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Abstract: Expression quantitative trait loci (eQTL) analyses detect genetic variants (SNPs) associated
with RNA expression levels of genes. The conventional eQTL analysis is to perform individual tests
for each gene-SNP pair using simple linear regression and to perform the test on each tissue separately
ignoring the extensive information known about RNA expression in other tissue(s). Although Bayesian
models have been recently developed to improve eQTL prediction on multiple tissues, they are often
based on uninformative priors or treat all tissues equally. In this study, we develop a novel tissue
augmented Bayesian model for eQTL analysis (TA-eQTL), which takes prior eQTL information
from a different tissue into account to better predict eQTL for another tissue. We demonstrate that
our modified Bayesian model has comparable performance to several existing methods in terms of
sensitivity and specificity using allele-specific expression (ASE) as the gold standard. Furthermore,
the tissue augmented Bayesian model improves the power and accuracy for local-eQTL prediction
especially when the sample size is small. In summary, TA-eQTL’s performance is comparable to
existing methods but has additional flexibility to evaluate data from different platforms, can focus
prediction on one tissue using only summary statistics from the secondary tissue(s), and provides a
closed form solution for estimation.
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1. Introduction

Understanding the specific biological effect of genomic variants in cells and tissues may provide
insight into the mechanisms of disease and complex phenotypes [1]. RNA expression levels of different
protein-coding genes may be responsible for mediating the connection between genetic variants and
disease susceptibility. Genome-wide association studies (GWAS) have demonstrated that less than
10% of disease-associated genetic variants alter coding sequences. In fact, more than 90% of GWAS-
identified genetic variants are located in non-coding regions of the genome (e.g., promoter regions
enhancers, non-coding RNA genes), which indicates that these variants might be regulatory [2–4]. The
analysis of such genetic variants in the context of gene expression has established an area of genetics
focused on identifying expression quantitative trait loci (eQTL) [5]. The Genotype-Tissue Expression
(GTEx) project is a realization of this effort [6], and provides a comprehensive public resource of gene
expression and genetic data to study tissue-specific gene expression and regulation.

An eQTL is a locus that explains part of the variation in gene expression levels in either inbred
populations (e.g., laboratory mice), or outbred populations (e.g., humans) [1, 7]. A standard eQTL
study examines the direct association between markers of genetic variation, such as Single Nucleotide
Polymorphisms (SNPs), and mRNA expression levels typically measured in tens or hundreds of
individuals. This analysis can help reveal biological processes through genetic factors associated with
disease [8]. Determining if mRNA expression levels are altered by specific genetic variants provides
evidence of a mechanistic link between genetic variation and downstream biological events, of which
the first step is often changes in gene expression. SNPs that contribute to these changes in gene
expression can be either proximal or distal to the physical location of the gene of interest.

eQTLs that map to the approximate location of the gene (generally within 1 Mb) are referred to
as local-eQTL while those that are far from the location of the gene, often on different chromosomes,
are referred to as distal-eQTLs [9]. These two types of eQTLs are sometimes also referred to as cis
and trans, respectively, because local-eQTLs are assumed to act in cis and distal-eQTLs are assumed
to act in trans [10] (Figure 1). In our work, we use the terms local-eQTL and distal-eQTL because
we are not able to make conclusions about cis or trans acting mechanisms respectively without further
validation [11]. Several studies suggest that most of the regulatory control takes place locally, i.e., in
the vicinity of genes [12–14]. Numerous genes have been detected to have local-eQTLs while detecting
distal-eQTLs has been more challenging. Of note, some local-eQTLs are detected in many tissue types
while the majority of distal-eQTLs are tissue-dependent [15].

The conventional approach to eQTL analysis is to perform individual tests for each gene-SNP pair
using simple linear regression with the number of minor alleles as the independent variable. To
choose the most promising SNPs for further evaluation and analysis, the traditional approach simply
selects the SNP with the smallest association P-values from standard maximum likelihood tests [16].
This conventional method for eQTL study suffers several limitations. The eQTL analysis with linear
regression assumes that every SNP has an equal likelihood of causality and works independently on
the targeted gene, which might not be the case. In the conventional study, the large number of genetic
markers and expression traits and their complicated correlations lead to a multiple-testing
problem [17]. Appropriately making corrections for multiple-testing is a challenge for eQTL studies.
In addition, causal SNPs may not exist or be genotyped for some targeted genes. Finally, the
conventional eQTL linear regression is performed on each tissue separately and ignores the extensive
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Figure 1. Illustration of cis and trans expression quantitative trait loci (eQTLs). SNP,
white circle; gene A, green rectangle (same chromosome); gene B, red rectangle (different
chromosome). Each blue line represents different chromosomes.

information known about the SNP effect on RNA expression in other tissue(s), which results in lower
power and accuracy due to a limited sample size in the tissue of interest.

To address the problems mentioned above, Bayesian models have been introduced for eQTL, in
addition to GWAS, analysis [16, 18–21]. M. Banterle et al. recently developed a Bayesian Variable
Selection (BVS) model, which allows multiple phenotypes to be associated with multiple genetic
predictors (a seemingly unrelated regressions framework) in one tissue [22]. Bayesian models provide
a natural modeling framework for eQTL analysis, where information shared across markers and/or
genes can increase the power to detect eQTLs [16, 23]. These models are usually based on some
modification of a linear model relating expression to SNP genotype(s) [16, 19, 21]. In most cases,
non-informative priors are assigned, or hyper-parameters for the priors are set to arbitrary values. To
date, many eQTL analyses have studied the association of gene and SNP within a single tissue, but
some methods also incorporate multiple tissues [24, 25]. In only a few studies, the informative priors
of eQTL include information on that eQTL from a different tissue [26, 27]. Recently, Dr. Li and
colleagues developed an empirical Bayes approach for multiple tissue eQTL analysis
(MT-eQTL) [27]. Although MT-eQTL accommodates variation in the number of samples, it was not
designed to deal with the unequal number of gene transcripts among multiple tissues, resulting from
different platforms. Therefore, the MT-eQTL method only performs analyses on the overlapping gene
probesets or transcript for eQTL prediction and ignores other transcript information which are not in
all tested tissues. This can be problematic if data on different tissues were collected from different
array or sequencing platforms.

At the molecular level, comparisons across tissues are often conducted to identify conserved
expression changes. For eQTL, we hypothesize that mechanisms for transcriptional control of general
processes through SNPs may be conserved across tissues and integrating known eQTL results in one
tissue to inform the prediction of eQTL in another tissue will improve power and accuracy. Since
eQTL analysis, especially distal-eQTL detection, is a computationally intensive task, we focus on
local-eQTL analyses in this study. To improve the accuracy of local-eQTL prediction, we develop a
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tissue augmented Bayesian model of eQTL (TA-eQTL),which takes prior eQTL information into
account to better predict eQTL in another tissue. As an example of TA-eQTL, in a recombinant
inbred mouse panel, we incorporate results of lung eQTL to increase power and accuracy of liver
eQTL prediction.

The current Bayesian eQTL models were often evaluated based on simulated data [26–28], or on a
small number of previously known causal SNPs [16]. Performance assessment on real data is often
limited because of an overemphasis on the number of detected eQTLs while ignoring potential false
positives. The performance of prediction models can be better assessed using other methods and
benchmarks, such as allele-specific expression (ASE). Therefore, in this study we first evaluate
performance of methods based on liver ASE-verified local-eQTL data rather than only utilizing
simulated data. We also perform sub-sampling to evaluate the benefit of TA-eQTL with decreasing
sample size.

2. Materials and method

2.1. Study subjects: BXD inbred mice

Gene expression data and SNP genotypes in BXD inbred mice were downloaded from the
GeneNetwork website [29, 30]. The BXD panel of recombinant inbred (RI) strains were derived by
crossing C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains and inbreeding progeny for 20 or
more generations. The BXD RI strains has been successfully used to study the genetics of several
behavioral phenotypes including alcohol and drug addiction, stress, and locomotor activity [31, 32].

2.2. Expression data for BXD

The liver gene expression data for 30 BXD strains of male mice, aged 16 weeks, were generated
using the GeneChip Mouse Genome 430A Array and available in NCBI/GEO series GSE16780 [33].
Normalized expression data were downloaded from the GeneNetwork website (GN373). The
GeneChip Mouse Genome 430A Array from Affymetrix is a single array representing approximately
14,000 well-characterized mouse genes. The data set includes data from 99 mouse strains, including
30 BXD strains and additional strains in the Hybrid Mouse Diversity Panel [33], with multiple mice
per strain profiled. The scanned image data was processed using the Affymetrix GCOS software and
the Robust MultiArray method (RMA) to estimate the RNA expression levels of each gene [33].

The lung gene expression data set for 45 BXD strains of male and female mice, aged 49 to 91 days,
were generated using the Mouse Genome 430 2.0 Affymetrix array [34]. Normalized expression data
were downloaded from GeneNetwork website (GN160). The Affymetrix Mouse Genome 430 2.0
Array offers complete coverage of the Mouse Expression Set 430 and 430A for analysis of over 39,000
transcripts on a single array. The data set includes 45 BXD strains and reciprocal F1 hybrids (B6D2F1
and D2B6F1), and multiple mice per strain were profiled.

For both data sets, GeneNetwork provides the expression of transcripts averaged by strain on a log2
scale, and to simplify comparisons among different data sets, log2 values are adjusted to an average
expression of 8 units and a standard deviation of 2 units (variance stabilized). In summary, the 30 BXD
strains in the liver gene expression dataset, and the 45 BXD strains in the lung gene expression dataset
are used for further analysis.
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2.3. Genotype data (SNP) for BXD

The BXD genotype data file were downloaded from the GeneNetwork website (http://www.
genenetwork.org/genotypes/BXD.geno) on November 30, 2015. A total of 96 BXD strains
with 3811 SNPs were obtained. The great majority of SNP genotypes were generated on the Illumina
SNP BeadArray. Although there is no distance standard to define local-SNPs, conventionally, variants
within 1 Mb (megabase) on either side of a gene’s transcription start site (TSS) are considered local-
SNPs while those variants affecting gene expression at a distance greater than 1 Mb from the TSS or
on another chromosome are considered distal-SNPs [35, 36].

2.4. RNA expression data pre-processing

The gene expression data in mouse liver and lung obtained from Mouse Genome 430A Array
(22690 probesets) and 430 V2 Arrays (45119 probesets) were annotated with Ensembl 85: Mus
musculus genes (GRCm38.p4) using the Biomart online tool
(http://uswest.ensembl.org/biomart/) to retrieve the Ensembl Gene ID and gene
location corresponding to the transcript. Of note, we were only able to retrieve Ensembl Gene IDs and
gene locations for 20651 probesets (corresponding to 10594 unique genes) and 33684 probesets
(corresponding to 14695 unique genes) probe sets in liver and lung expression data, respectively. The
shared 10575 unique genes is the set used in further analyses.

2.5. SNP data pre-processing

The original SNP data include 3811 markers across 93 BXD strains mice. These SNPs are located
on Chromosomes 1-19 and Chromosome X. The SNPs in BXD inbred mice were originally coded
as B, D, H (heterozygous) and U (unknown). The heterozygous and unknown SNPs were excluded
from analysis due to the uncertainty of their validity. Therefore, we re-coded the SNPs B, D, H ,U,
as 0, 1, NA and NA, respectively. The SNP locations were updated to the Ensembl variation 85: Mus
musculus genes (GRCm38.p4) version using the Biomart online tool (http://uswest.ensembl.
org/biomart/). Among 3811 SNP markers, the chromosome locations were only available for
3023 SNPs in the GRCm38.p4 annotation database.

2.6. Allele-specific expression (ASE) in mouse liver

Dr. Lagarrigue et al. have analyzed allele-specific expression (ASE) and parent-of-origin
expression in adult mouse liver using next generation sequencing (RNA-Seq) in reciprocal crosses of
heterozygous F1 mice from the BXD RI parental strains, C57BL/6J and DBA/2J [37]. An exon was
considered to have ASE if its adjusted P-value (false discovery rate, FDR) ≤ 0.05 and the expression
ratio of the strains (C57BL/6J to DBA/2J) is significantly greater than 1.5 or less than 1/1.5. P-values
were calculated using a Fisher’s exact test with the Benjamini-Hochberg method adjustment to
control for multiple testing. In this study 397 exons (284 genes)were identified to demonstrate ASE,
across three diet contexts, in which 272 ASE genes were found in mice with mouse standard diet
(chow). We downloaded all 272 significant ASEs identified in chow-fed mice from the Supplemental
Information of [37], and used them as a “gold standard” to evaluate the performance of our newly
developed Bayesian methods. Of note, only 192 of 272 ASE genes overlap our shared set of 10575
genes from the gene expression studies. These 192 ASE genes are considered to have true local-eQTL
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(positive cases) while all others genes (10383) are not considered to have a true local-eQTL (negative
cases), and will be used to evaluate performance of different methods.

2.7. Tissue augmented Bayesian model of eQTL (TA-eQTL)

Here we describe our method (TA-eQTL), where we extend the basic Bayesian linear regression
framework [16,38] and developed a model that utilizes informative priors based on eQTL results from
other tissue(s). In our example, we use evidence of a lung tissue eQTL as a prior for a liver tissue
eQTL on a panel of recombinant inbred mice.

2.7.1. Basic local-eQTL model

First, a basic linear model relating lung gene expression to genotype is

y(L)gi = α(L)gk + β(L)gkxki + ε(L)gki, (2.1)

• y(L)gi is the mean expression level of gene g = 1, . . . ,G in strain i = 1, . . . , n in Lung tissue;
• xki is the genotype for SNP k = 1, . . . ,K and strain i coded as 0 and 1 since all SNPs are

homozygous in inbred populations;
• ε(L)gki is the Lung tissue error term for strain i, gene g, and SNP k;
• α(L)gk is the Lung tissue, gene (g), and SNP (k) specific intercept;
• β(L)gk is the Lung tissue, gene (g), and SNP(k) specific coefficient.

The error term is assumed to have a Gaussian distribution, N(0, σ2
(L)gk).

As with the mouse lung eQTL analysis, a similar basic model relating liver gene expression to
genotype is

y(V)gi = α(V)gk + β(V)gkxki + ε(V)gki, (2.2)

• y(V)gi is the mean expression level of gene g in the strain i in Liver tissue;
• xki is the genotype for SNP k and strain i coded as 0 and 1;
• ε(V)gki is the Liver tissue error term for strain i, gene g, and SNP k;
• α(V)gk is the Liver tissue, gene (g), and SNP (k) specific intercept;
• β(V)gk is the Liver tissue, gene (g), and SNP(k) specific coefficient.

The error term is also assumed to have a Gaussian distribution, N(0, σ2
(V)gk). In both the liver and

lung BXD studies, the environmental and genetic parameters were tightly controlled. Thus, no
additional covariates are included.

For estimation of the parameters of the model, each local-SNP is modeled and regressed separately
against each gene for lung and liver separately. For simplicity, we only select the SNP m with minimum
P-value for each gene (β(L)gm and β(V)gm) for Bayesian prediction. In other words, each gene has only
one local-eQTL for further analysis. The specific SNP selected to represent the local-eQTL for each
gene might not be the same between liver and lung tissues. This makes our method more flexible
compared to other methods to integrate data from different SNP and gene expression platforms.

• β(L)gm is the specific coefficient for gene (g) and SNP with minimum P-value (m) in Lung tissue;
• β(V)gm is the specific coefficient for gene (g) and SNP with minimum P-value (m) in Liver tissue;

Mathematical Biosciences and Engineering Volume 17, Issue 1, 122–143.



128

The least squares fit is used to obtain estimates of σ̂2
(V)gm. Moving forward, we drop the m subscript

notation for β̂(V)g and σ̂2
(V)g, since only one SNP m is considered for each gene.

2.7.2. Prior distribution

We assume the following prior distribution for the coefficient β(V)g based on the covariate Z(L) using
prior information from lung (L).

β(V)g = Z(L)gΓ + Ug, Ug ∼ N(0, τ2). (2.3)

We describe the components of this prior model below:

• β(V)g is a vector of the basic local-eQTL model coefficients (2.2) for the gene (g) and SNP pair
with minimum P-value in liver (V) tissue;

β(V)g
G×1

=


β(V)1

β(V)2

...

β(V)G


• Z(L)g is a matrix including the intercept and prior information from Lung for the gene (g) and SNP

pair with minimum P-value in lung (L) tissue;

Z(L)g
G×2

=


1 z(L)1

1 z(L)2

... ...

1 z(L)G


• Γ is a coefficient vector corresponding to the additive contribution of the prior information to the

prior mean;

Γ
2×1

=

[
γ1

γ2

]
• U is the error matrix with zero mean and variance τ2. We assume a common variance and

independence across all genes.

Although, we only include one prior information variable in the Z matrix as an example, the model
is flexible to include any number of prior information variables. In our example, the prior information
variable we considered for inclusion as z(L)g, was the negative logarithm of the P-value (significance
of each SNP-gene association) multiplied by the sign of the corresponding β(V)g. In this study, we can
ignore the directionality of β(V)g and β(L)g since the direction of the effect in mouse lung is not relevant
to mouse liver because we do not force the exact same genetic variant to be used in both tissues. We can
take the absolute value of β(V)g, but that would violate the Gaussian assumption, therefore we multiply
by the sign as an alternative so that the results between lung and liver are in the same direction. In
summary, we assume that an increase in the statistical significance level of a mouse lung eQTL should
inform the eQTL coefficient β(V)g in liver.

For estimation of the parameters of this model, β(V)g is regressed on Z(L)g across genes to obtain the
estimates Γ̂ and τ̂2.
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2.7.3. Posterior model and parameter estimation

The Gaussian conjugate prior assumption β(V)g ∼ N(Z(L)gΓ, τ
2) leads to a closed form solution for

the posterior distribution of β(V)g, which will simplify computation. By completing the square, for gene
g, the posterior distribution of β(V)g, given the data is [39]

β(V)g

∣∣∣∣x, y, β(L)g, τ
2, σ2

(V)g ∼ N(β̃(V)g, S (V)g), (2.4)

The posterior variance term S (V)g is

S −1
(V)g = (τ2)−1 + (σ2

(V)g)−1, (2.5)

and estimated by plugging in τ̂2 and σ̂2
(V)g described above.

The posterior mean β̃(V)g is
β̃(V)g = (1 − λg)Z(L)gΓ̂ + λgβ̂(V)g, (2.6)

which is the weighted average of the maximum likelihood estimate (MLE) β̂(V)g using the basic model
without a prior (first stage) and the estimate of the prior mean Z(L)gΓ̂ (second stage) [16].

As described previously in [16], the “shrinkage” term λg is a function of the two variances, σ2
(V)g

from the basic model (2.2) and τ2 from the prior in (2.3). λg indicates how much the MLE is shrunk
towards the prior mean ZΓ̂. λg increases to 1 when τ2 is large (e.g., less informative prior of mouse
lung eQTL) and σ2

(V)g is small, therefore giving less influence on prior, while λg decreases to 0 when
τ2 is small (more informative prior) and σ2

(V)g is large, thereby giving more influence to the prior. The
least square estimates for σ2

(V)g, Γ and τ2 are substituted into the shrinkage term.
In practice, we found that estimates in the prior model (ZΓ̂) may be underestimating β̂(V)g. Thus, we

introduced a constant (c) weight to rescale the final estimate β̃(V)g.

c =
max(β̂(V)g)

max(Z(L)gΓ̂)
. (2.7)

The weighted Bayesian posterior mean is now estimated by,

β̃(V)g = c(1 − λg)Z(L)gΓ̂ + λgβ̂(V)g (2.8)

After calculating the posterior mean β̃ and variance Ŝ , we determine the posterior probability of β̃
below (or above) 0 depending on the sign of β̃, P(β̃ < 0|β(L)g, τ

2, σ2
(V)g) or P(β̃ > 0|β(L)g, τ

2, σ2
(V)g)

respectively, and multiplied by two using the pnorm() function in R (version 3.5.1). This is similar to
the contour probability, which is the Bayesian equivalent to a two-sided test in the frequentist
framework, and will be used to rank genes and their corresponding local-SNP [40].

2.8. Model performance evaluation

2.8.1. Models evaluation based on ASE

To evaluate the TA-eQTL method, we compared the results with liver local-eQTL benchmarks
verified in allele specific expression studies. Allele specific expression (ASE) refers to differences in
expression between alternative alleles of a gene. ASE is a complementary approach to eQTL for
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identifying variants that may regulate expression and therefore, ASEs provide a benchmark for
comparison. We used the significant ASEs from [37] as a standard to evaluate the performance of our
newly developed Bayesian method. Only the 272 ASE genes from this work are considered to have
true liver local-eQTL while all other mouse genes were not considered to have liver local-eQTL.
According to the ASE gold standard, we were able to determine the sensitivity and specificity of
testing methods, which enables us to derive Receiver operating characteristic (ROC) curves and
compare the power and accuracy between Bayesian models and other existing approaches. The area
under the ROC curve was computed following the trapezoid rule and the 95% confidence interval (CI)
was determined with 2000 stratified bootstrap replicates [41]. The DeLong’s significance test [42]
was performed to compare the AUCs of two correlated ROC curves with the “roc.test” function in
“pROC 1.13.0” package [41].

2.8.2. Comparison with other methods

We compared the performance of the TA-eQTL method with other existing methods, such as the
conventional model (linear regression in liver dataset without lung prior information), meta-analysis
approach [43,44], and an empirical Bayes approach for multiple tissue eQTL analysis (MT-eQTL) [27].
We also performed an eQTL analysis using only the lung expression data (conventional lung) to predict
ASE genes.

For meta-analysis, we used the Stouffer test. Stouffer’s method converts one-tailed P-values (Pi)
from each of k independent tests into standard normal deviates (Zi) and determines the ZS score (ZS =∑k

i=1 Zi
√

k
) to estimate an overall P-value [43]. Stouffer’s method is known as the “inverse normal” or

“Z-transform” method [43, 45]. We used a two-sided P-value test for the conventional liver and lung
local-QTL analyses (not one-sided P-value). The two-sided test is appropriate because we are not
interested in the directionality of β.

In the MT-eQTL method, a hierarchical Bayesian model is assumed for Zλ = {zλ1, zλ2, . . . , zλK},
which is a vector of Fisher transformation z = 1

2 log( 1+rλk
1−rλk

) of the correlations rλk between expression
and genotype for a gene-SNP pair λ across k = 1, . . . ,K tissues [27]. It is assumed that
Zλ|µλ ∼ Nk(µλ,∆) and µλ denotes the true effect sizes of the gene-SNP pair λ across the K tissues. The
covariance matrix ∆ has diagonal values 1 and its off-diagonal values capture the correlations between
tissues. In the MT-eQTL model, µλ = Γλαλ, where Γλ and αλ are two random vectors of length K. The
prior vector Γλ indicates whether there is an eQTL in each of the k tissues, and has values of 0 or 1,
and αλ is a effect size vector for the gene-SNP pair λ. The marginal posterior probability of having an
eQTL in each tissue is P(Γλk = 1|Zλ). After using the Expectation-Maximization algorithm for
parameter estimation, the MT analysis reports the marginal probability of not having an eQTL,
P(Γλk = 0|Zλ), in each tissue. Smaller values of the marginal probability of not having an eQTL
indicate higher likelihood of the gene-SNP pair being an eQTL in the tissue [27]. In our present study,
we focused on detecting the local-eQTL at a gene level. Thus, we selected the gene-SNP pair with
minimum marginal probability of not having an eQTL on liver tissue at gene level for model
performance comparison.
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2.8.3. Model evaluation by sub-sampling

We hypothesized that the new augmented Bayesian model improves the power and accuracy for
local-eQTL prediction when the sample size is small. When sample size decreases, prior information
may increase power to detect true eQTL. To address the effect of sample size in our newly developed
TA-eQTL method, we sub-sampled the strains in the liver gene dataset but maintained the prior
information from the complete lung eQTL data analysis. The conventional liver gene expression data
includes 30 BXD strains and we randomly sub-sampled 10 strains, 15 stains, 20 strains and 25 strains
without replacement. For each of these sample sizes (10, 15, 20, 25), six random sub-samples were
selected. For each random sub-sampling, we calculated the P-value in the conventional liver
local-eQTL analysis, the posterior probability in the TA-eQTL prediction, the marginal P-values in
the multiple tissue (MT) analysis, the P-value from the meta-analysis and the P-values in the
conventional lung analysis. There is a ROC curve for each of the six random sub-samples, which
makes comparison difficult. Therefore, we took the geometric mean values of these P-values or
probability values to derive a single ROC curve for each method and compare performance across the
sample sizes.

In addition, we calculated the AUC among the five tested methods at each of the 6 random
sub-samplings for the four different sample sizes (10, 15, 20, 25), and summarized the AUC by the
mean, min and max values. Then, linear mixed models were then used to compare the different eQTL
methods. The linear mixed models accounted for random effect of sub-sampling and the correlation
of samples. The regressions were performed using the “lmer” function in “lme4” package [46] and
the pairwise comparisons between methods were done with the “lsmeans” function in “lsmeans”
package [47].

2.9. Software details

In this study, unless otherwise specified, all data manipulation and data analyses were performed
using RStudio (version 1.0153) [48], R (version 3.5.1) [49] with the following packages: MatrixEQTL
(2.2) [50], ggplot2 (3.1.0) [51], fBasics (3042.89) [52], xtable (1.8-3) [53], biomaRt (2.38.0) [54], plyr
(1.8.4) [55], data.table (1.12.0) [56], pROC (1.13.0) [41], lme4 (1.1-19) [46] and lsmeans (2.30-0) [47].

3. Results

3.1. Overlap of lung and liver local-eQTL

We performed local-eQTL analysis on 20651 (corresponding to 10594 unique Ensembl annotated
genes) and 33684 (corresponding to 14695 unique Ensembl annotated genes) probe sets with 3023
SNPs for mouse liver and lung, respectively. The shared 10575 genes were found to have cis-SNPs,
i.e., there is one or more SNPs within 1 Mb on either side of their transcription start site (TSS). From
the potential cis-SNPs for a gene, we selected the SNP with the minimum P-value in each tissue for
further analyses. First, we examined whether local genomic control of transcript expression levels
is conserved across tissues in mice by comparing the observed overlap of conventionally calculated
local-eQTL with the expected overlap between liver and lung. The expected number of shared local-
eQTL was calculated under the assumption that the likelihood of a local-eQTL in the two tissues is
independent.
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Figure 2. Comparison of overlapping local-eQTL between mouse liver and lung. (A)
Number of observed and expected overlapping liver and lung local-eQTL at different local-
eQTL significance thresholds. The red dotted line is a nominal threshold of linear regression
slope Student’s t-test P-value 0.05 (−log10(0.05) = 1.3). The blue curve represents the
expected number of overlapping local-eQTL, which is calculated under the assumption that
the probability of a significant local-eQTLs in mouse liver and lung are independent. The
red curve represents the observed number of overlapping local-eQTL. (B) The ratio of the
number of observed overlapping local-eQTL to the number of expected overlapping local-
eQTL at different significance thresholds. Ratio=

Observed shared local eQT L
Expected shared local eQT L . Each black dot

represents the ratio between observed and expected local-eQTL in two tissues at different
local-eQTL P-value thresholds. The red dotted line represents ratio = 1.
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We found that the observed number of shared local-eQTL between liver and lung is significantly
higher (P-value < 0.05) than the expected overlap at several different P-value thresholds for declaring
a local-eQTL significant (Figure 2A). We also observed that the ratio of observed vs. expected
(ratio=

Observed shared local eQT L
Expected shared local eQT L ) is positively associated with negative log P-value (Figure 2B). The

ratio is 1.71 when the local-eQTL P-value threshold is 0.05. The ratio increases to 9.06 as the
local-eQTL P-value threshold becomes more stringent, i.e., negative log P-values increases
(Figure 2). We also summarized the number of significant local-eQTL at different P-values thresholds
in lung and liver and found that although lung has more, the two sets are fairly similar (Table 1).
Consistent with previous work by others, these results suggests that the mechanisms for gene
expression control through local SNPs is conserved across tissues, i.e., different tissues share
local-eQTL. Thus, it may be useful to take advantage of the known local-eQTL information in one
tissue to help predict unknown local-eQTL in another tissue.

Table 1. Summary of genes with a significant local-eQTL in each tissue with different local-
eQTL P-value threshold using the conventional method.

P value
threshold

No. of genes with a
significant cis-eQTL
in lung (% of total)

No. of genes with a
significant cis-eQTL
in liver (% of total)

0.05 3609 (34) 2858 (27)
0.01 2477 (23) 1828 (17)

0.001 1774 (17) 1238 (12)
1e-04 1381 (13) 919 (9)
1e-05 1124 (11) 708 (7)
1e-06 922 (9) 539 (5)
1e-07 777 (7) 422 (4)
1e-08 665 (6) 315 (3)
1e-09 550 (5) 245 (2)

3.2. TA-eQTL method

We developed an augmented Bayesian modeling approach to identify liver local-eQTL using lung
local-eQTL results as prior information. Since there is a significant correlation between the β

magnitude and negative log P-values(ρ = 0.84, P < 2.2e − 16) (Figure 3), we only chose one of them
to include as prior information. In this example, we used the negative log of P-values for the lung
local-eQTL as a prior for the Bayesian model.

We first used a standard Bayesian model (unweighted) to incorporate lung local-eQTL information
to update the liver results. We found that in unweighted Bayesian analysis, posterior estimates (β̃) were
generally lower than the conventional liver prediction (β̂). This is because the prior mean for the local-
eQTL (ZΓ̂) are lower than the conventional liver estimates (β̂). The maximum of the prior estimates
of the local-eQTL effect in liver, ZΓ̂, is 0.935, while the maximum of the estimate of the local-eQTL
effect in liver derived directly from the liver data, β̂, is 5.18. To adjust for the distribution difference
between ZΓ̂ and β̂, we introduced a weight to the Bayesian model. We calculated the weight based on
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Figure 3. Association between the absolute value of β and P-value of local-eQTLs in mouse
lung and liver. The β values and P-values of local-eQTLs in mouse lung and liver tissues were
derived from conventional eQTL analysis (simple linear regression). Gene-SNP pair with
minimum P-value at gene level in each tissue is shown. Volcano plots depicts the distributions
of absolute β values and −log10(P) of local-eQTLs in mouse lung (A) and liver (B).

the maximum values of β̂ and ZΓ̂, c =
max(β̂)

max(ZΓ̂)
. The weighted Bayesian model corrects the imbalance

between ZΓ̂ and β̂ to create a linear relationship between β̂ and posterior estimates (β̃).
In the final step, we calculated the variance of the posterior distribution based on estimates of σ2

(V)g

and τ2 (Section 2.7). To rank the liver local-eQTL predicted by the weighted Bayesian model, the
posterior probability of β being less (or greater) than 0 was determined based on the value of β̃ and its
variance in the normal distribution. We summarized the number of significant local-eQTL at different
thresholds for the β posterior probability in Table 2.

3.3. Model performance assessment

To assess the performance of TA-eQTL, we compared it to liver local-eQTL derived from an allele
specific expression (ASE) study [37]. Then we compared the performance of TA-eQTL with several
existing methods in terms of sensitivity and specificity using the liver ASE set as the gold standard.

3.4. Comparison of TA-eQTL model with ASE local-eQTL

In the ASE experiment, 272 genes had significant local-eQTL in mice with standard diet (i.e., chow-
fed). The median of liver negative log P-values is much larger in genes with ASE local-eQTL than the
genes without a significant local-eQTL (Figure 4). The trend is maintained when comparing the lung
local-eQTL to the ASE local-eQTL from liver, which further suggests that the association between
SNP and genes are conserved between liver and lung. Of note, the difference in the median negative
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log P-values between ASE and Non-ASE groups in mouse lung is less than the difference in mouse
liver.

Table 2. Summary of genes with a significant local-eQTL based on posterior probability.

Posterior probability
threshold

No. of genes with
significant cis-eQTL
in liver (% of total)

0.05 3609 (34)
0.01 2523 (24)

0.001 1768 (17)
1e-04 1410 (13)
1e-05 1202 (11)
1e-06 1035 (10)
1e-07 913 (9)
1e-08 824 (8)
1e-09 739 (7)

䄀                                                               䈀

Figure 4. Negative log liver/lung P-value distribution between ASE and Non-ASE groups.
Genes were separated into two group, ASE (n = 192) and Non-ASE (n = 10383) based on
the identification of allele specific expression (true cis-eQTL) in liver on chow-fed mice (see
Methods). Box plots indicate the distributions of negative log P-value from conventional
local-eQTL analyses within the ASE local-eQTL and non-ASE local-eQTL groups in mouse
liver (A) and lung (B). The boxes are defined by the top 25th and 75th percentile, and the
whiskers are located at 1.5 times the inter-quantile range (IQR).
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3.5. Comparison of TA-eQTL with other methods

P-values or posterior probabilities in each method were used to evaluate each method based on
the ASE “gold standard”. Using ROC curves for different P-value/posterior probability cutoffs, we
compared the power and accuracy between Bayesian models and other existing approaches (Figure 5).
Of note, the closer the ROC curve follows the top-left corner of the ROC space, the more accurate the
method. The closer the ROC curve comes to the 45-degree diagonal of the ROC space, the less accurate
the method. As shown in Figure 5A, the ROC curve of lung local-eQTL prediction is closest to the 45-
degree diagonal, which indicates that it is the least accurate among the five tested methods. Compared
with the conventional liver local-eQTL study, the two Bayesian approaches incorporating lung prior
knowledge (TA-eQTL method and MT approach) have better performance in predicting liver local-
eQTL. The DeLong’s test for ROC curves further reveals that both TA-eQTL and MT methods predict
local-eQTL significantly better than the meta analysis, conventional liver analysis and conventional
lung analysis (P-value < 0.05). However, the difference between the meta-analysis and the conventional
liver study is not significant. In addition, we compared the TA-eQTL and MT ROC curves and their
difference is not significant (P-value = 0.60).

䄀                                                                                                             䈀

Figure 5. Accuracy comparison of five methods for identifying local-eQTL in liver. (A) The
black, red, green, blue and purple lines represent the ROC cures of five analysis methods:
conventional liver local-eQTL analysis (no prior), TA-eQTL method, multiple-tissue (MT)
Bayesian approach, meta-analysis (meta) and conventional lung local-eQTL analysis. (B)
The area under the ROC curves were computed following the trapezoid rule and the 95%
confidence interval (CI) was determined through the bootstrap method. Each bar represents
the AUC of a prediction method. The error bars represent for the 95% confidence interval.
MT and TA-eQTL were significantly different than conventional liver (P-value < 0.05).
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To further quantify the performance of the five methods, we calculated the area under the curve
(integral) following the trapezoid rule and determined the confidence interval based on a bootstrap
strategy. As shown in Figure 5B, the AUCs of the two Bayesian approaches incorporating lung prior
knowledge (TA-eQTL method and MT approach) are larger than the AUC of the conventional liver
analysis.

3.6. Model performance evaluation based on sub-sampling

A major aim in developing the TA-eQTL model is to improve the power and accuracy for local-
eQTL prediction when the sample size is small. To address the effect of sample size, we sub-sampled
the liver gene dataset but maintained the prior information from the complete lung eQTL data analysis.
We compared the area under ROC curves between the TA-eQTL model we developed, and the other 4
approaches under different sub-samplings (25, 20, 15 and 10 strains).

For the conventional liver local-eQTL analysis with simple linear regression, the AUC decreased
quickly when the number of strains decreased and was more sensitive to the number of mouse strains.
(Figure 6A–D). For example, the AUC was 0.81 with the full liver dataset (30 strains), but decreased
to 0.74 with 10 strains. However, the AUCs of the TA-eQTL method, MT method, and meta-analysis
do not decrease as much as the AUC for the conventional liver local-eQTL prediction when sample
size decreases (e.g., in TA-eQTL the AUC was 0.83 in 30 strains, and 0.78 in 10 strains). These
findings suggest that the three methods incorporating prior information are not as sensitive to the
quantity of data as the conventional liver local-eQTL analysis without lung information. Of the three
methods that include lung information (TA-eQTL, MT, meta-analysis) the AUC in the TA-eQTL and
MT approach are significantly better that the conventional liver for the smallest sample sizes (10, 15)
(P-value ≤ 0.001). The two Bayesian methods perform significantly better than meta-analysis in each
tested subsampling condition (P-value < 0.001). These results indicate that the TA-eQTL and MT
model predicts the liver local-eQTL with higher accuracy than other tested methods, especially when
the sample size decreases.

4. Discussion

In this study, we developed a tissue augmented Bayesian model of cis-eQTL (TA-eQTL) which was
illustrated on the prediction of eQTL in one tissue, by incorporating information from an additional
tissue. Although demonstrated on two tissues, our model is also flexible to incorporate any number
of tissues, or other covariates as prior information. Bayesian methods provide a natural modeling
framework for eQTL analysis to take prior information into account. The prior information shared
across tissues can increase the power to detect eQTLs. We focus on the hypothesis that multiple tissue
analyses have the potential to improve eQTL predictions [16, 25, 27]. eQTL analyses are generally
divided into two categories: gene-level analysis and SNP-level analysis [27]. The former aims at the
identification of genes with any local-eQTL while the latter attempt to identify individual SNPs that are
significantly associated with a gene. Here we focused on the identification of genes with local-eQTL.

In this study, we first assessed model performance based on liver ASE-verified local-eQTL and
compared the newly developed TA-eQTL model and other methods including Multiple Tissue
Bayesian method (MT) and meta-analysis. We also evaluated model performance as the sample size
decreased. Our results demonstrated that both Bayesian analysis strategies (TA-eQTL and MT)
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Figure 6. Accuracy comparison of local-eQTL methods across different sample sizes.
(A-D) The liver gene expression data were randomly sub-sampled to evaluate the model
performances. The sub-sampled liver gene expression data include 10, 15, 20, and 25 strains,
respectively. Each sub-sample was randomly performed six times. The black, red and green
lines represent the average ROC curves of three methods: conventional liver local-eQTL
analysis, TA-eQTL method, and MT approach. (E) Each colored bar chart represents the
mean AUC of each prediction method, including conventional lung in purple and Meta in
blue. The error bars represents the minimum and maximum values of AUC derived from the
six random samples. For 20 and 25 strains, all pairs of methods were significantly different
from each other (P-value ≤ 0.001) except for MT and TA-eQTL, and conventional liver and
meta (P-value ≥ 0.05). For 15 strains, all pairs of methods were significantly different from
each other (P-value ≤ 0.001) except for MT and TA-eQTL (P-value ≥ 0.05). For 10 strains,
all pairs of methods were significantly different from each other (P-value ≤ 0.05) except for
MT and TA-eQTL (P-value ≥ 0.05).

Mathematical Biosciences and Engineering Volume 17, Issue 1, 122–143.



139

significantly improved local-eQTL gene prediction when compared with the conventional eQTL
method and the meta-analysis approach, based on ROC curves and AUC. Although we did not find
significant differences between the two Bayesian analysis strategies (TA-eQTL and MT) in the full
dataset and sub-sampling analysis, the TA-eQTL method has several advantages. First, TA-eQTL
focuses on the prediction of eQTL in a particular tissue, based on prior information from other tissues,
while in MT-eQTL, all tissues are treated equally. Second, TA-eQTL is able to summarize a different
number of available probesets per gene for the two data sets, which is advantageous when combining
existing data from studies that are not perfectly matched by platforms. In these cases, the MT method
might not work well since it can only analyze the overlapped probesets across tissues. However, our
TA-eQTL method can handle these data since it pre-selects the gene-SNP pair with minimum P-value
at the gene level (but not the probeset level) for further Bayesian analysis. Third, TA-eQTL has a
closed form solution for posterior estimation, and does not rely on the more computationally intensive
iterative EM algorithm for estimation. Four, the TA-eQTL method can be performed using only
summary statistics (e.g., P-values) for the secondary tissue(s) in the prior, and therefore does not
require individual tissue expression values for the prior. Five, our TA-eQTL is not limited to
microarray data. It can also be used on sequencing data since the sequencing count data can be
transformed into continuous data using methods such as the variance stabilizing transformation (VST)
or Voom [57,58]. In summary, TA-eQTL provides additional flexibility over the MT-eQTL, while still
maintaining similar accuracy performance.

Despite many advantages, there are some limitations of this method. One limitation is that the
TA-eQTL method does not efficiently use all of the information contained in these large and complex
data sets, by summarizing information at the gene level. For example, one gene could have several
significant gene-SNP pairs. Another limitation of this particular study is that the ASE gene list we
used as the gold standard to evaluate model performance is not complete because it only captures
genes with true cis-eQTL that also have a genetic variant within the transcribed region. In addition,
Lagarrigue et al. used the Fisher’s exact test for ASE detection, but this approach does not account for
over-dispersion in these types of data sets. A beta-binomial distribution framework developed may be
more appropriate to model ASE [59]. Both the TA-eQTL and MT methods model individual SNPs
and do not consider the potential for gene expression associations with multiple SNPs. Banterle et al.
have recently developed the Bayesian seemingly unrelated regression (BayesSUR) method, which
considers simultaneously many predictors and several outcomes or responses and allows for variable
selection and dependence structure between the response variables [22]. In our context, BayesSUR
could simultaneously model the association between many SNPs and the expression of multiple genes
and account for interdependencies among the SNPs and among genes. This type of multi-dimensional
model is a promising direction for the identification of eQTLs. However, for our motivating multiple
tissue eQTL study, it is not straightforward to adapt BayesSUR because of the additional layer of
multiple tissues in the model. In addition, the BayesSUR approach implements the evolutionary
stochastic search MCMC algorithm (ESS), which is more efficient than the Shotgun Stochastic Search
algorithm (SSS), but still computationally intensive for high dimensional data [60]. Our method also
identifies local-eQTL that may not represent differences in expression due to one allele either being
repressed or activated. Like all methods, the occurrence of SNPs in a probeset or gene need to be
considered because these may show an artificial difference in expression [61]. Filtering these
occurrences in advance or post-hoc are common strategies that can be implemented.
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5. Conclusion

We presented a Bayesian method, called TA-eQTL, for incorporating prior information in eQTL
analysis. As an application, we tested the method in a panel of recombinant inbred mice for the
prediction of liver local-eQTL using lung local-eQTL information as a prior. Performance for eQTL
prediction is often based on simulations or counting the number of predictions, but not accounting for
false discoveries. In this work, we examined performance using allele-specific expression (ASE) as
a benchmark. We also evaluated the performance of different methods as sample size decreased. In
summary, methods that incorporate information from the lung tissue were better at predicting ASE
genes. Our method TA-eQTL and another Bayesian method, MT-eQTL, performed similarly in terms
of AUC among the methods especially with decreasing sample size. Although these two methods
performed comparably, TA-eQTL is more flexible in that it can handle datasets that are derived from
different platforms, in addition to other types of covariates. TA-eQTL also can prioritize one tissue
over other tissue(s) in the regression model. Finally, TA-eQTL is computationally tractable for the
large number of genes and SNPs that need to be evaluated, since it provides a closed form solution for
estimation for each model fit.
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