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Abstract: Studies in ecological stoichiometry highlight that grazer dynamics are affected by
insufficient food nutrient content (low phosphorus (P)/carbon (C) ratio) as well as excess food nutrient
content (high P:C). Contaminant stressors affect all levels of the biological hierarchy, from cells
to organs to organisms to populations to entire ecosystems. Eco-toxicological modeling under the
framework of ecological stoichiometry predicts the risk of bio-accumulation of a toxicant under
stoichiometric constraints. In this paper, we developed and analyzed a Lotka–Volterra type predator–
prey model which explicitly tracks the environmental toxicant as well as the toxicant in the populations
under stoichiometric constraints. Analytic, numerical, slow-fast steady state and bifurcation theory are
employed to predict the risk of toxicant bio-accumulation under varying food conditions. In some
cases, our model predicts different population dynamics, including wide amplitude limit cycles where
producer densities exhibit very low values and may be in danger of stochastic extinction.

Keywords: predator–prey model; ecological stoichiometry; ecotoxicology

1. Introduction

While the development of models in Ecotoxicology has advanced understandings of how
contaminants cycle through food webs and impact organisms [1–4], many existing models do not
consider the important role that environmental nutrients can have. The interactive roles that essential
elements, such as nitrogen and phosphorus, can play with environmental toxicants, such as mercury
and cadmium, on population dynamics and toxicities can have significant implications [5]. Recent
research on aquatic food webs has observed that the impact of toxicants on the population dynamics
of Daphnia grazers depends on food quality [6–8]. These examples make it clear that the strength and
type of any interactive effects of contaminants and nutrient stressors depends on the elements in the
system. Considering a producer-grazer system of algae and Daphnia exposed to methyl mercury
(MeHg) [8] showed that bioaccumulation dynamics depends on phosphorus (P) limitation. The
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accumulation of MeHg in Daphnia depends on the nutritional value (phosphorus to carbon ratio, P:C)
of its algal diet.

Researchers [9, 10] developed and analyzed models of this same system parameterized with data
from [8]. These models capture the somatic growth dilution phenomenon, where organisms
experience a greater than proportional gain in biomass relative to toxicant concentrations when
consuming high vs low quality food, as observed in empirical data [8]. These modeling efforts are
some the first dynamical models formulated using the theory of Ecological Stoichiometry [11] to
investigate both stoichiometric and toxicological constraints on population dynamics. While tracking
the transfer of both P and MeHg across trophic levels, these models make a simplifying assumption
that environmental aqueous MeHg loads are constant and not influenced by the population dynamics
of algae or Daphnia. While this simplifying assumption reduced model complexity it may lead to
consequences on predicting the important role nutrient cycling can have on toxicant bioaccumulation.

Here we relax the assumption that environmental toxicant loads are constant by explicitly modeling
the amount of aqueous toxicant as it depends on the organisms’ uptake and efflux rates. We develop and
analyze a stoichiometric-toxicant mediated producer-grazer model that explicitly tracks environmental
toxicant loads. We explore parameter ranges analytically and numerically to investigate when this
simplifying assumption has major implications on population dynamics and toxicity predictions.

2. Model formulation

We start with the stoichiometric toxicant-mediated knife edged predator–prey model developed
by [10]:

dx
dt︸︷︷︸

Change in

prey

= α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x︸                                               ︷︷                                               ︸
gain from

growth

−min
{

f (x),
cθ
Q

}
y︸               ︷︷               ︸

loss from
predation

(2.1a)

dy
dt︸︷︷︸

Change in

predator

= min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}y︸                                                     ︷︷                                                     ︸
gain from

growth

− d2(v)y︸︷︷︸
loss from

death

(2.1b)

du
dt︸︷︷︸

Change in tox

conc. of prey

= a1T︸︷︷︸
uptake

− σ1u︸︷︷︸
efflux

−α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u︸                                               ︷︷                                               ︸
loss due to

growth

(2.1c)

dv
dt︸︷︷︸

Change in tox

conc. of pred.

= a2T︸︷︷︸
uptake

+ ξmin
{

f (x),
cθ
Q

}
u︸                 ︷︷                 ︸

uptake

from
prey

− σ2v︸︷︷︸
efflux

−min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}v︸                                                     ︷︷                                                     ︸
loss due to

growth

(2.1d)
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where Q = (P − θy)/x is the prey variable phosphorus to carbon ratio (P:C). Here x(t) and y(t) are the
biomass of the prey and predator, respectively, measured in terms of C. u(t) and v(t) give the toxicant
body burden, or the concentration of the toxicant in the prey and predator, respectively. σ1 and σ2

are toxicant efflux rates for the prey and predator, respectively. T is the total toxicant in the system.
ξ is the predator toxicant assimilation efficiency. P is the total amount of phosphorus in the system.
q is the minimum P:C ratio of the prey. Parameter θ is the constant predator P:C ratio, α1 is the prey
maximal growth rate, α2 is the effect of the toxicant on the prey growth rate, and a1 and a2 are toxicant
uptake rates. Parameter β1, which is between 0 and 1, is the growth efficiency of the prey and β2 is the
toxicant effect on predator reproduction. The grazer’s ingestion rate, f (x) is a monotonic increasing
and differentiable function, f ′(x) > 0 and f ′′(x) < 0 with lim

x→∞
f (x) = c. Model (2.1) is based on

previous modeling works by [4, 9] and [12].
By following the recommendation of the committee on toxicology of the National Research

Council in 1992 and tested in [9, 10, 13] uses the power law to represent the relationship between
toxicant concentrations and predator mortality rate. Predator mortality rate as a function of v, takes
the following form

d2(v) = h2vI + m2

where h2 and I are positive constants for the coefficient and exponent of the power function and m2 is
the natural loss rate, including both natural mortality and respiration.

Population growth dynamics are influence by nutrient availability. Stoichiometric constraints appear
as minimum functions in the above model (2.1). The minimum function min {K, (P − θy)/q} is used
to describe the prey carrying capacity. The first input, K, is the prey carrying capacity in terms of C
and represents the light intensity. The second input, (P − θy)/q, is the carrying capacity determined by
phosphorus availability where P−θy is the prey’s phosphorus content. This is based on the assumption
that all available nutrients are either in the prey or the predator. The model assumes prey are extremely
efficient at taking up nutrients and does not allow free nutrients to be dissolved in the environment.
The consumer growth rate is described by another minimum function min{β1,Q/θ}. The first input, β1,
is used when consumer growth is limited by carbon. The second input, Q/θ is used when consumer
growth is limited by phosphorus.

The growth rates of both organisms are also influenced by the respective body burdens.
Toxicological constraints appear as maximum functions in the above model (2.1). The term
max(0, 1 − α2u), which is a fraction between 0 and 1, represents a linear dose response for the prey’s
gain rate. The term max(0, 1 − β2v) represents linear dose response for the predator’s reproduction
efficiency.

Researchers of [10] considered the total toxicant (T ) as constant over the time, they didn’t
distinguish between the toxicant in the environment and total toxicant in the system, both are
considered as T . In our model we consider the environmental toxicant as Te and the total toxicant in
the system as T where T = ux + vy + Te.

We extend system (2.1) by allowing the environmental toxicant in the system to change over time
rather than being constant, as it will give more insight about the population dynamics and risk
assessment. For our system we still assume that the total toxicant is constant, in other words the
system is closed for any input or output of toxicant. Toxicant is taken up by the prey and predator at
rates of a1Te and a2Te respectively. Therefor aqueous toxicant is removed from the environment due
at rates a1Tex and a2Tey. The prey and predator populations release toxicant back into the
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environment at rates σ1ux and σ2vy respectively. Additionally, we assume that predator death, d2(v),
results in toxicant released back into the environment at rate d2(v)vy. We can express the change of
toxicant in the environment over time by a differential equation as follows

dTe

dt︸︷︷︸
Change in

tox conc.

over time

= − a1Tex︸︷︷︸
prey

uptake

− a2Tey︸︷︷︸
pred

uptake

+ σ1ux︸︷︷︸
prey

efflux

+ σ2vy︸︷︷︸
prey

&

pred

efflux

+ d2(v)vy︸  ︷︷  ︸
gain

from

dead

pred

+ (1 − ξ) min
{

f (x),
cθ
Q

}
uy︸                           ︷︷                           ︸

pred failure to

assimilate

(2.2)

The last term in equation (2.2) accounts for the toxicant released back into the environment
following the predator’s assimilation of ingested prey. The predator’s toxicant assimilation coefficient
is ξ, the predator gains f (x)u of toxicant from predation but only assimilates ξ f (x)u amount of
toxicant and fails to assimilate (1 − ξ) f (x)u amount of the toxicant, so (1 − ξ) f (x)uy amount of the
toxicant returns back to the environment. Since, we assume the system is closed the total amount of
toxicant is constant, d

dt (T ) = 0. This is verified below:

d
dt

(T ) = u
dx
dt

+ x
du
dt

+ v
dy
dt

+ y
dy
dt

+
dTe

dt

=

α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x −min
{

f (x),
cθ
Q

}
y

 u

+

a1Te − σ1u − α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u

 x

+

(
min

{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}y − d2(v)y
)

v

+

(
a2Te + ξmin

{
f (x),

cθ
Q

}
u − σ2v −min

{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}v
)

y

−a1Tex − a2Tey + σ1ux + σ2vy + d2(v)vy + (1 − ξ) min
{

f (x),
cθ
Q

}
uy = 0

Combining the system (2.1) and (2.2) we get

dx
dt︸︷︷︸

Change in

prey

= α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x︸                                               ︷︷                                               ︸
gain from

growth

−min
{

f (x),
cθ
Q

}
y︸               ︷︷               ︸

loss

from
predation

(2.4a)

dy
dt︸︷︷︸

Change in

predator

= min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}y︸                                                     ︷︷                                                     ︸
gain from

growth

− d2(v)y︸︷︷︸
loss

from
death

(2.4b)
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du
dt︸︷︷︸

Change in tox

conc. of prey

= a1Te︸︷︷︸
uptake

− σ1u︸︷︷︸
efflux

−α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u︸                                               ︷︷                                               ︸
loss due to

growth

(2.4c)

dv
dt︸︷︷︸

Change in tox

conc. of

predator

= a2Te︸︷︷︸
uptake

+ ξmin
{

f (x),
cθ
Q

}
u︸                 ︷︷                 ︸

uptake

from
prey

− σ2v︸︷︷︸
efflux

−min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}v︸                                                     ︷︷                                                     ︸
loss due to

growth

(2.4d)
dTe

dt︸︷︷︸
Change in

tox conc.

over time

= − a1Tex︸︷︷︸
prey

uptake

− a2Tey︸︷︷︸
pred

uptake

+ σ1ux︸︷︷︸
prey

efflux

+ σ2vy︸︷︷︸
prey

&

pred

efflux

+ d2(v)vy︸  ︷︷  ︸
gain

from

dead

pred

+ (1 − ξ) min
{

f (x),
cθ
Q

}
uy︸                           ︷︷                           ︸

Gain from pred

failure to

assimilation

(2.4e)

Again, we assume the total toxicant of the system is constant,

T = ux + vy + Te

and therefore,

Te = T − ux − vy

which allows us to substitute Te = T − ux − vy into system (2.4) and reduce the above system to a four
dimensional system for convenience. Model (2.5) gives the final form of our mechanistically derived
toxicant-mediated stiochiometric predator-prey model and Table 1 lists the parameter values.

dx
dt︸︷︷︸

Change in

prey

= α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x︸                                               ︷︷                                               ︸
gain from

growth

−min
{

f (x),
cθ
Q

}
y︸               ︷︷               ︸

loss

from
predation

(2.5a)

dy
dt︸︷︷︸

Change in

predator

= min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}y︸                                                     ︷︷                                                     ︸
gain from

growth

− d2(v)y︸︷︷︸
loss

from
death

(2.5b)

du
dt︸︷︷︸

Change in tox

conc. of prey

= a1(T − ux − vy)︸             ︷︷             ︸
uptake

− σ1u︸︷︷︸
efflux

−α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u︸                                               ︷︷                                               ︸
loss due to

growth

(2.5c)
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dv
dt︸︷︷︸

Change in tox

conc. of

predator

= a2(T − ux − vy)︸             ︷︷             ︸
uptake

+ ξmin
{

f (x),
cθ
Q

}
u︸                 ︷︷                 ︸

uptake

from
prey

− σ2v︸︷︷︸
efflux

−min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}v︸                                                     ︷︷                                                     ︸
loss due to

growth

(2.5d)

Table 1. Parameter Values.

Parameter Value Source
α1 Algae maximal growth rate 1.2/day [14]
α2 tox effect on algal reproduction 0.0051 mg C/µg T [15]
K Algae C carrying capacity 0-3 mg C/L [14]
β1 Daphnia C growth efficiency 0.8 (unitless) [14]
β2 tox effect on Daphnia growth 10.13 mg C/ µg T [16]
θ Daphnia constant P:C 0.03 mg P/mg C [14]
q Algae minimal P:C 0.0038 mg P/mg C [14]
h2 Coeff. of Daphnia mortality 0.347 mg C/µg T/day [16]
I Exp. of Daphnia mortality 1.685 (unitless) [16]
m2 Daphnia natural loss rate 0.25/day [14]
c Daphnia max ingestion rate 0.81/day [14]
a Daphnia ingest. 1/2-sat. 0.25 mgC/L [14]
a1 Algae toxicant uptake coefficient 0.012 L/mg C/day [17]
a2 Daphnia toxicant uptake coefficient 0.011 L/mg C/day [18]
σ1 Algae toxicant efflux rate 0.048/day [17]
σ2 Daphnia toxicant efflux rate 0.04/day [18]
ξ Daphnia tox assimilation 0.97 (unitless) [18]
T Total toxicant 0.01-0.2µg T / L assumed
P Total phosphorus 0.01-0.15 mg P/ L assumed

3. Model analysis

To aid in model analysis we first non-dimensionalize and employ a quasi-steady-state assumption
to reduce the model to a two-dimensional system. We then investigate boundary equilibria analytically
and use phase-plane analysis to investigate interior equilibria.

3.1. Model reduction

Here, we non-dimensionalize the system (2.5) and assumed I = 1 for mathematical convenience to
facilitate the mathematical analysis and re-scale the model with the following non-dimensional
parameters:

Mathematical Biosciences and Engineering Volume 17, Issue 1, 349–365.



355

ỹ =
c
α1

y, t̃ = α1t, T̃ = α2a1σ1T, ũ = α2u, ṽ = β2v

h̃1 =
h1

α1α2
, h̃2 =

1
β2α1

h2, β̃1 =
cβ1

α1
, β̃2 =

ξcσ1

α2
β2, σ̃2 = σ1σ2

σ̃1 = σ1, m̃2 =
m2

α1
, θ̃ =

α1

c
θ, ε = α1σ1, γ =

a2β2

α2a1
, Q̃ =

P − θ̃ỹ
x

(3.1)

Dropping the tildes for simplicity, the dimensionless form of system (2.5) yields

dx
dt

= max{0, 1 − u}

1 − x

min
{
K, P−θy

q

} x −min
{

x
a + x

,
c
α1

θ

Q

}
y (3.2a)

dy
dt

= min
{
β1

c
α1

θ

Q
, β1

x
a + x

,
Q
θ

x
a + x

}
max{0, 1 − v}y − (h2v + m2)y (3.2b)

ε
du
dt

= T − σ1a1ux − ε
σ1a1ξ

β2
vy − σ2

1u − ε max{0, 1 − u}

1 − x

min{K, P−θy
q }

 u (3.2c)

ε
dv
dt

= γT −
a2β2

ξc
ux − ε

a2

c
vy − σ2v + β2 min

{
x

a + x
,

c
α1

θ

Q

}
u

− ε min
{
β1

c
α1

θ

Q
, β1

x
a + x

,
Q
θ

x
a + x

}
max{0, 1 − v}v (3.2d)

According to the parameterization in Table 1, ε = 0.0576. Since ε is sufficiently small the
dynamics of the body burdens u and v are on a much faster time scale than the population dynamics of
x and y. Here we make the assumption that the exchange of the toxicant between the water and the
organisms is faster than the other processes including assimilation, dilution, and organismal growth.
This assumption is similarly made by previous ecotoxicology models [3, 4, 19]. Considering the fast
and slow systems in the model and a quasi-steady-state assumption we let ε → 0 in order to reduce
the model to the fast-slow subsystem.

Applying this quasi-steady-state reduction and letting ε → 0 yields

u =
T

σ2
1 + σ1a1x

, v =
T
σ2

(
γ −

a2β2

ξc
x

σ2
1 + σ1a1x

+
β2

σ2
1 + σ1a1x

min
{

x
a + x

,
c
α1

θ

Q

})
(3.3)

Now, substituting (3.3) and Q =
P−θy

x into (3.2a), (3.2b) gives us the following quasi-steady-state non-
dimensional system

dx
dt

= max
{

0, 1 −
T

σ2
1 + σ1a1x

} 1 − x

min
{
K, P−θy

q

} x −min
{

x
a + x

,
c
α1

θx
P − θy

}
y (3.4a)

dy
dt

= min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y
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−

(
h2

(
T
σ2

(
γ −

a2β2

ξc
x

σ2
1 + σ1a1x

+
β2

σ2
1 + σ1a1x

min
{

x
a + x

,
c
α1

θ

Q

}))
+ m2

)
y (3.4b)

Considering the fast-slow subsystems and using the quasi-steady-state assumptions essentially
decouples the dynamics of the trophic transfer of the toxicant from population dynamics and has been
used in previous work to write an expression for the bioconcentration factor [19].

3.2. Equilibria analysis

To investigate the equilibria we first rewrite system (3.4) in the following form

dx
dt

= xF(x, y) (3.5a)

dy
dt

= yG(x, y) (3.5b)

where,

F(x, y) = max
{

0, 1 −
T

σ2
1 + σ1a1x

} 1 − x

min
{
K, P−θy

q

} −min
{

1
a + x

,
cθ

α1(P − θy)

}
y (3.6a)

G(x, y) = min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
−

(
h2

(
T
σ2

(
γ −

a2β2

ξc
x

σ2
1 + σ1a1x

+
β2

σ2
1 + σ1a1x

min
{

x
a + x

,
c
α1

θ

Q

}))
+ m2

)
(3.6b)

The Jacobian takes the following forms

J =

(
F(x, y) + xFx(x, y) xFy(x, y)

yGx(x, y) G(x, y) + yGy(x, y)

)
3.2.1. Boundary equilibria

We investigate the equilibria
E0 = (0, 0)
E1 = (x∗, 0)

The local stability of E0 = (0, 0) is determined by the Jacobian in the following form,

J(E0) =

(
F(0, 0) 0

0 G(0, 0)

)
=

max
{
0, 1 − T

σ2
1

}
0

0 −
(
h2

T
σ2
γ + m2

)
Jacobian, J(E0) has the eigenvalues with opposite signs, thus E0 is saddle point. In the absence of
grazer, the carrying capacity of the producer depends only on the light and phosphorus availability,
which we denote as

k = min
(
K,

P
q

)
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So, x∗ = k. The local stability of E1 = (k, 0) is determined by the Jacobian in the following form,

J(E1) =

(
F(k, 0) + kFx(k, 0) kFy(k, 0)

0 G(k, 0)

)
=

−max
{
0, 1 − T

σ2
1+σ1a1k

}
kFy(k, 0)

0 G(k, 0)


The stability of E1(k, 0) depends on the sign of G(k, 0). E1 is locally asymptotically stable if G(k, 0) <
0 and E1 is saddle point if G(k, 0) > 0.

3.2.2. Interior equilibria

In this subsection we analyze the existence and stability of the interior equilibrium numerically with
phase plane analysis, Figure 1. The solution of the system are bounded by the trapezoidal region shown
below. The phase plane is divided into three biologically significant regions by the two lines β1 =

Q
θ

and f (x) = cθ
Q . Region I is defined by β1 <

Q
θ

and f (x) < cθ
Q . This represents the case where P is neither

limiting nor in excess. Region II is defined by β1 >
Q
θ

; here, growth is limited by the deficiency of P.
Region III is defined by β1 <

Q
θ

and f (x) > cθ
Q , where P is in excess and reduces grazer growth rate.

Note that these same regions are described in [10] without tracking environmental toxicants and in [12]
in the absence of toxicants.

It is important to note the the model is nonsmooth and there are minimum operators in the
elements of the Jacobian matrices, as they are derivatives of non-differentiable functions. This leads
to the observed phase plane fragmentation and partitioning of the parameter space (Figure 1). These
dynamics are common in nonsmooth stoichiometric models and have been thoroughly analyzed in
previous models without toxicants. Robust analyses and global bifurcation has been conducted on the
classical LKE model [20] with varying Holling type functional responses [21–23] as well as the
modified LKE model incorporating the stoichiometric knife-edge [24] with Holling type II functional
response [25]. The above use of the Jacobian shows only local stability of boundary equilibria, which
was verified via numerical simulations. More rigorous analyses confirming the Jacobian is well
defined and global bifurcation may shed more light into these dynamics and is left for future work.

4. Numerical analysis

In this section we perform numerical simulation for our reduced model (3.4) and compare the results
with a previous model by [10], which neglects to track environmental toxicant loads. Parameters used
are given in Table 1 with varying phosphorous conditions. In the following subsection we present
bifurcation diagrams of the reduced model (3.4) considering P and T as bifurcation parameters.

4.1. Numerical simulations

Numerical simulations of the reduced model, System (3.4) are presented for the producer in Figure 2
and the grazer in Figure 3. We use the parameters given in Table 1 with P varied form P = 0.01− 0.15
mg P/L, K = 1.5 mg C/L and T = 0.01µg. The solid curves presented in Figures 2 and 3 are solutions
that correspond to the phase planes presented in Figure 1. The dashed curves are the solutions from
reduced model of [10].
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(a) (b)

(c) (d)

Figure 1. Phase planes for the reduced system (3.4) using parameters found in Table 1
and varying values for P: (a) low total phosphorus P = 0.03mgP/L, (b) P = 0.05mgP/L,
(c) P = 0.10mgP/L, (d) excess phosphorus P = 0.15mgP/L. Dashed curves are producer
nullclines and solid curves are grazer nullclines. Open circles denote unstable equilibria and
filled circles denote stable equilibria. The dotted curve in (b) shows a stable periodic orbit.
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(a) (b)

(c) (d)

Figure 2. Numerical simulations for producer densities using parameter found in Table 1
and varying values for P: (a) low total phosphorus P = 0.03mgP/L, (b) P = 0.05mgP/L,
(c) P = 0.10mgP/L, (d) excess phosphorus P = 0.15mgP/L with T = 0.01µg T and K =

1.5mgC/L. Dashed curves are solutions of reduced model of System (2.1) [10] and solid
curves are solutions of our reduced model System (3.4).
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(a) (b)

(c) (d)

Figure 3. Numerical simulations for grazer densities using parameter found in Table 1 and
varying values for P: (a) low total phosphorus P = 0.03mgP/L, (b) P = 0.05mgP/L, (c)
P = 0.10mgP/L, (d) excess phosphorus P = 0.15mgP/L with T = 0.01µg T. Dashed curves
are solutions of reduced model of System (2.1) [10] and solid curves are solutions of our
reduced model System (3.4).
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(a) (b)

Figure 4. Bifurcation diagrams of System (3.4) (red) and reduced model of system (2.1) [10]
(black) with T = 0.01 and K = 1.5 and P as the bifurcation parameter. Solid curves are stable
equilibria and the maximum and minimum of stable limit cycles. Dashed curves are unstable
branches. (a) Prey Population (b) Predator Population

We observed that for low P value (P = 0.03) and moderate P values (P = 0.05, 0.1) our model
provides different results than [10] (see Figure 2a,b.c and Figure 3a,b.c) but for high P value (P =

0.15) both models give us the same results for the producer population dynamics (see Figure 2d and
Figure 3d). Also, our model predicts oscillations when P = 0.05 but we don’t see any oscillation
for [10] (see Figure 2c and Figure 3c). In addition to examining equilibria predictions, it is worth
noting the interesting transient behaviors exhibited under some parameter sets. Certain indices can
be used to measure the extent and duration of transient growth in cases where the solutions approach
asymptotically stable equilibria [26]. In particular we observe solutions with high reactivity, which is
a measurement of the maximum possible growth rate captured during transient dynamics [26], see for
example the solid curves in Figures 2c, 3c and the dashes curve in Figures 2b, 3b.

4.2. Bifurcation analysis

In this subsection we perform bifurcation analysis to our System (3.4) by using total phosphorus (P)
and total toxicant (T ) as a bifurcation parameter separately. Red curves corresponds to our proposed
model and Black curves corresponds to the previous model [10]. Solid curves are stable equilibria and
the maximum and minimum of stable limit cycles. Dashed curves are unstable branches.

We observed there are similarities to the bifurcation structure between the two models, however
important differences also exist. For low values of P, the solution of both models exhibit a stable
equilibrium with a high producer (x) density and low grazer (y) density, Figure 4. Here, the grazer
density is low due to low food quality. As P increases, this interior equilibrium looses its stability
and stable limit cycles emerge. The limit cycles emerge at a lower P value in our System (3.4) than
they do for the previous model. Additionally, the amplitudes of the limit cycles in our System (3.4) are
much larger. As P continues to increase, the limit cycles loose stability and another interior equilibrium
gains stability at a Hopf bifurcation. This bifurcation occurs at a higher value of P in our model then
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(a) (b)

Figure 5. Bifurcation diagrams of System (3.4) (red) and reduced model of system (2.1) [10]
(black) with P = 0.05 and K = 1.5 and T as the bifurcation parameter. Solid curves are stable
equilibria and the maximum and minimum of stable limit cycles. Dashed curves are unstable
branches.

the previous model. For very large values of P, eventually the grazer density begins to decline in
both models, however this decline occurs sooner and more rapidly decline in the previous model. For
extremely large P values the grazer is driven to extinction. The bifurcation structure for P are similar
to previous works that incorporate the stoichiometric knife edge phenomenon into producer-grazer
models [10, 12, 24], and we refer the reader to those works for additional details on the bifurcation.

Figure 5 shows the bifurcation analysis using T as the bifurcation parameter. While the bifurcation
dynamics are qualitatively similar to those of [10] the bifurcation points on the proposed model are
shifted to the right. When the contamination increases from left to right, according to the previous
model predator goes extinct quickly after the contamination level reached around T = 0.01µg T/L,
whereas the grazer continues to persist as toxicant reach high values (T = 0.07µg T/L) for the our
model.

5. Conclusion

Dynamical mathematical models have made significant contributions to ecotoxicology and
predicting risk due to bioaccumulation of natural and anthropogenic toxicants. Toxicants and essential
elements interactively influence population dynamics and the trophic transfer of each other.
Predicting accurate body burdens is a major step is toxicological risk assessment protocols. The
mechanistically derived two-trophic food web model we developed predicts different population
dynamics than previous models, which may have significant impacts on accurate predictions.

While biologically realistic parameter values are often dynamic, modeling approaches often need
to consider many parameters as constants in order to reduce model complexity and remain trackable.
Initial Ecological Stoichiometric population models assumed that the total nutrient levels in the
environment were constants [12, 20]. Over the last decades, models dropped this simplifying
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assumption and incorporated dynamic environmental nutrient levels [1, 24]. These provided much
better qualitative information about the predator–prey dynamics under certain nutrient conditions.
Here, we take the same approach to track environmental toxicants explicitly.

We relaxed the assumption of environmental toxicant being constant, and we were still able to
perform similar mathematical analyses of our model. Furthermore, our model extension did not cause
unnecessary model complexity or add any new parameters. We developed a four-dimensional
knife–edged stoichiometric predator–prey model (2.5) which explicitly tracks the toxicant load of the
populations and as well as in the environment. We used the slow-fast subsystem and quasi-steady
state reduction to reduce the system (2.5) to a two-dimensional system (3.4) for the mathematical
analysis. We investigated stability of the boundary equilibria analytically and interior equilibria with
phase plane analysis (see Figure 1). Numerical simulation of the population dynamics by varying
nutrient conditions are presented and compared to the previous model [10] (see Figures 2, 3).

Bifurcation diagrams of the populations are investigated and compared to the previous model [10],
wihch deepen understanding and may improve prediction of risk assessments (see Figures 4, 5). Here,
the presented analyses were performed on the reduced model (3.4) rather than the full model (2.5).
The results of the numerical simulations and bifurcation analyses incorporate the quasi steady-state
assumption and reduction to the fast and slow subsystems. We note that the full model may produce
modified predictions. One major consequence that previous models neglect to capture are the wide
amplitude limit cycles observed in our model. This is especially true for producer densities under
Phosphorus enrichment, see Figure 4a, which exhibit values very close to zero where they are
endanger of stochastic extinction. Although this modeling approach is parameterized for an
algal-Daphnia system under the toxicant effect of Methylmercury, this modelling framework can be
used in other predator–prey systems and as well to predict the risk of bioaccumulation of other
toxicants. Also, this works can be extended to more complicated food web models with multiple
species and higher trophic levels.

Although the model assumes all the parameters are constant in time it is well known that ecological
parameters often exhibit seasonality [27, 28]. In this study we did not consider the seasonal variation
of the environments but focused efforts on relaxing the assumption that the environmental toxicant is
not constant and varies due to population dynamics. In this work we explicitly track environmental
toxicant loads. We have done recent work on the influence of seasonal producer carrying capacities
on a similar system that assumes environmental toxicant loads are constant [29]. Indeed seasonality
can play a major role on model predictions. Future models can consider seasonal effects and dynamics
environmental toxicant loads. Seasonality has been shown to have significant impacts on transient
dynamics [30], where the reactivity of systems can be magnified when parameters vary over time.
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