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Abstract: Fever is a common symptom of many diseases. Fever temporal patterns can be different de-
pending on the specific pathology. Differentiation of diseases based on multiple mathematical features
and visual observations has been recently studied in the scientific literature. However, the classification
of diseases using a single mathematical feature has not been tried yet. The aim of the present study
is to assess the feasibility of classifying diseases based on fever patterns using a single mathematical
feature, specifically an entropy measure, Sample Entropy. This was an observational study. Analysis
was carried out using 103 patients, 24 hour continuous tympanic temperature data. Sample Entropy
feature was extracted from temperature data of patients. Grouping of diseases (infectious, tuberculosis,
non–tuberculosis, and dengue fever) was made based on physicians diagnosis and laboratory findings.
The quantitative results confirm the feasibility of the approach proposed, with an overall classification
accuracy close to 70%, and the capability of finding significant differences for all the classes studied.
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1. Introduction

Fever is a frequent symptom that can be the manifestation of many pathologies [1]. It can be found
at different clinical settings: primary, emergency, hospital, or ambulatory care. Besides, temperature
temporal profile exhibits a significant variability depending on subject, age, sex, anatomy, pathology,
and time of day, among many other possible factors [2, 3]. As a consequence, the diagnosis of fever’s
causes can be challenging and it can also be a costly task in terms of time and clinical resources: blood
cultures, haemoglobin, creatinine, etc. [4]. This is specially critical in resource–limited countries [5],
such as many Asian, South–American, and African countries, where fever–related diseases are most
prevalent, and the few resources available are geographically very scattered.

The recent advent of affordable long–term ambulatory body temperature monitors and other similar
wearable devices, has provided a new perspective on the analysis of temperature data [6]. The continu-
ous readings now available enable a richer physiological analysis beyond the plain dichotomy fever/no
fever [7]. If this analysis could contribute to the diagnosis of fever’s causes, it would become a very
cost–effective tool in contrast to current methods. The main hypothesis is that different pathologies
exhibit different fever dynamics or patterns [1] that could be detected by a suitable algorithm.

Body temperature time series analysis is a field only recently explored using non–linear methods.
In contrast to other physiological data such as RR–interval or electroencephalogram (EEG) time se-
ries, temperature has not been so widely analysed yet. However, there are some promising results
that illustrate the potential of these data, mainly as an unobtrusive and inexpensive diagnosis aid. For
example, in [8], the authors propose a logistic model to classify temperature records from patients that
did or did not develop a fever episode, combining Permutation Entropy (PE) and Approximate Entropy
(ApEn). The non–linear processing of suitable temperature data can even become an early marker of
fever episodes before they are actually developed, in order to anticipate diagnosis and treatment, as
demonstrated in [9]. Temperature and sepsis have also been studied in a number of papers. In [10],
researchers used temperature patterns to anticipate hospital-acquired infections in an intensive care
unit. Papaioannou et al. [11], developed a diagnosis technique based on the Wavelet transform and
Multiscale Entropy (MSE) of temperature data to distinguish among subjects with inflammatory re-
sponse syndrome, sepsis, and septic shock. Other studies have been focused on the role of temperature
as a marker of patient prognosis, such as [12, 13]. A general view of possible applications of body
temperature data analysis was provided in [7].

An even more recent body of research about temperature is devoted to finding differences not only
between healthy and ill subjects, or between fever and no–fever, but to finding differences among a
group of diseases that manifest by means of changes in the temperature level or/and dynamics. Along
this line, the work described in [14] trains an artificial neural network using several features to classify
infectious and non–infectious diseases from 24–hour continuous tympanic temperature recordings.
Using a similar dataset, the study in [15] successfully classified time series from tuberculosis, dengue,
infectious, and non–infectious disease types. They used a multi–feature approach, including the Fast
Fourier Transform, entropy, energy, power, many other coefficients, and visual observations.

The present study addresses the same problem of trying to classify diseases where fever is one of the
main symptoms. In contrast to previously commented works such as [14] and [15], the classification
will be based on a single non–linear feature, Sample Entropy (SampEn). Although arguably a single
feature could provide a lower classification performance than a more complete set, implementation on
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a real computer–aided diagnosis tool will be simpler and faster. We also hypothesized that SampEn is
able to capture much of the information that is included in other features such as temperature frequency
content, or variations [16], and therefore the detrimental effect on performance will be minimised.
SampEn will also be reinforced with a suitable non–uniform downsampling method.

2. Materials and methods

2.1. Sample Entropy

The SampEn method was proposed in [17]. This method belongs to a family of very similar methods
that includes ApEn [18] and FuzzyEn [19], among many other variations and customizations [20, 21].
SampEn was introduced as an improvement over ApEn, since SampEn does not count self–matches,
the results are more consistent, and the algorithm is more efficient. FuzzyEn is based on SampEn, but
replacing the crisp dissimilarity measure by a suitable continuous function.

Although improvements have been sequentially introduced from ApEn up to FuzzyEn, each method
has its optimal field of application where it outperforms the other statistics, and not necessarily in that
order. In principle, FuzzyEn is expected to yield the best performance [22, 23], and, although SampEn
could be considered a particular implementation of FuzzyEn, it outperforms FuzzyEn in applications
such as in [24]. In a few cases, ApEn was the best one [8, 13]. A preliminary exploratory analysis was
conducted in the present study in order to find out which one was the optimal statistic, SampEn, as will
be justified in Section 3.

The temperature data is featured by a time series x of length N: x = {x0, x1, x2, · · · , xN−1}. Given
a subsequence length m, with m << N, and starting at the i−th sample, xi = {xi, xi+1, xi+2, . . . , xi+m−1},
xi is compared with all the other possible subsequences in the time series x j, j , i. This comparison
is quantified in terms of a maximum distance between pairs of samples, given by di j = max(|xi+k −

x j+k|), 0 ≤ k ≤ m − 1. Another input parameter, r, is used as a distance threshold to consider two
subsequences similar.

For example, let xi be {−0.8762, 1.3210, 0.2009} and x j be {1.2392, 1.0931, 0.7841}, with r = 0.25,
and m = 3. The distance between pairs of samples is in this case di j = max(|−0.8762−1.2392, 1.3210−
1.0931, 0.2009 − 0.7841|) = max(| − 2.1154, 0.2279,−0.5832|) = 2.1154. Since di j > r, these two
subsequences are not considered similar.

The number of similar subsequences to xi found in x is stored in a counter Bm
i (r). This process is

repeated for each possible xi, and the final average number of matches is computed as:

Bm(r) =
1

N − m

N−m−1∑
i=0

Bm
i (r)

As in the previous example, let xi = {−0.8762, 1.2128, 0.1717} and x j = {−1.0191, 1.3433, 0.3913},
again with r = 0.25 and m = 3. The distance between pairs of samples is in this case di j = max(| −
0.8762 + 1.0191, 1.2128 − 1.3433, 0.1717 − 0.3913|) = max(|0.1429,−0.1305,−0.2196|) = 0.2196.
Since now di j ≤ r, these two subsequences are considered similar, and therefore the counter is increased
by 1, Bm

i (r)← Bm
i (r) + 1.

The length of the subsequences, m, is then increased by 1, and the previous process of computing the
distances and counter averages is repeated, obtaining a new counter termed Am(r) (This new counter,
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in fact, could be considered as Am(r) = Bm+1(r)). From the two counters for two consecutive lengths,
SampEn can finally be obtained as:

SampEn(m, r,N) = − log
[
Am(r)
Bm(r)

]
(2.1)

An implementation example is shown in Algorithm 1. The specific value of parameter N in the
SampEn algorithm was set in advance by the clinical procedure for body temperature recording, as
described in Section 2.3. The value of the other two parameters, although usually recommended to lie
in the vicinity of m = 2 and r = 0.25, was optimised using a grid search [25]. The parameter space
explored corresponded to the region defined by 1 ≤ m ≤ 6 and 0.1 ≤ r ≤ 0.5.

Algorithm 1: Sample Entropy (SampEn) Algorithm. Loops and counters (C0 for m, and C1

for m + 1) have been optimised in order to take advantage of the distance symmetry (xi and x j

distance is the same as for x j and xi) and avoid self–matches.
Input: Normalised x, m, r, and N
Initialization: C0 = 0,C1 = 0
for i = 0, . . . ,N − m − 1 do

for j = i + 1, . . . ,N − m − 1 do
equal = true
for k = 0, . . . ,m − 1 do

if
∣∣∣xi+k − x j+k

∣∣∣ > r then
equal = false
break

if equal == true then
C0 = C0 + 1
if

∣∣∣xi+m − x j+m

∣∣∣ ≤ r then
C1 = C1 + 1

Output: SampEn(x,m, r,N) = −logC1
C0

2.2. Trace segmentation

An additional approach we used to reinforce the role of the possible temperature peak distribution
was to apply a non–uniform downsampling scheme (the effects of uniform downsampling on SampEn
have been studied elsewhere, such as in [26, 27, 28]). Specifically, we applied the so–called Trace
Segmentation (TS) method [29, 30, 31]. The adequacy of this method to the purpose of this experiment
stems from the fact that TS samples the input signal at those points where the greatest signal variation
takes place.

Mathematically, the TS method proceeds as follows. Given an input time series, x =

{x0, x1, x2, · · · , xN−1}, and accumulated derivative is obtained as:
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TSk =

k∑
j=1

∣∣∣x j − x j−1

∣∣∣ (2.2)

where k ∈ [1,N − 1], and TS0 = 0. The last point, TSN−1, provides the maximum value of the
accumulated derivative, from which the amplitude of the sampling intervals ∆ can be obtained as
∆ = TS N−1

N′−1 , being N′ the desired number of output samples, with N′ < N. The minimum index i of x for
which TSi exceeds an integer multiple q of ∆ provides a sampling point for the new output sequence
x′, analytically:

x′q = xi

∣∣∣∣∣∣i = argmax
1≤q≤N′

(TSi ≤ q∆) (2.3)

with x′0 = x0. TS reinforces the presence of peaks in a non–linear way. Its algorithm is shown in
Algorithm 2.

Algorithm 2: Trace Segmentation (TS) Algorithm
Input: x and N′ < N
Initialization: x′ ← � /* Output vector initially empty */

k = 0
for i = 1, . . . ,N − 1 do

k = k + |xi − xi−1|

∆ = k
N′ − 1 /* Amplitude interval */

x′ ← x0 /* Get first original sample by default */

k = 0
j = 1
for i = 1, . . . ,N − 1 do

k = k + |xi − xi−1|

if k ≥ ∆ ∗ j then
x′ ← xi /* Get sample at that point */

j = j + 1

x′ ← xN−1 /* Get last original sample by default */

Output: x′

2.3. Experimental dataset

A total of 103 body temperature time series were included in the experimental dataset (Figure 1).
The duration of each record was 24h, sampled at 1 sample/minute, 1440 samples. The acquisition
started at 9:00 AM, and ended at 8:59 AM of the following day. The records were preprocessed for
artifact minimisation. The final diagnosis of each patient was established according to other clinical
findings. This experimental dataset was composed of the following groups:

• DE: Dengue. This group contains 16 records of dengue patients. All the records in this group are
shown in Figure 1a.
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• NI: Non–Infectious. This group contains 28 records from patients with no evidence of infection.
All the records in this group are shown in Figure 1b.
• NT: Non–Tubercular. This group contains 31 records of bacterial infections that do not cause

tuberculosis. All the records in this group are shown in Figure 1c.
• TU: Tuberculosis. This group contains 28 records of tuberculosis patients. All the records in this

group are shown in Figure 1d.

This experimental dataset is a superset of that used in [15], where further information of the clinical
setting and acquisition stage can be found. A more detailed example plot of the database is depicted in
Figure 2.
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(a) All the records in the DE group.
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(b) All the records in the NI group.
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(c) All the records in the NT group.
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(d) All the records in the TU group.

Figure 1. All the records in the experimental dataset, class by class.

3. Experiments and results

Using only SampEn as the distinguishing feature, all the classes in the experimental dataset were
compared in pairs. For each one of these pairs, a grid search was conducted in order to find the best
combination of m and r parameters for a maximum classification performance. In general, there was
not a great variation in this performance. To illustrate this point, Figure 3 shows the heatmap of the
classification achieved for pair DE–NI. The maximum accuracy was around 0.60, for low r values.

In the same way, Figure 4 depicts the heatmap for the accuracy achieved using classes NI and
TU. In this case, the maximum performance was 0.77 for the parameter space defined by m > 3 and
0.26 < r < 0.31, although there is a small region with the same performance at r = 0.5 and m < 4, at
the lower right corner of the plot. Anyway, the accuracy in this case was above 0.70 in practically the
entire region explored.
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Figure 2. More detaile example of records for each class: Dengue (DE), Non–Infectious
(NI), Non–Tubercular (NT), and Tuberculosis (TU).
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Figure 3. Heatmap for classification performance of classes DE and NI using SampEn. This
was the poorest performance achieved of all the cases tested, with a maximum of 0.60 for
r < 0.2.

The analysis of each pair yielded a different optimal parameter configuration, as can be inferred
from Figures 3 and 4. Therefore, the resulting optimal setting in each case was used for the classifi-
cation analysis, using Sensitivity, Specificity, and Accuracy. The statistical significance of the results
was assessed using an unpaired Wilcoxon–Mann–Whitney test, with the α threshold set at 0.05. The
results of this analysis using SampEn are shown in Table 1, including the p−value, and the m and r
values for which such performance was achieved. It is important to note that other cases not reported
in Table 1 also achieved a very similar accuracy, if not the same. There were also configurations with
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higher accuracy, but at the expense of very unbalanced Sensitivity and Specificity, or without statistical
significance, that are not included in Table 1.
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Figure 4. Heatmap for classification performance of classes NI and TU using SampEn.
Highest accuracy, 0.77, was achieved at regions around r = 0.3 and m = 4, 5, 6, or r = 0.5,
and m = 1, 2, 3.

Table 1. Classification results between pairs of classes using SampEn. Those results with
statistical significance are shown in bold. Parameter values where maximum significant ac-
curacy reported was achieved are also included.

Pair Sensitivity Specificity Accuracy p−value m r

DE–NI
0.56 0.64 0.61 0.2830 4,5 0.16
0.68 0.53 0.59 0.2617 5 0.14

DE–NT
0.61 0.62 0.62 0.2086 4,5 0.13
0.58 0.62 0.61 0.2712 4 0.15

DE–TU
0.68 0.75 0.72 0.0335 4,5,6 0.17,0.18
0.64 0.75 0.71 0.0348 1,2,3 0.10,0.11

NI–NT
0.64 0.75 0.70 0.0218 6 0.10,0.11
0.61 0.75 0.68 0.0232 3,4,5 0.10-0.14

NI–TU
0.78 0.75 0.77 0.0020 1,2,3 0.49,0.50
0.75 0.75 0.75 0.0015 1,2,3,4 0.20–0.30

NT–TU
0.61 0.68 0.64 0.0467 1,2,3,4 0.41,0.42
0.64 0.61 0.63 0.0419 2,3,4,5 0.45,0.46

The experiments were repeated using also ApEn and FuzzyEn, but the best performance was
achieved using SampEn. For example, while SampEn accuracy was 0.77 for NI–TU, ApEn was 0.75,
with p = 0.0014. The other ApEn results were similar, but always slightly below those of SampEn.
Even for NI–NT, ApEn did not achieve statistical significance. FuzzyEn performance was also lower
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than that of SampEn, only for NT–NU was it higher, but just 0.65 against 0.64, with p = 0.0335. In
addition, FuzzyEn needs the customisation of another parameter.

In a more realistic scenario, each class would have to be segmented from a set including all the
pathologies simultaneously. In this regard, experiments were repeated where the pairs to be segmented
were a single class on one side, and all the other classes together on another side. The results in this
case are shown in Table 2. Only TU and NI classes could be significantly segmented from the other
sets, with an accuracy equal or slightly greater than 70%.

Table 2. Classification results for each single class in comparison with all the other classes
using SampEn. Sensitivity corresponds to the minority group. Those results with statisti-
cal significance are shown in bold. Parameter values where maximum significant accuracy
reported was achieved are also included (NS: Non–significant).

Pair Sensitivity Specificity Accuracy p−value m r
DE–Rest < 0.60 < 0.60 < 0.60 NS – –

TU–Rest
0.61 0.74 0.71 0.0019 1–5 0.40–0.42
0.64 0.72 0.70 0.0036 5,6 0.33,0.34

NI–Rest
0.64 0.75 0.72 0.0062 4,6 0.11
0.67 0.71 0.70 0.0040 5,6 0.10

NT–Rest < 0.60 < 0.60 < 0.60 NS – –

Since fever profiles usually exhibit a strong temporal component correlated with the underlying
diagnosis, like slow temperature variations [32], early fever onset, persistent hyperthermia, or a spiking
pattern [33], an additional time series analysis was carried out using only part of the data. Specifically,
the 20 first hours, the 20 central hours, and the last 20 hours of the records (1200 samples). The
purpose of this segmentation was to study the possible temporal distribution of the differences between
the fever dynamics.

Using the first 20 hours of the records, the overall classification performance decreased in terms of
number of separable pairs. Classes NT–TU become undistinguishable, whereas using the complete 24h
records the accuracy in this case was 0.64 with p = 0.0467. In the same way, using the last 20 hours,
only DE–TU and NI–TU were significantly separable. On the contrary, using the central 20 hours, the
performance was very similar to that shown in Table 1 with a swapped separable pair: DE–NT classes
could be classified with an accuracy of 0.71, with p = 0.0433, but not NT–TU any more.

Finally, TS was applied as a new preprocessing stage in order to find out if classification results
could be improved by emphasising the temporal differences between classes. The percentage of sam-
ples remaining after downsampling were: 95%, 50%, and 25%. The numerical results achieved are
shown in Table 3. This was the only scheme (TS+SampEn) able to find statistically significant differ-
ences between all the pairs studied, although with low accuracy in some cases. Visually, the TS effect
is shown in Figure 5.
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Table 3. Classification results between pairs of classes using SampEn and Trace Segmen-
tation with different percentages. Those results with statistical significance are shown in
bold. Parameter values where maximum significant accuracy reported was achieved are also
included (NS:Non–significant).

Trace segmentation Pair Sensitivity Specificity Accuracy p−value m r

95%

DE–NI – – – NS – –
DE–NT 0.58 0.75 0.69 0.0181 6 0.11
DE–TU 0.61 0.81 0.74 0.0022 2 0.12
NI–NT 0.68 0.71 0.70 0.0017 5 0.11
NI–TU 0.79 0.71 0.75 0.0001 2 0.25
NT–TU 0.64 0.58 0.61 0.0384 5 0.29

50%

DE–NI – – – NS – –
DE–NT 0.58 0.75 0.69 0.0014 6 0.13
DE–TU 0.64 0.81 0.75 0.0001 2 0.20
NI–NT 0.68 0.64 0.66 0.0006 3 0.11
NI–TU 0.82 0.71 0.77 0.0001 6 0.16
NT–TU 0.61 0.61 0.61 0.0235 2 0.41

25%

DE–NI 0.68 0.69 0.68 0.0028 3 0.11
DE–NT 0.62 0.74 0.70 0.0097 4 0.10
DE–TU 0.68 0.81 0.76 0.0001 5 0.25
NI–NT 0.64 0.68 0.66 0.0017 1 0.22
NI–TU 0.75 0.75 0.75 0.0001 1 0.12
NT–TU 0.68 0.64 0.66 0.0007 4 0.19
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Figure 5. Records after applying Trace Segmentation, keeping only 25% of the sam-
ples: Dengue (DE), Non–Infectious (NI), Non–Tubercular (NT), and Tuberculosis (TU). The
records plotted are the same as in Figure 2.
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4. Discussion

The classification of pathologies based on a single feature of their fever profile is a very difficult task,
but with a potentially huge impact on the healthcare system of many countries. This study analysed 4
different common pathologies in order to find out whether such classification was possible or not.

Using the complete records, the two classes most easily distinguished using only SampEn were NI
and TU, as shown in Table 1. Other significant classification results were achieved for classes DE and
TU, and classes NI and NT, with an overall accuracy of at least 70%. The poorest performance, but
still statistically significant, was achieved for classes NT and TU, with an accuracy of 64%. It was
not possible to distinguish between DE and NI, and DE and NT, in any case included in the analysis
related to results in Table 1. Related entropy measures as ApEn and FuzzyEn did not improve the
results achieved using SampEn.

With regard to the optimal parameter values, m = 3 seemed to yield good results across all the
significant cases studied. There was a slightly greater variability in terms of r parameter. For DE–TU
and NI–NT, r = 0.10 was the best choice. Although not reported in Table 1, this configuration for r also
yielded an accuracy above 70% in the NI–TU case. The classification of NT–TU was more demanding
and critical, and only values of r in the 0.41–0.45 region yielded statistically significant results.

Windowing was another technique tried in the experiments in order to find out if the distinguishing
information was not uniformly distributed along the entire records. With a window length of 20h, the
accuracy achieved was lower than using the entire records. In principle, we can rule out possible border
effects in the experimental dataset.

The duration of the time series can also play a key role in the classification performance potential.
Although the current available length, 1440 samples, suffices according to the general recommenda-
tions in this SampEn context [17], or it is even longer than in other applications [21], it could become
insufficient for greater m values, or from a physiological standpoint, since some pathologies exhibit a
longer pattern, for example 48h in Malaria [1]. In addition, provided there are not non–stationarities in
the time series, the longer, usually the better [34]. In the specific case of fever, given its marked cyclic
behaviour in most cases [35], noise or artifact robustness could be arguably increased just by having
more repeated temporal patterns or data redundancy.

The segmentation of a single disease from the complete set is even more difficult. Significant
differences were found only in two cases, for TU and NI (Table 2). However, even in this unfavourable
scenario, being able of diagnosing TU or NI with a 70% accuracy is a good starting point for further
studies, and such a tool can be complementary to current systems in place by itself.

The method that seemed to perform best was to add TS before computing SampEn to reinforce the
differences between classes. It was the only case, using a 25% percentage, to find differences between
all the pairs as shown in Table 3, and it is the most promising future line of research. The goal should
be to increase the accuracy up to as close to 80% as possible.

5. Conclusion

Fever can be the manifestation of a great number of pathologies, and its identification is not straight-
forward, specially in scarcely equipped clinical facilities.

A few studies have been published recently trying to find a correlation between several fever data
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features and the underlying pathology with promising results [15]. Our goal was to further simplify
this approach using a single non–linear feature, SampEn.

The results obtained were very similar to those obtained using many more features. Applying TS,
significant differences were found for all cases. However, further studies are necessary before such
a tool can be implemented in real clinical settings, including more and longer records, from different
hospitals, and with a healthy reference group. Anyway, at least a similar tool could be arguably used
as an additional diagnosis aid, in combination with other tools currently in place. No specific classifier
was proposed since this was a feasibility study aimed at exploring the potential of the scheme proposed.

There is an important feature of body temperature regulation that has not been exploited in the
dataset used in this work and could have important clinical implications from a diagnosis point of
view. Not only can temporal temperature variations be representative of the underlying pathology, but
also their local variations. The concept of a single body temperature is not correct, since at least there
are three different settings referred to as body temperature in clinical procedures: core, peripheral, and
basal body temperature [6], which can also be measured at many body locations. Relative changes
between core and peripheral temperature have already been demonstrated to be clinically significant
[9], representative of the temperature regulatory system output, and future studies should include more
than a single location simultaneously in order to find out if differences among febrile diseases become
more apparent.

The study concludes that a single mathematical feature such as SampEn, could be able to classify
the pathologies included in the experimental dataset significantly. With further studies as stated above,
exploring more entropy related measures, and more optimal preprocessing techniques such as TS, it can
be hypothesized that the classification accuracy could be far greater than the 70% currently achieved.
It can also be hypothesized that the difficulty of finding differences between some classes can be due
to the coexistence of more than a single factor that causes the fever, among other possible interfering
factors, and the temperature records should be more deeply characterised before trying to classify them.
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9. J. Jordán-Núnez, P. Miró-Martı́nez, B. Vargas, et al., Statistical models for fever forecasting based
on advanced body temperature monitoring, J. Crit. Care, 37 (2017), 136–140.

10. A. M Drewry, B. Fuller, T. Bailey, et al., Body temperature patterns as a predictor of hospital-
acquired sepsis in afebrile adult intensive care unit patients: A case–control study, Crit. Care, 17
(2013), R200.

11. V. Papaioannou, I. Chouvarda, N. Maglaveras, et al., Temperature variability analysis using
Wavelets and Multiscale Entropy in patients with systemic inflammatory response syndrome, sep-
sis, and septic shock, Crit. Care, 16 (2012), R51.

12. V. E. Papaioannou, I. G. Chouvarda, N. K. Maglaveras, et al., Temperature Multiscale Entropy
analysis: A promising marker for early prediction of mortality in septic patients, Physiol. Meas.,
34 (2013), 1449.
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