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Abstract: Many statistical methods for analyzing genetic data, such as those used in genome-wide
association studies, assume Hardy-Weinberg Equilibrium (HWE). Therefore, to use such methods,
one must check whether the HWE assumption is valid. For a case-control study, researchers have
recognized that Hardy Weinberg proportions will be distorted if the marker being tested happens to
be associated with the disease. To alleviate this problem, many studies carry out HWE testing on
controls only. A number of papers in the literature have justified this practice by making the rare
disease assumption without providing rigorous theoretical basis for this justification. Even though
many of the diseases studied today are common, whether it is justifiable to use controls to test for
HWE when the disease is indeed rare remains an outstanding issue. In this study, we address the
rare disease assumption as well as potential problems associated with testing for HWE using controls
only, regardless of the prevalence of the disease. We carried out theoretical derivations and numerical
studies; the latter were performed using simulated genotypes as well as data from the 1000 Genomes
Project. The results from our study are striking: the type I error can be severely inflated, regardless of
whether the disease being investigated is rare or common. This study shows that, based on the common
practice of using controls only to test for HWE, many genetic variants will be discarded erroneously,
wasting valuable information and hindering the ability to detect disease-associated variants.

Keywords: Hardy-Weinberg equilibrium; case-control study; rare disease assumption; genome-wide
association studies; 1000 Genomes Project

1. Introduction

Genome-wide Association Studies (GWAS) are frequently performed to look for genetic variants
that are associated with an array of diseases. In such studies, where hundreds of thousands, or even
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millions, of Single Nucleotide Polymorphisms (SNPs) are generated, the first step of data analysis is
often testing for Hardy-Weinberg Equilibrium (HWE) for each of the SNPs [1–3]. This is usually
framed as a quality control step to help identify possible errors that could have occurred, including
systematic genotyping ones [3–9]. SNPs that do not pass the HWE tests are eliminated before moving
on to the next step, as they are deemed to have violated the HWE assumption and to have likely been
caused by errors [10–14]. To detect all possible errors, multiple testing procedures are typically not
fully implemented, leading to the rejection of a large proportion of the SNPs in some studies [15–18].

In a case-control study setting, it is known that if a locus is indeed associated with the disease of
interest, then HWE will be distorted in the cases [19]; therefore, researchers use controls only to test
for HWE [8,20,21]. By doing so, there is an (implicit) assumption that the disease being studied is rare
[18,22,23], which is based on the belief that controls under such a setting are similar to the population
in terms of their genetic makeup. It is worth pointing out, though, that the rare disease assumption
itself is often overlooked in practical applications. On the other hand, it has been recognized in the
statistical genetics community that using controls only to test for HWE is not appropriate if the disease
is common [3, 22, 24, 25]; thus, a number of tests that use both cases and controls have been proposed
[2,18,22,23,26]. Nevertheless, the assertion that, if the disease is rare, the controls may well represent
the general population [3] and HWE testing based on controls only is valid [18,22,23,27], has not been
seriously scrutinized or vetted.

Many complex diseases, such as hypertension, asthma, and diabetes, have a population prevalence
of over 10% [28–30]. Although a population prevalence of 0.0005 has been used as a threshold for rare
diseases [31], a less stringent threshold of 0.05 has also been used for considering complex diseases
[32], which may be more appropriately referred to as uncommon or rarer than common (or simply
rarer). In this article, our main simulation study used the 0.05 threshold as we aim to consider complex
diseases with moderate relative risks, although we also explore the more stringent threshold of 0.0005.

Due to the lack of adequate work in the literature, the question of whether the rare disease
assumption sufficiently justifies the use of controls only in HWE testing has not been settled
satisfactorily. In other words, even if it has been shown that the disease is indeed rare, relying on this
assumption still raises several concerns. The problem lies in the following question: are the controls
actually similar to the general population? For studying maternal and imprinting effect, it was argued
that the rare disease assumption is necessary but not sufficient for the premise that controls have
similar genetic makeup to the general population [32]. This issue was also touched upon in a
simulation study devised to investigate HWE testing [34]. If the controls are not a good representation
of the population, then more variants than necessary may be thrown out since the measure of HWE
will be distorted [18]. Regardless of the prevalence of the disease being studied, for a SNP that is
associated with the disease, not only will HWE be distorted in cases, but it may also be distorted in
the controls, even if HWE holds in the general population. Therefore, if one uses controls only to test
for HWE, SNPs that are indeed associated with the disease of interest will potentially be screened out.
This results in a loss of information that is entirely avoidable, warranting additional studies.

In this paper, we take up this challenge by considering two major issues that differ from those
commonly addressed in the literature. First, we investigate if the rare disease assumption itself is
sufficient to justify the use of controls only as surrogate for a random sample of the population in the
context of HWE testing. We look at the bias incurred when estimating population genotype frequencies
based on controls. Even though most of the diseases being studied today are common ones, this
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outstanding issue regarding the sufficiency of the rare disease assumption needs to be resolved to
correct any misconceptions. Secondly, we explore whether there is an inflated Type I error when using
controls only for testing for HWE, regardless of whether the disease of interest is common or rare,
under a variety of disease models. These two issues are addressed comprehensively through analytical
derivations, simulation studies, and the use of the genotypes from the 1000 Genomes Project.

2. Methods

In this section, to set things up, we first express the distribution of the genotypes for the cases in
terms of the relative risks of the genetic model and the genotypes frequencies in the general population
(assumed to be in HWE) from which the cases are drawn (Subsection 2.1). From the expressions,
one can easily see that the genotype frequencies in the cases are different from the corresponding
frequencies in the general population, a well-known fact. The most salient point of the methodology
in this contribution is contained in Subsection 2.2, in which we (a) derive the genotype distribution
of the controls, (b) show that the distribution is different from that of the general population just like
the cases, and (c) argue that the common notion that controls can be used as a representation of the
general population under the rare disease assumption is in fact a fallacy. Taking (b) and (c) together,
we further argue in this subsection that the common practice of testing for HWE using controls only
may lead to tossing out valuable genetic data. The impact of issues discussed is examined in terms of
estimating biases of the genotype frequencies (Subsection 2.3). Finally, in Subsection 2.4, we propose
four versions of the Chi-square test to assess the impact of using a case sample or a control sample
to test for HWE. Although our focus is on using the controls, we also look into the use of cases as a
comparison and for completeness.

2.1. Genotype distribution of the cases

Consider a SNP with alleles a and A, whose frequencies are pa and 1 − pa, respectively, with a
being the minor allele, and thus, pa is referred to as the Minor Allele Frequency (MAF). Assuming that
the SNP is from a population under HWE, then the probabilities of the three genotypes, AA, Aa, and
aa, in the population are:

pAA = (1 − pa)2, pAa = 2pa(1 − pa), and paa = p2
a. (2.1)

Now, suppose that the SNP is associated with a disease and that having one or two copies of the
minor allele will lead to increased risks of being affected by the disease (i.e. becoming a case). These
increased risks are above the baseline level (when there are no copies of the minor allele) and can be
formally defined in terms of the following relative risks:

RR1 =
P(case | Aa)
P(case | AA)

and RR2 =
P(case | aa)
P(case | AA)

.

Then, using the Bayes rule, the distribution of the three genotypes in the population of cases can
be derived in terms of the genotype distribution in the general population (pAA, pAa, paa) and the two
relative risks (RR1,RR2):

Mathematical Biosciences and Engineering Volume 17, Issue 1, 73–91.



76

pAA|case ≡ P(AA | case) =
pAA

pAA + pAa × RR1 + paa × RR2
,

pAa|case ≡ P(Aa | case) =
pAa × RR1

pAA + pAa × RR1 + paa × RR2
, (2.2)

paa|case ≡ P(aa | case) =
paa × RR2

pAA + pAa × RR1 + paa × RR2
.

These probabilities have been derived many times previously in the literature, including the
reproduction in Brems [34]. It is easily seen that the genotype distribution for the cases as defined in
the set of equations in (2.2) is different from that of the general population as defined in (2.1). To
understand their relationship more clearly, we let C = pAA + pAa × RR1 + paa × RR2. Then, in order for
the three corresponding probabilities to be similar, we need to have C ≈ 1,RR1/C ≈ 1, and
RR2/C ≈ 1. These requirements lead to the conclusion that both RR1 ≈ 1 and RR2 ≈ 1. However, for a
SNP that is associated with the disease, these requirements cannot be satisfied. In other words, the
cases are not similar to the general population in their genetic makeup. Hence, it has been correctly
concluded by researchers that using cases for testing HWE will lead to inflated type I error.

2.2. Genotype distribution of controls

Similarly, one can derive the distribution of the three genotypes within the population of controls,
noting that the population prevalence of the disease is also needed to completely specify them:

pAA|cntr ≡ P(AA | control) =
pAA − pAA|case × κ

1 − κ
,

pAa|cntr ≡ P(Aa | control) =
pAa − pAa|case × κ

1 − κ
, (2.3)

paa|cntr ≡ P(aa | control) =
paa − paa|case × κ

1 − κ
,

where κ ≡ P(case) is the population disease prevalence; that is, the probability that a randomly chosen
individual from the general population is affected by the disease. Expressing it in terms of the relative
risks, we have κ = P(case | AA)[PAA + PAa × RR1 + Paa × RR2]. Then one can find the ratio of the
probabilities of each genotype in the controls relative to the general population:

pAA|cntr

PAA
=

1 − P(case | AA)
1 − (PAA + PAa × RR1 + Paa × RR2) × P(case | AA)

> 1,

pAa|cntr

PAa
=

1 − RR1 × P(case | AA)
1 − (PAA + PAa × RR1 + Paa × RR2) × P(case | AA)

, (2.4)

paa|cntr

Paa
=

1 − RR2 × P(case | AA)
1 − (PAA + PAa × RR1 + Paa × RR2) × P(case | AA)

< 1.

Note that the two inequalities above are strict as long as there is a phenocopy rate (i.e. P(case | AA) >
0), indicating that the aa genotype in the controls is decreased whereas there is an increase in the
AA genotypes. This observation holds true for a fixed diseased model and population characteristics,
which together determine the degrees of depletion and influx.
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One can also easily see that, just like the three case probabilities, the three control probabilities
in (2.3) also differ from their corresponding population probabilities in (2.1). In order for the two
distributions to be approximately the same, we would require that

pAA − pAA|case × κ ≈ (1 − κ) × pAA,

pAa − pAa|case × κ ≈ (1 − κ) × pAa,

paa − paa|case × κ ≈ (1 − κ) × paa.

Simple algebraic manipulations show that these conditions are equivalent to requiring that the
genotype distribution for the cases be approximately the same as the genotype distribution for the
general population. It is the interplay between disease allele frequency and the underlying disease
model - which together specify the disease prevalence - that determines whether the genotype
frequencies under the controls are similar to the corresponding frequencies in the general population.
As such, regardless of whether the disease is rare or common, the genotype distribution of the controls
may not be similar to the distribution of the general population, depending on the characteristics of the
genetic variant and the disease model. Therefore, the commonly invoked “rare disease assumption” is
not grounded in theoretical analysis; rather, it appears to be a commonly-held misconception.

To further examine this notion that controls as a whole can be used as a representation of the general
population and to show that it is in fact a fallacy, we rewrite the genotype distribution of the controls
using a slightly different representation based on the Bayes rule:

P(AA | control) = [P(control | AA)pAA]/(1 − κ),

P(Aa | control) = [P(control | Aa)pAa]/(1 − κ),

P(aa | control) = [P(control | aa)paa]/(1 − κ).

In order for these probabilities to be close to their population counterparts, it is required that

P(control | Genotype) ≈ 1 − κ,

where Genotype can be AA, Aa, or aa. If a disease is rare, then 1 − κ ≈ 1, which implies that
P(control | Genotype) would all have to be close to 1. Clearly, this is not possible if the disease
is Mendelian. For example, for a recessive disorder with complete penetrance, P(control | aa) = 0,
which is not close to 1. In general, for a SNP associated with the disease, the requirements stated above
may not be always satisfied, and the rare disease assumption by itself is not sufficient to guarantee the
similarity of the genotype distributions of the controls and the general population, echoing an earlier
comment [32]. Therefore, using controls only to test for HWE may be equally as invalid as using cases
in many situations. While the latter is a known fact and thus the practice is avoided, the former has not
been previously pointed out, and testing for HWE in controls regardless of the disease prevalence is
still commonly done in genetic studies. This is a practice that can lead to valuable data tossed out due
to distorted HWE in the controls.
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2.3. Bias of genotype probability estimators

We can ascertain the expected degree of deviation when using controls to estimate the genotype
frequencies of a population in HWE by calculating the biases and relative biases. For example, the
bias for estimating the frequency of aa is,

Biasaa = E
[
naa|cntr

ncntr

]
− paa = paa|cntr − paa,

where ncntr is the number of controls in the sample while naa|cntr is the number of controls having the
aa genotype. Clearly, this bias is not zero based on formulas (2.1) and (2.3) for the population and
control frequencies, respectively, and therefore the estimator is biased. Since paa can be quite small,
especially for variants with a small MAF, we will consider the absolute relative bias as defined in the
first expression in the following:

ARbiasaa =
|paa|cntr − paa|

paa
=
κ|paa − paa|case|

(1 − κ)paa
. (2.5)

To understand the fact that ARbiasaa does not always vanish with a rare disease, we rewrite it as the
second expression in (2.5). For a rare disease, κ ≈ 0 and therefore 1 − κ ≈ 1. However, note that κ is
related to paa, which is usually very small for a rare disease. Suppose paa and κ are of the same order of
magnitude; then, ARbiasaa is in the order of |paa − paa|case|, which can be large, especially for a disease
with a high penetrance (large RR2 value). Even for a disease with a moderate penetrance, the relative
bias may still be appreciable. For instance, suppose κ = 0.05, pa = 0.2,RR1 = 1, and RR2 = 3; then, κ
and paa are of the same degree of magnitude (both are in the order of 10−2). In this case, there is still
an appreciable relative bias – the frequency of the aa genotype in the controls decreases by more than
9%. Formulas for calculating the biases and absolute relative biases for the other two genotypes can
be similarly derived.

2.4. Chi-square tests for HWE

We performed the Chi-square test for HWE to illustrate the potential inflation of type I error
empirically. The underlying general population is assumed to be under HWE; therefore, a rejection of
the null hypothesis H0 that the SNP marker is in HWE is treated as committing a type I error. Let
nAA, nAa, and naa be the number of individuals with genotypes AA, Aa, and aa, respectively, in a
sample with a total size of n = nAA + nAa + naa. Then under the assumption of HWE, the
corresponding numbers of expected counts for these three genotypes may be calculated in two ways,
depending on whether the underlying population allele frequencies pa and pA = 1 − pa are known or
estimated as p̂a = (2naa + nAa)/(2n) and p̂A = 1 − p̂a. The former is a rather unrealistic (U) scenario,
whereas the latter is realistic (R) and typically done. Nevertheless, we include the U scenario in our
study for comparison purposes. These two sets of expected counts for the three genotypes are

(U): n̂AA = np2
A, n̂Aa = 2npA pa, n̂aa = np2

a;

(R): n̂AA = np̂2
A, n̂Aa = 2np̂A p̂a, n̂aa = np̂2

a.
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Then, the Chi-square test statistic is

T =
∑

G∈{AA,Aa,aa}

(nG − n̂G)2

n̂G
, (2.6)

regardless of which scenario is being considered. However, under U, the test statistic has 2 degrees of
freedom since the known probabilities are used; whereas, under R, there is only 1 degree of freedom
because the probabilities are now estimated based on the sample being tested. For finite samples as in
our situation, the Chi-square approximation is reasonable as long as the expected count for each cell is
at least 5.

To be comprehensive, we consider several versions of the Chi-square test. Our first two tests (T1
and T2) are for data from the cases. As well documented in the literature, it is expected that a HWE
test based on the cases will lead to an inflation of the type I error rate. As such, these two tests are used
merely as a confirmatory investigation for completeness. The last two tests (T3 and T4) are for data
from the controls. This setting is the focus of our study, as we are interested in addressing the question
that we have raised: is it justifiable to test for HWE using controls only, especially when the disease is
rare?

These four versions of the test are elaborated as follows:

T1. Data are generated under the genotype distribution for cases. Chi-square test is performed
assuming that the expected counts for the three genotypes are calculated using known
population frequencies from the underlying population under H0 (the U scenario).

T2. Data are generated under the genotype distribution for cases. Chi-square test is performed
assuming that the expected counts for the three genotypes are estimated from the data under H0

(the R scenario).
T3. Data are generated under the genotype distribution for controls. Chi-square test is performed

assuming that the expected counts for the three genotypes are calculated using known population
frequencies from the underlying population under H0 (the U scenario).

T4. Data are generated under the genotype distribution for controls. Chi-square test is performed
assuming that the expected counts for the three genotypes are estimated from the data under H0

(the R scenario).

3. Bias analysis and simulation study

3.1. Assessment of bias

To illustrate that controls may not be representative of the general population in terms of the
genetic makeup, we computed the relative bias of using the genotype probabilities from the controls
as estimates of the corresponding population frequencies. We considered a recessive disease model in
which only those with two copies of the minor allele have an elevated risk over the baseline; that is,
RR1 = 1 and RR2 > 1. The relative bias was computed over a range of minor allele frequencies: MAF
= 0.1, 0.2, 0.3, 0.4, and 0.5. We studied two values for RR2: 2 and 3. Furthermore, we entertained two
scenarios of disease prevalence: 0.15 and 0.05; these two levels of prevalence are chosen as the
former is typically regarded as a common disease whereas the latter is treated as rarer [32]. For ease
of comparison and visualization of the results, the absolute relative biases for all settings studied are
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Figure 1. Absolute relative bias when using naa|cntr/ncntr as an estimator of the population
probability paa, where ncntr is the sample size of controls and naa|cntr is the number of controls
with the aa genotype. The results shown are from a recessive model with four parameter
settings; dashed red: RR2 = 2, κ = 0.15; solid red: RR2 = 2, κ = 0.05; dashed blue: RR2 =

3, κ = 0.15; solid blue: RR2 = 3, κ = 0.05.

plotted in Figure 1. As we can see from the figure, regardless of the combination of the parameters,
using controls to estimate the general population will result in bias. The degree of relative bias does
depend on the underlying setting. For a disease with a larger effect size (RR2 = 3), the relative bias is
larger than the corresponding counterpart with a smaller effect size (RR2 = 2). In addition, a more
common disease (κ = 0.15) will also lead to greater relative bias compared to a rarer disease
(κ = 0.05). Finally, as the minor allele frequency gets larger toward a more common SNP, the relative
bias decreases.

3.2. Simulation study

We consider four sets of genetic models, which differ in their relative risks with one or two copies
of the minor alleles — recessive: RR1 = 1,RR2 > 1; dominant: RR1 = RR2 > 1; multiplicative:
RR2 = RR2

1; and additive: RR1 = (1 + RR2)/2. Under each model, multiple scenarios are considered;
full details of the parameter values are given in Table 1, which includes the MAF values, pa, as well
as the population disease prevalence, κ. In particular, we considered two disease prevalences, κ = 0.15
and κ = 0.05. We also varied pa at two levels, 0.1 and 0.3, although not all combinations of κ and pa are
considered. For each setting under a model, we simulated data for 10,000 cases and 10,000 controls
according to the distributions of probabilities provided in equation sets (2.2) and (2.3), respectively,
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Table 1. Simulation models and settings∗

Model Parameter Setting κ pa RR1 RR2

Recessive R1 0.15 0.3 1 1.4
R2 0.05 0.1 1 4
R3 0.15 0.1 1 2

Dominant D1 0.15 0.3 1.4 1.4
D2 0.15 0.1 2 2
D3 0.15 0.3 2 2

Multiplicative M1 0.15 0.1 1.8 3.2
M2 0.15 0.1 1.6 2.6
M3 0.15 0.3 1.8 3.2

Additive A1 0.15 0.3 1.1 1.2
A2 0.05 0.1 2 3
A3 0.15 0.1 2 3

∗For each of the four types of models, κ denotes the population prevalence; pa is the minor allele frequency; RR1 and RR2 are the relative
risks with one or two copies of the minor alleles, respectively, over the baseline disease risk of having no copy of the minor allele. Note
that dominant and multiplicative models are less likely to be associated with a rare disease and therefore κ = 0.05 was not investigated
for these two models.

which assume that the underlying general population is in HWE. Tests T1 and T2 were then applied
to the case data, while tests T3 and T4 were applied to the control data. This process was repeated for
10,000 simulated data sets.

It has been shown in the literature that testing for HWE for a SNP associated with a disease using
the cases will lead to an inflation of type I error. Nevertheless, we included tests T1 and T2 for
confirmatory purposes and as a comparison with results from T3 and T4 to ascertain the degree of
discrepancy. Figure 2 shows the QQ plots of the quantiles of the p-values (over 10,000 simulated data
sets) against the quantiles of the uniform(0,1) distribution for the recessive model R1 in the − log10
scale. Not surprisingly, the results from T1 and T2 (tests using the cases; Figure 2(a) and (b)) have
severely inflated type I error, as both curves are far above the 95% confidence bands (portrayed by the
pair of dashed lines). On the other hand, since the data were all simulated under the null hypothesis
(H0 : HWE), one would expect the p-values to follow a uniform distribution when tests T3 and T4 are
used, if it is indeed justifiable to use the controls to test for HWE. However, as can be seen from the
curves in Figures 2(c) and (d), there is also severe inflation of type I error when testing for HWE using
controls only, although the degree of severity is less than when testing with cases. These results cast
great doubts on the common practice in the scientific community of using controls to test for HWE.

In the other two recessive models, R2 and R3, the inflation of type I error is also clearly seen when
testing using the controls, as shown in Supplementary Figures S1 and S2. Note that model R2 has
κ = 0.05, a rarer disease scenario than when κ = 0.15 (R1 and R3), but the inflation of type I error
is still clearly seen, demonstrating the fallacy of the rare disease assumption. These observations also
apply to the dominant and multiplicative models, which are shown in Supplementary Figures S3 - S8.
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(a) T1 (b) T2

(c) T3 (d) T4

Figure 2. QQ plots of − log10(p-value) of the observed vs. the expected under the uniform
distribution. The area bounded by the red and blue dashed curves around the grey diagonal
line represents a 95% confidence band. A curve above the band indicates inflated Type I
error. The results shown are from data simulated under a recessive model, setting R1 in
Table 1: RR2 = 1.4, κ = 0.15, pa = 0.3. Note that the peculiar feature in (b) is due to the
limits on the number of significant digits.

Finally, for additive model A1, the inflation of type I error is still clearly seen when the expected
genotype frequencies in the Chi-square test are calculated using the population probabilities; that is,
when either T1 or T3 are applied (Supplementary Figure S9(a) and (c)). When the expected frequencies
are estimated, either based on the cases or the controls, then the QQ plot curve is almost entirely within
the 95% confidence band. On the other hand, for the other two additive models, using the cases and
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estimated frequencies will lead to inflation of type I error, whereas using the controls and estimated
frequencies will not (Supplementary Figures S10 and S11).

To better understand the degree of severity in discarding valuable data, we also summarize the p-
values for all models, each over 10,000 replicates, using boxplots. If the use of controls is justifiable,
then one would expect only 5% of the p-values to be smaller than 0.05 (or equivalently, greater than
1.3 on the − log10 scale). Shown in Figure 3 are the boxplots of the p-values in the -log10 scale. For
the results from T3 (using population frequencies to estimate expected counts; Figure 3(a)), we can see
that, among all 12 models (4 types and 3 scenarios of each) considered, at least 20% of the tests have
p-values less than 0.05, far exceeding the expected 5% if the tests based on controls were appropriate.
In fact, for the multiplicative models, as one can see from Figure 3, the -log10(p-values) for all the
three M models are above the solid line marking the -log10 transformation of the 0.05, indicating that
all p-values are smaller than 0.05. As such, had this been a real data analysis, none of the SNPs would
have passed the HWE test and gone on to be tested for their association with the disease. This scenario
is perhaps extreme (and some form of multiple testing procedure would likely be implemented), but
is used to illustrate how much perfectly fine and valuable data could be erroneously tossed out by
carrying out the usual HWE test in current practice.

For the results based on T4 (Figure 3(b)), we observed that the inflation of type I error is less severe
compared to when the expected genotype frequencies are calculated from the population parameters.
These results are not entirely surprising. Under T4, the genotype frequencies and allele frequencies
(which are then used to form expected genotype frequencies under HWE) are estimated based on the
same dataset; therefore, they are closer than when only the genotype frequencies are estimated while
the expected frequencies are calculated using the theoretical values as in T3. This fact is reflected in the
adjustment for degrees of freedom (df) (df = 1 in T4 versus df = 2 in T3), but this theoretically correct
adjustment for T4 may still not be sufficient in this situation, leading to T4 having fewer rejections
compared to T3. Nevertheless, other than the three additive models, at least 20% of the tests still have
p-values less than 0.05 for the rest of the 9 models under T4.

4. Analysis based on data from the 1000 Genomes Project

4.1. Data and pre-processing

To further validate our results in a real data context, we used the genotype data of 697 unrelated
individuals for 24,487 SNPs from the 1000 Genomes Project as described in the Genetic Analysis
Workshop 17 [33]. By using the real genotype data across the genome, we preserve the linkage
disequilibrium (LD) structure among the SNPs in a genome-wide analysis. For this study, we only
considered common variants with minor allele frequencies of at least 0.1, due to the relatively small
sample size, leading to a total of 2,209 SNPs. This selection criterion was placed for consideration of
the validity of the aysmptotic Chi-square distribution of the test statistic defined in (2.6), as we would
like to have sufficiently large expected counts. As such, even though it is also of interest to consider
variants with frequencies smaller than 0.1, the limited sample size of 697 renders the analysis of rare
variants impractical. For the remaining set of 2,209 SNPs, we carried out the HWE test using the
Chi-square statistic (T4 test). Using the Bonferroni criterion to adjust for multiple testing, we
obtained a total of 1,264 SNPs that are deemed to be in HWE. The 1000 Genomes data for each of the
retained SNPs was then treated as constituting a population under HWE.
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(a) T3

(b) T4

Figure 3. Boxplots of − log10(p-value) over 10000 simulated data sets. The boxplots are
arranged in four triplets, with each triplet representing the three specific parameter settings
for each of the four types of models described in Table 1. The top plot (a) displays results
from the T3 test and the bottom (b) from the T4 test. For the two boxplots (other than the
additive tests) where the proportion of − log10(p-value) > 1.3 (i.e. p-value < 0.05) is less
than 25% (solid line above the upper end of the box), the percentages are indicated above the
corresponding boxplots. As one can see from these two percentages, they are both at 20%.
The solid black line across all boxplots marks 1.3 in the − log10 scale.
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Table 2. Inflation ratios of observed to expected numbers of SNPs exceeding a nominal
significance level (either p = 0.05 or p = 0.01) under four models∗.

Inflation ratio with nominal level
Model RR1 RR2 p = 0.05 p = 0.01
Recessive 1 1.4 10.3 ± 0.206 34.4 ± 0.657
Dominant 1.4 1.4 10.6 ± 0.213 35.3 ± 0.804
Multiplicative 1.3 1.7 11.3 ± 0.179 38.0 ± 1.14
Additive 1.2 1.4 11.0 ± 0.190 36.7 ± 1.27

∗All four models have a population prevalence of 0.05, reflecting a rarer disease. For each of the four types of models, RR1 and RR2 are
the relative risks with one or two copies of the minor alleles, respectively, over the baseline disease risk of having no copy of the minor
allele. Each of the entries in the fourth and fifth columns shows the mean and standard deviation of the ratios over 10 replicates.

After these preliminary filtering steps to ensure that our population is under HWE and our sample
size is sufficiently large to ensure the appropriateness of the Chi-square test, we proceeded to devise
a study to investigate whether testing based on controls only for HWE, especially for rarer diseases,
would lead to discarding of valuable SNPs for real genotype data.

Based on each of the four disease models, all with a population prevalence of κ = 0.05 as specified
in Table 2 (the same four types of disease models as in our earlier simulation studies), we divided
the “population” of 697 people from the real 1000 Genomes SNP data into “cases” and “controls”
according to their respective probabilities. Specifically, for each SNP and each of the four disease
models given in Table 2, we calculated the probability that each individual is a case (case probability)
according to his/her genotype at the SNP. A random number is then drawn to determine whether the
individual is a case/control depending on the case probability/complement of the case probability.
Then, we proceeded to test for HWE using the controls only for each of the SNPs. In order to better
visualize our results, we ran ten replicates of HWE testing on the 1,264 SNPs through setting different
random seeds for each run.

4.2. Results

Figure 4 shows that, for each of the four models specified in Table 2 that realistically reflect
moderate risks for relatively rarer diseases, testing for HWE on controls leads to the rejection of HWE
for a much larger number of SNPs than one would expect, contrary to common believe that usual
HWE testing procedure can work well for rare diseases. Specifically, we can see from the plots that,
although all SNPs were under HWE in the population, using the controls only to test for HWE has
resulted in many SNPs that are now deemed to be in violation of HWE for all four types of models
considered. This conclusion is reached despite the use of a very conservative genome-wide threshold
of 0.05/22,090 even though only 12,630 (1,263 x 10) tests were actually performed. Using this more
stringent threshold (derived based on the SNP set of 2,209 and marked by the horizontal
genome-wide line in each of the plots), we can see that there are many SNPs that have reached the
level of genome-wide significance among the controls while the same threshold failed to be reached
with all individuals in the population. In other words, the SNPs exceeding the genome-wide
significance threshold when only controls were tested have smaller p-values than the corresponding
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ones when the entire population was tested for HWE. In fact, we do not expect any SNPs to be above
the horizontal red line marking genome-wide significance in the -log10 scale. However, the fact that
we see many of them regardless of the underlying model is indicative of the severely inflated type I
error rate. If this were a real analysis, then the SNPs above the red lines, which were all under HWE
in the population, would have been tossed out erroneously, resulting in loss of valuable data and loss
of power of discovering variants that are associated with the disease.

The above observation is further dissected numerically in Table 2, where the last two columns show
the inflation ratios of observed over expected number of p-values less than nominal values of 0.05 and
0.01, respectively. Together with the mean ratio over 10 replicates, the standard deviation of the ratios
is also provided in the table, showing a great deal of consistency from replicate to replicate across
all disease models considered. These results once again substantiate our observation that many SNPs
(many more times than one would expect by chance) that are in HWE in the general population would
be tossed out erroneously for failing the HWE test based only on the controls, even when the disease
is rare. For example, for the recessive model with moderate relative risks, we would expect only about
13 SNPs to have been declared to violate the HWE with a nominal p-value of 0.01, but we, in fact,
observed an average of over 450 SNPs.

5. Discussion

It is common-practice to test for Hardy-Weinberg Equilibrium on controls in a genome-wide
association study with a case-control design as a quality control step to detect genotyping and other
errors. However, this practice has been called into question when the disease being studied is
common, and, as a consequence, numerous methods have been proposed to remedy this (see [3] and
references therein). On the other hand, the use of controls for testing for HWE has gotten multiple
“seals of approval” for rare diseases; yet, its appropriateness is rarely discussed other than the
assertion that controls would be similar to the general population. As such, its validity has not been
seriously scrutinized and challenged in general. Although Brems [34] discussed potential problems of
HWE testing when using controls even when the disease is rare, the study was limited in scope as the
author only considered the setting in which the expected genotype frequencies were calculated using
the known population allele frequency, which deviates from the usual practical usage. Further, bias
was never discussed; and, thus, the author did not weigh in on the notion that controls as a whole may
not be a good representation of the population.

In this article, a much more comprehensive study than Brems [34] was carried out. We used
theoretical analysis of the bias when using genotype estimators based on controls for a general
population in HWE to show that the assertion of controls being “similar” to the general population in
terms of genetic makeup is in fact a myth rather than the truth, regardless of whether the disease is
common or rare. In fact, the bias and relative bias are not only controlled by the disease prevalence,
but are also dependent on the disease gene frequency and the relative risks of the disease model; note
that these quantities are inter-dependent. Although the relative bias is seen in Figure 1 to have a larger
magnitude for a common disease (with prevalence of 0.15) than for a rarer disease (with prevalence of
0.05) with the same relative risks, the bias is obviously apparent for both scenarios. In this theoretical
investigation of bias and the simulation study, we used a prevalence of 0.05 to represent a rarer
disease, but it appears to be larger than what one might consider to be rare. As a brief illustration to
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(a) Recessive (b) Dominant

(c) Multiplicative (d) Additive

Figure 4. Manhattan plots of − log10(p-value) of the HWE tests on controls. The red line

represents the genome-wide significance threshold of 0.05/22090. The SNPs whose p-values

are smaller than the threshold are plotted above the red line. The results are shown for the

four models detailed in the first three columns of Table 2: (a) Recesessive (RR1 = 1,RR2 =

1.4); (b)Dominant (RR1 = 1.4,RR2 = 1.4); (c) Multiplicative (RR1 = 1.3,RR2 = 1.69); (d)

Additive (RR1 = 1.2,RR2 = 1.4).
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show that bias may still exist for much rarer diseases, we further consider a recessive model in which
the disease prevalence is 0.003, which is commensurate with the incidence rate of cancer as provided
by the National Cancer Institute and numerous studies [35, 36]. For rarer diseases, the disease gene
frequency also tends to be smaller, and we can see that the relative bias is particularly severe for the
disease gene frequency of 0.05 (Supplementary Figure S12).

Armed with the evidence that controls may not truly represent the general population, we carried
out a simulation study to investigate the degree of inflated type I error when controls are used to test for
HWE. Using a variety of disease models and parameter settings, we show that there is frequently severe
inflation of type I error, regardless of whether known population frequencies or estimated frequencies
based on controls are used as the expected in the Chi-square test. It is seen that the inflation of type I
error may be smaller for a rarer disease than a more common one when the relative risks are the same,
but even for the former, HWE testing in the disease-free controls may still lead to severe inflation of
type I error. To illustrate the theoretical results in Subsection 2.2 that the inflation of type I error does
not vanish with a rare Mendelian disease with high relative risks, we also carried out a simulation
considering a recessive model with prevalence of 0.0005, which is widely accepted as a definition for
a rare disease [31]. The results show that there remain severely inflated type I error rates for both the
T3 and the T4 tests (Supplementary Figure S13).

To further corroborate the observations seen in the simulation study, we carried out an additional
analysis using the 1000 Genomes data. We created populations that are in HWE for over 1,200 SNPs.
Then, based on several disease models with realistically moderate relative risks for rare diseases, we
divided a population in HWE into cases and controls, and tested for HWE using the controls only.
Once again, we observed severely inflated type I error rates, with inflation ratios as high as more than
38. These results, based on the real genotype data, substantiate the concern that a considerable amount
of valuable data would be discarded erroneously, even if the disease is rare, if the practice of testing
on controls only continues. Instead, if the prevalence of a disease is known, for simplicity, we would
echo the suggestion in the literature that a mixture of cases and controls, with the appropriate mixing
proportions based on the population prevalence, be used to test for HWE to avoid bias and to maximize
the usage of available data. This suggested procedure is in fact the inspiration for our 1000 Genomes
analysis, where the rationale was reversed: we divided the population in HWE into cases and controls
according to the disease model. However, we note that information contained in the disease model
(including the disease gene frequency) can be used to determine the disease prevalence, whereas the
converse is not true. Therefore, additional studies are needed to evaluate this suggested procedure,
although it is not within the scope of the current study.
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