinting but no non-imprinting
AEI, and both imprinting and non-imprinting AEI, respectively, by AIJ (Table 5). This comparison
shows that the results from these two studies on the orthologous genes are extremely consistent, which
can be taken as affirming the conclusion that non-imprinting AEIs are evolutionarily conserved. This
observation, taken together with the fact that over 80% of the significant SNPs identified by AIJ exhibit
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non-imprinting AEI whereas the “vast majority” of those identified in Chuang et al. were concluded to
be due to genetic variation, leads to the conclusion that AIJ is a promising methodology that can lead
to biologically relevant results.

From a methodological standpoint, for the AIJ test, when the null hypothesis is rejected, how to
proceed to reach a conclusion that can delineate the three scenarios deserves further discussion. As
we describe in Section 2, our proposed procedure is to construct a confidence interval for each of
the expression proportions of the allele of interest in both reciprocal crosses. The rectangle formed
from these two intervals can then be used to make inference about the three alternative scenarios. On
the other hand, one may directly construct a confidence region and make inference based on it directly
without the need to resort to the additional ad hoc procedure to delineate the alternative when the null is
rejected. Specifically, one may construct a 100(1−α)% confidence region for p1 and p2 centered around
the observed p̂1 and p̂2. Suppose that X follows a binomial distribution Bin(n1, p̂1) and Y follows a
binomial distribution Bin(n2, p̂2), and that X and Y are independent. Let P̂xy be the probability that
X = x and Y = y:

P̂xy =

(
n1

x

)
p̂x

1(1 − p̂1)n2−y

(
n2

y

)
p̂y

2(1 − p̂2)n2−y.

To find the confidence region, let P̂(k) be the sorted P̂xy’s from the smallest to the largest, k =

1, 2, . . . , (n1 + 1) ∗ (n2 + 1). Given a significance level α, s is the largest integer that satisfies∑s
k=1 P̂(k) ≤ α. Therefore, the confidence region is the collection of (x, y) corresponding to k =

s + 1, . . . , (n1 + 1) ∗ (n2 + 1). As an example, we consider SNP uc007iba.1 1091 in gene Grb10
from the E15 dataset [7] in which (a, c) = (66, 28) and (n1, n2) = (110, 106), leading to p̂1 = 0.6 and
p̂2 = 0.26. The constructed 99% confidence region (white ellipsoid in Figure 1(a)) is centered around
the estimated p̂1 and p̂2 values, and the confidence region overlaps with the line p1 = 0.5, but not
the p1 = p2 line, nor the center of the p1 − p2 plane denoting H0. Thus, this SNP is likely to have
imprinting but no non-imprinting AEI, consistent with the Morison database.

Although AIJ is proposed for analyzing data without replicated samples and is shown to be more
powerful than two other methods that are also amenable to such data, for enrichment of discussion, we
nonetheless also applied AIJ to another dataset that has two replicated samples and compared its per-
formance with a joint testing method proposed for data with replications. Specifically, we considered
the mice trophoblast stem cells (TSC) data, containing two replicated samples, from a reciprocal cross
between CAST/EiJ and C57BL/6J analyzed in Takada et al. [8]. Therein, a method based on gener-
alized linear model (GLM) was proposed to decompose cis-regulatory and imprinting effects, which
requires replicated samples to estimate variability.

Using a nominal significance level of 0.00125, AIJ identified a total of 1875 genes that were con-
sidered to be imprinted or exhibit AEI, while GLM identified 1278. Among them, 381 and 447 pointed
to the existence of both imprinting and AEI based on AIJ and GLM, respectively. Interestingly, the
super majority of them, 330 for AIJ and 407 for GLM, fall into the four H1.C2 regions (Figure 1(a),
where the estimated p1 and p2 are either both above 0.5 or both below 0.5), consistent with the result
from the Gregg data for the same reciprocal design, albeit with their study focusing on brain tissues.
These results, consistently identified by two rather different methods and across two different datasets,
indicate that there are most likely genes for which the impact of AEI is stronger than that of imprinting
on gene expression. On the other hand, AIJ identified a larger number of imprinted genes without AEI
compared to GLM, which accounts for the larger number of genes identified by AIJ.
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Figure 7. Venn diagram depicting the intersecting regions representing genes identified by
four analyses. Takada: the GLM method proposed in [8]; AIJ both: AIJ analyzing the com-
bined data from the two replicated samples; AIJ sample1: AIJ analyzing only data from
Sample 1; AIJ sample2: AIJ analyzing only data from Sample 2.

To dissect the impact of having replicated samples on AIJ, which was proposed for non-replicated
data, and to study consistency, we also analyzed each of the two samples separately using AIJ (note
that we could not perform the separate analysis using GLM). Our results (Figure 7) show that there are
a large amount of overlaps. For example, 78% of those identified by Sample 1 was also identified by
Sample 2, and not surprisingly, even a larger percentage (94%) of those identified by Sample 1 was
also identified by AIJ when using the combined data from the two samples. On the other hand, one
can see that AIJ and GLM identified 158 genes that were not implicated when only one of the two
samples were analyzed, suggesting the increase in power for AIJ when using the combined data from
both replicated samples. In summary, in this paper, we show that for a specific heterozygous SNP,
the relative expression level of the two different alleles can be quantified to detect either imprinting
or AEI based on a reciprocal cross design without replicated samples. The crucial feature is that the
origin of the two different alleles can be clearly identified, and the relative expression level of the two
parental alleles can be quantified. This RCD for mice can be used to study other organisms. For plants,
Gehring et al. [32] performed RNA-seq from embryo and endosperm derived from reciprocal crosses
between two Arabidopsis thaliana accessions, and identified more than 200 loci that exhibit parent-
of-origin effects on gene expression. Therefore, the more powerful AIJ test proposed in this paper is
also applicable there. However, for humans, an experimental cross is obviously infeasible, and thus a
different design and an alternative data collection process are needed to understand the confounding
effects of imprinting and AEI. To this end, a parents-child trio design may be considered [33]; however,
the operational characteristics of our joint testing procedure (AIJ) in this setting remain to be studied.
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