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Abstract: Two networks are said to be linearly conjugate if the solution of their dynamic equations
can be transformed into each other by a positive linear transformation. The study on dynamical
equivalence in chemical kinetic systems was initiated by Craciun and Pantea in 2008 and eventually led
to the Johnston-Siegel Criterion for linear conjugacy (JSC). Several studies have applied Mixed Integer
Linear Programming (MILP) approach to generate linear conjugates of MAK (mass action kinetic)
systems, Bio-CRNs (which is a subset of Hill-type kinetic systems when the network is restricted to
digraphs), and PL-RDK (complex factorizable power law kinetic) systems. In this study, we present a
general computational solution to construct linear conjugates of any “rate constant-interaction function
decomposable” (RID) chemical kinetic systems, wherein each of its rate function is the product of
a rate constant and an interaction function. We generate an extension of the JSC to the complex
factorizable (CF) subset of RID kinetic systems and show that any non-complex factorizable (NF) RID
kinetic system can be dynamically equivalent to a CF system via transformation. We show that linear
conjugacy can be generated for any RID kinetic systems by applying the JSC to any NF kinetic system
that are transformed to CF kinetic system.

Keywords: linear conjugacy; chemical reaction network; chemical kinetic system; Johnston-Siegel
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1. Introduction

This paper presents a general computational solution to the problem of constructing linear
conjugates of a chemical reaction network where each rate function is the product of a rate constant
and an interaction function. We denote such a chemical kinetic system as a ‘“rate constant-interaction
function decomposable” (RID) kinetic system. Nearly all systems studied in Chemical Reaction
Network Theory (CRNT) are RID kinetic systems, but recently “variable k” systems have been
introduced in [1]. Furthermore, various kinetics such as weakly monotonic ones, are not explicitly
required to have this form. Our approach is based on two new results:

1. The extension of the Johnston-Siegel Criterion for linear conjugacy (JSC) to the complex
factorizable (CF) subset of RID kinetic systems, i.e., those whose interaction map I : Q — RZ
factorizes via the space of complexes R?: Iy =1, 0 Ui with g : Q — R?, with R’f cQc R’f ,
as factor map and I, = diag(k) o p’ with p’ : R — R” assigning the value at a reactant complex
to all its reactions (Theorem 4).

2. The dynamic equivalence of any non-complex factorizable (NF) RID kinetic system to a CF-
system (Theorem 1).

An essential ingredient of the proofs of both results is the coincidence of the interaction maps of the
kinetics considered. In the JSC extension (Theorem 4), the equality of the factor maps ¥ = ;. (which
is clearly equivalent to that of the interaction maps) is assumed. The CF-RM (Complex Factorizable by
Reactant Multiples) transformation used to provide the dynamical equivalence in Theorem 1 is based
on the concept of CF subsets of a reactant complex, which are defined as subsets of its reactions with
the same interaction map. Determining the equality of functions (with infinite definition domains) may
be computationally challenging, depending on their complexity and expression format. However, for a
large subset of RID kinetic systems, which we call RID systems with interaction parameter maps (and
denote with RIPK), the computational feasibility is ensured. Such systems are characterized by the
existence of a map Px : # — R” such that Px = Py implies Ix = Ix.. The exponent p is typically
(but not always) a multiple of m (= number of species), and written as an r X p matrix. The interaction
parameter map is easily seen as a generalization of the kinetic order matrix F' of power law kinetic
systems.

Most RID kinetic systems, whose rate functions are specified explicitly, have interaction parameter
maps, including all biochemical formalisms introduced to date. We discuss how the mixed integer
linear programming (MILP) algorithms originally introduced for mass action kinetics (MAK) systems
can be extended to RIP kinetic systems. We illustrate this and other results of the paper with an example
of Hill-type kinetics (HTK), which was originally introduced as “Saturation Cooperativity Formalism”
(SC Formalism) in [2].

The foundations for the study of dynamic equivalence in chemical kinetic systems were laid in
the paper of Craciun and Pantea [3]. Important contributions to the theory in a more general context
were previously provided by G. Farkas in [4]. The MILP-based computational approach to dynamic
equivalence of MAK systems was pioneered by the group led by G. Szederkényi and K. Hangos in
Budapest, with further contributions from the lab of J. Banga in Vigo. Independently, M. Johnston and
D. Siegel initiated the study of linear conjugacy, which led to the JSC for MAK systems. The three
groups then collaborated in extending the MILP approach to linear conjugacy (a detailed discussion

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8322-8355.



8324

of the work up to 2013 can be found in [5]). Further developments included the extension to “Bio-
CRNs” (whose rate functions are mass action functions divided by positive polynomials in the species
variables) by Gdabor et al. [6] and to complex factorizable power law kinetic systems (denoted by
PL-RDK) by Cortez et al. [7].

The paper is organized as follows: Section 2 collects the fundamentals of chemical reaction
networks and kinetic systems required for the later sections. The central concept of “CF subsets of a
reactant complex” and the method based on it are introduced in Section 3. The first main result
(Theorem 1) is proved using the transformation. A Subspace Coincidence Theorem for the kinetic
and stoichiometric subspaces (KSSC) of NF kinetic systems further illustrates the usefulness of
CF-RM. Section 4 formulates the linear conjugacy problem for RID kinetic systems and extends the
Johnston-Siegel Criterion (JSC) for linear conjugacy to complex factorizable RID systems. This is
combined with the CF-RM method to provide the general computational solution to construct linear
conjugates of any RID system. A running example (Examples 2—4), in Sections 3 and 4, further
demonstrates the usefulness of the computational solution by deriving the existence of complex
balanced equilibria of an NF power law kinetic system through construction of a weakly reversible,
deficiency one PL-TIK system which is linear conjugate to the CF-RM transform. Section 5 focusses
on the large subset of RID systems which have interaction parameter maps, for which the
computational solution is always feasible. Details of the MILP-based algorithm are provided in
Section 6. Section 7 illustrates the results of the paper using a reference system introduced in [2].
Conclusions and an outlook constitute Section 8. Tables of acronyms and frequently used symbols are
provided in Supplementary Materials.

2. Materials and method

We recall the necessary concepts of chemical reaction networks and the mathematical notation used
throughout the paper adopted from the papers [7-10].

2.1. Fundamentals of chemical reaction networks

We begin with the definition of a chemical reaction network.
Definition 1. A chemical reaction network is a triple N = (%, €, X) of three non-empty finite sets:

1. A set species .7,
2. A set € of complexes, which are non-negative integer linear combinations of the species, and
3. Aset # C € X € of reactions such that

e (v,y)¢& Zforallye €, and
e foreachy € €, there exists ay € € such that (y,y') € Z or (y',y) € Z%.

We denote with m the number of species, n the number of complexes and r the number of reactions
in a CRN.

A complex is called monospecies if it consists of only one species, i.e., of the form kX;, k a non-
negative integer and X; a species. It is called monomolecular if £ = 1, and is identified with the
zero complex for k = 0. A zero complex represents the “outside” of the system studied, from which
chemicals can flow into the system at a constant rate and to which they can flow out at a linear rate

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8322-8355.



8325

(proportional to the concentration of the species). In biological systems, the “outside” also stands for
the degradation of a species.

A chemical reaction network (., ¢, #) gives rise to a digraph with complexes as vertices and
reactions as arcs. However, the digraph determines the triple uniquely only if an additional property
is considered in the definition: . = (J{ supp y for y € €}, i.e., each species appears in at least one
complex. With this additional property, a CRN can be equivalently defined as follows.

Definition 2. A chemical reaction network is a digraph (¢, %) where each vertex has positive degree
and stoichiometry, i.e., there is a finite set . (whose elements are called species) such that € is a
subset of Z‘; . Each vertex is called a complex and its coordinates in ZZ are called stoichiometric
coefficients. The arcs are called reactions.

Two useful maps are associated with each reaction:

Definition 3. The reactant map p : % — € maps a reaction to its reactant complex while the product
map 7 : % — € maps it to its product complex. We denote | p(r) | with n,, i.e., the number of reactant
complexes.

Connectivity concepts in Digraph Theory apply to CRNs, but have slightly differing names. A
connected component is traditionally called a linkage class, denoted by ., in CRNT. A subset of a
linkage class where any two elements are connected by a directed path in each direction is known as a
strong linkage class. If there is no reaction from a complex in the strong linkage class to a complex
outside the same strong linkage class, then we have a terminal strong linkage class. We denote the
number of linkage classes with /, that of the strong linkage classes with s/ and that of terminal strong
linkage classes with z. Clearly, sl >t > [.

Many features of CRNs can be examined by working in terms of finite dimensional spaces
R, R?, andR?”, which are referred to as species space, complex space, and reaction space,
respectively. We can view a complex y € % as a vector in R? (called complex vector) by writing
Y = Yo YxX, Where y, is the stoichiometric coefficient of species x.

Definition 4. The reaction vectors of a CRN (¥,€,%#) are the members of the set
Y =y eR” | (y,y) € #). The stoichiometric subspace S of the CRN is the linear subspace of R”
defined by

S :span{y —y e R” | (y,y) € Z).

The rank of the CRN, s, is defined as s = dim S.

Definition 5. The incidence map I, : R” — RY is defined as follows. For f : # — R, then
L,(f)(v) = —f(a) and f(a) if v = p(a) and v = n(a), respectively, and are 0 otherwise.

Equivalently, it maps the basis vector w, to w, — w, if a : v — V'. It is clearly a linear map, and its
matrix representation (with respect to the standard bases w,, w,) is called the incidence matrix, which
can be described as

-1 lfp((lj) =V,
(Ia)i,j =141 if ﬂ(aj) =V

0 otherwise.
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Let I be the incidence matrix of the directed graph D = (V, E). Then rank I = n — [, where [ is the
number of connected components of D. A non-negative integer, called the deficiency, can be associated
to each CRN. This number has been the center of many studies in CRNT due to its relevance in the
dynamic behavior of the system. The deficiency of a CRN is the integer 6 = n — [ — s. The reactant
subspace R is the linear space in R” generated by the reactant complexes. Its dimension, denoted by
g, is called the reactant rank of the network. Meanwhile, the reactant deficiency ¢, is the difference
between the number of reactant complexes and the reactant rank, i.e., 6, = n, — gq.

2.2. Fundamentals of chemical kinetic systems

We now introduce the fundamentals of chemical kinetic systems. We begin with the general
definitions of kinetics from [11]:

Definition 6. A kinetics for a CRN N = (., €, %) is an assignment of a rate function K; : Qg — R,
to each reaction r; € %, where Qy is a set such that Rf CQx C Rf, c Nd e Qg whenever c,d € Q,

and
KJ(C) > 0, Yc e QK-

A kinetics for a network N is denoted by K = (K, K>, ...,K,) : Qx — R‘f . A chemical kinetics is a
kinetics K satisfying the positivity condition: for each reaction rj : y — y',K;(c) > 0 iff suppy C
supp c¢. The pair (N, K) is called the chemical kinetic system (CKS).

In the definition, ¢ A d is the bivector of ¢ and d in the exterior algebra of R”. Once a kinetics is
associated with a CRN, we can determine the rate at which the concentration of each species evolves
at composition c.

Power-law kinetics is defined by an r X m matrix F' = [Fj;], called the Kinetic order matrix, and
vector k € R”, called the rate vector. In power-law formalism, the kinetic orders of the species
concentrations are real numbers.

Definition 7. A kinetics K : RZ — R” is a power-law kinetics (PLK) if
Ki(x) = kx" Vi=1,..,r

with ki € R, and F;; € R.

Definition 8. A chemical kinetics K : Q — RZ is complex factorizable (CF) if there is k € R¥
and a mapping g : Q — R such that K = I o g, where I, is the k—interaction map defined by
I, : RY — RZ. The set of complex factorizable kinetics is denoted as € F H# (N).

It can be deduced from the definition that if a chemical kinetics K is complex factorizable, then
its complex formation rate function g = A, o Y and its species formation rate function (SFRF)
f=YoA,oyk. The f(x) = % is the ODE or dynamical system of the CKS. A zero of f is an element
c of R” such that f(c) = 0. A zero of f is called an equilibrium (or steady state) of the ODE system.
The SFRF contains three maps: map of complexes, Laplacian map, and factor map.

Definition 9. The map of complexes Y : R — R is defined by its values on the standard basis
{w,}, y a non-zero complex: Y(w,) = y and extending it linearly to all elements of R®. Its matrix,
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denoted with Y (called the matrix of complexes), is an m X n matrix, its rows indexed by the species
and its column by the complexes, with y;; being the stoichiometric coefficient of the j™ complex in the
i species. In other words, the columns are the complexes written as column vectors.

Definition 10. The linear transformation A, : R — R called Laplacian map is the mapping defined
by Arx := X jex kijXi(w; — w;), where x; refers to the i component of x € R? relative to the standard
basis. Its matrix representation is the n X n matrix such that

(A) kji ifi#j
Kij = 0 .
Dok - i ke ifi=

The label kj; is called the rate constant and is associated to the reaction (j,i) € %.

Definition 11. The factor map v : Q — R is defined as

(xF)i if ¢ is a reactant complex of a reaction i,

1 otherwise.

Wg)e(x) = {

Definition 12. A positive equilibrium or steady state x is an element of RZ for which f(x) = 0. The
set of positive equilibria of a chemical kinetic system is denoted by E. (N, K).

Two networks are said to be linearly conjugate if the solutions of their dynamic equations can be
transformed into each other by a positive linear transformation [10, 12].

Definition 13. Let ®(xo, t) and Y(xy, t) be flows associated to kinetic systems M and M’ respectively.
M and M’ are said to be linearly conjugate if there exists a bijective linear mapping h : RY, — R,
such that h(®(xo, 1)) = Y(h(xo, 1)) for all xy € RY.

Remark 1. In [13], it is shown that the bijection h in the previous definition corresponds to
multiplication with a diagonal matrix with positive diagonal entries. The diagonal entries form the
conjugacy vector c. More precisely, if N, N’ are the stoichiometric matrices and K, K’ are the kinetics
of the systems M and M’ respecively, then they are linearly conjugate if and only if
NK = diag(c)N'K’.

Linear conjugacy is a generalization of the concept of dynamical equivalence.

Definition 14. Two kinetic systems are dynamically equivalent if the conjugacy vector c = (1,---,1),
e, fNK=NK'.

In relation to linear conjugacy, if the mapping 4 is trivial, M and M’ are said to be dynamically
equivalent [7] .
2.3. Rate constant-Interaction map Decomposable (RID) kinetics

To date, nearly all chemical kinetics studied in CRNT have constant rates, i.e. for each reaction
r, the kinetic function K, : Q¢ — RZ can be written in the form K,(x) = kI k.-(x), with a positive
real number k, (called a rate constant) and an interaction map I,. Recently however, G. Craciun and
collaborators [1, 14] have introduced variable k systems, where the rates may vary between an upper
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and lower bound. Furthermore, there are kinetics sets such as the weakly monotonic kinetics studied
in [15] or the span surjective kinetics introduced in [16] which do not explicitly require constant rates.
The fractal kinetics studied primarily by physical chemists, e.g. Brouers [14] have rate values given
by a function of exponential type. In view of this, we introduce the term Rate constant-Interaction
map Decomposable (RID) kinetics for all chemical kinetics with constant rates and denote the set
with RIDK.

In [8] (see also [16]), we introduce a special subset of €.% % (.4"), which is the set of power law
kinetics with reactant-determined kinetic orders, denoted by . — #%.# (.#"). A PLK system has
a reactant-determined Kinetic orders (of type PL-RDK) if for any two reactions i, j with identical
reactant complexes, the corresponding rows of kinetic orders in V are identical, i.e., vy = vj for
k=1,2,..,m.

We note also in [16] that 2L — # D% (") includes mass action kinetics (MAK) and coincides
with the set of GMAK systems recently introduced by [17] if the vertices map y : € — R” of the
GMAK system is injective. They also constitute the subset of power law systems for which various
authors claimed that their results “hold for the complexes with real coeflicients” are valid.

Another important property of a complex factorizable kinetics is “factor span surjectivity’:

Definition 15. Let f : V — W be a map between finite dimensional vector spaces V and W. f is span
surjective if and only if span(Im f) = W.

In [16], it is shown that f is span surjective if and only if its coordination functions are linearly
independent.

Definition 16. A complex factorizable kinetics K is factor span surjective if its factor map Y is span
surjective. F .S K# (N') denotes the set of factor span surjective kinetics on a network N .

We characterized in [16] a factor span surjective PL-RDK system.

Proposition 1. A PL-RDK system is factor span surjective if and only if no rows corresponding in the
kinetics order matrix F corresponding to different reactant complexes coincide (i.e. p(r) # p(r') =
F,#F,).

We recall the definition of the m X n matrix ¥ from [17]: for a reactant complex, the column of Y
is the transpose of the kinetic order matrix row of the complex’ reaction, otherwise (i.e. for a terminal
point), the column is O.

The T-matrix of a PL-RDK system is formed by truncating away the columns of the terminal
points in ¥, obtaining an m X n, matrix. The corresponding linear map 7 : R** — R¥ maps w,(r)
to (F,)" . The subspace R := Im T = ((F,)") is called the kinetic reactant subspace and § = dim R is
called the kinetic reactant rank of the system.

Let e!,e?,...,e" € {0,1}" be the characteristic vectors of the sets €!,%72.....€°, respectively, where
%" is the set of complexes in linkage class . That s, forall j € ¢ andi = 1,...,¢, we have ¢’ = 1 if

j€ €', and 0 otherwise. Let L = [el, e, ..., e[]. Define the T—matrix, an (m + £) X n, block matrix, by

A T
=l |
L,

where L, is the truncated matrix L (i.e., non-reactant rows are left out).
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If the non-inflow columns (i.e., columns of the complexes associated to non-inflow reactions) of
T —matrix corresponding to each linkage class are linearly independent and if its column rank is
maximal, then the chemical kinetics is said to be T—rank maximal (to type PL-TIK).

3. CF Transformation of NF Kinetics

The CF-RM (Complex Factorization by Reactant Multiples) method developed from a proposal by
C. Pantea in December 2017 for such a transformation for power law kinetics. The key idea is, at an
NF branching point, i.e. a complex which is the reactant of reactions (called its branching reactions)
with non-proportional interaction maps, to transform reactions by introducing new reactants while
conserving the reaction vectors, thus leaving the stoichiometric subspace invariant. CF-RM refines the
approach by ensuring that the reactant subspace also remains invariant and that a minimum number
of reactions is transformed. The essential underlying concept of CF-RM is that of CF-subsets of
the set of reactions of a reactant complex. The concept is also the basis for the construction of CF-
decompositions of a RID kinetic system.

3.1. CF-subsets of the reaction set of a reactant complex

For a reactant complex y of a network .4, Z(y) denotes its set of (branching) reactions, i.e., p~'(y)
where p : # — % is the reactant map. The n, reaction sets Z(y) of reactant complexes partition the
set of reactions % and hence induce a decomposition of ./".

Definition 17. Two reactions r, ¥’ € Z(y) are CF-equivalent for K if their interaction functions
coincide, i.e., Ix, = Ix, or, equivalently, if their kinetic functions K, and K, are proportional (by a
positive constant). The equivalence classes are the CF-subsets (for K) of the reactant complex y.

Definition 18. If Ni(y) is the number of CF-subsets of y, then 1 < Ng(y) <|p~'(y) |. The reactant
complex is a CF-node if Nr(y) = 1, and an NF-node otherwise. It is a maximally NF-node if

Ne(@) =|p' ) 1> 1.
Definition 19. The number N of CF subsets of a CRN is the sum of Ng(y) over all reactant complexes.

Clearly, N > n, and the kinetics K is CF if and only if Ny = n,, or equivalently all reactant
complexes are CF-nodes for K.

Example 1. For a power law kinetic system, the CF-subsets of a reactant complex are the subsets of
branching reactions with identical rows in the kinetic order matrix. To show this, we recall that the
interaction map of a PLK system is = x* and hence the claim is X'V = x') = I(r) = I(+') . The
“<” is evident, for the converse, let e; be the positive vector with e (the exponential number) as its ith
coordinate and 1’s otherwise. Since log X'V = I(r)log x, the value of the log at e; = the ith kinetic
order, which proves the claim.

Example 2. (Running Example - Part 1) In [18], a power law kinetic system for R. Schmitz’s pre-
industrial carbon cycle model was introduced. The system (depicted in Figure 1) with 6 complexes
(representing carbon pools) and 13 reactions (indicating mass transfer) is weakly reversible and has
zero deficiency.
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W

Figure 1. CRN corresponding to the R. Schimtz’s pre-industrial carbon cycle model [18].

(RS2
Ry Rs M
MGA' R2

The system’s kinetic order matrix is given by:

M, M2 M3 M4 M5 M6

R, 1 0 0 0 0 0 0.0931
R, 1 0 0 0 0 0 0.0311
Ry 1036 O 0 0 0 0 | 10.08896
Ry 0 94 O 0 0 0 0.7
Rs 0 1 0 0 0 0 0.0781
R 0 1 0 0 0 0 0.0164
M= R, 0 0 102 O 0 0 0.2
Rg 0 0 1 0 0 0 0.714
Ry 0 0 0 1 0 0 0.0164
Rio| O 0 0 1 0 0 [ 0.00114
R | O 0 0 0 1 0 0.0862
R | O 0 0 0 1 0 0.0862
Rz L O 0 0 0 0 1 0.0333

The column to the right of F lists the rate constants of the corresponding reactions. The kinetic order
matrix reveals that the system has 3 NF nodes (reactant complexes): My, M, and M5. The following
table lists their CF-subsets:

NF node | Reaction set | CF-subsets
M, {R1,Ry, R3} | {R1, Ry}, {R5}
M, {R4, Rs)} {R4}, {Rs}
M; {Rs, R7} {Re}, {R7}

Hence, % is partitioned into 9 CF-subsets, i.e., Np = 9.

We also note that since the CF-subsets of a reactant complex partition its reaction set, and the
reaction sets of reactant complexes partition the set of reactions, that the CF-subsets determine a
decomposition.

We recall from [19] that a subset #’ of % defines a subnetwork A" = (', ¢, %#’) with €’
consisting of the complexes occurring in reaction of %’ and .’ consisting of the species occurring in
complexes in ¢”. A CRN decomposition .4 = 4] U ...U .4 consists of the subnetworks {.4;} induced
by a partition {Z;} of Z. We use the model presented in [20] to illustrate the concepts introduced
above.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8322-8355.
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Definition 20. The CF-subsets of a RID kinetic system partition the reaction set and induce the CFS
decomposition of the system.

The CFS decomposition consists of Ng subnetworks, whereby n, < Ng < r.

3.2. CFM decompositions of a RID kinetic system

In this Section, we introduce useful coarsenings of the CFS-decomposition of a RID kinetic
system.

For each NF node y, we choose an ordering of its CF-subsets Z(y), %>(y),..., Zngr(y) according to
decreasing number of reactions in the CF-subset. We define %; := U,,®Zi(y) where
i=1,.., maXyep(R) NR(y) and ggi(y,) = ¢ if NR(y’) <.

We can now introduce the concept of a maximal CF-subsystem (CFM) of a RID kinetic system:

Definition 21. A maximal CF-subsystem (N,.s, K) of a RID kinetic system (A, K) is induced the
union of the reaction sets of all CF-nodes and a CF-subset with the maximal number of reactions from
each NF-node, i.e., the union Z.; of {p~'(y) | y is CF — node} and %).

Clearly, there may be several maximal CF-subsystems in a RID kinetic system, but the number of
reactions in each of them is the same, and we denote this with r,,.,. Note that since | %Z; |>| Z, | if
i < j, then ry.r >| %; | for all i.

Definition 22. A CFM decomposition is induced by the reaction set partition {Bycr, %5, ..., Zx}, With
k= MaXyep(r) NR(y)

A CFM-decomposition is clearly a coarsening of the CFS-decomposition. It is the decomposition
into CF-subsystems with the least number of subnetworks.

3.3. CF-RM Transformation of an NF kinetic system: the generic case

We first introduce the concept of a CF-transformation of an NF kinetic system:

Definition 23. A CF kinetic system (N *,K*) is a CF-transform of an NF system (., K), where
N =(L,C, R), N* = (S, C", %) and N, N* as their respective stoichiometric matrices, if and
onlyif ¥* =%, N“=N, and K* = K.

N*K* = NK implies that a CF-transform is dynamically equivalent to the original NF system.
Moreover, the stoichiometric subspaces coincide, i.e., $* = §.
Our first main result is the following Theorem:

Theorem 1. Any NF system (N, K) is dynamically equivalent to a CF system (A, K*) via a CF-
transformation.

Proof. We construct the CF-transformation nodewise, i.e., we specify how to transform each NF-node
y into Ng(y) CF-nodes. Let Z,(y), ..., Zi(y) (where k = Nz(y)) be the CF subsets of y. We leave Z(y)
unchanged. We choose a complex y, such that y + y, is not contained in p(%). All reactions in %,(y)
are transformed “catalytically”, i.e., r; : y — z; is replaced by 7/ : y + y» — z; + y». The reaction vector
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is unchanged. For the reactions in %5(y), choose a complex y; such that y + y; is not in p(Z) U {y + y,}
and proceed as in %, (y). After Nx(y) — 1 steps, we have completed the transformation for y. After the
transformation of all NF nodes, we have a CF-transform as claimed. m]

There is clearly a multitude of ways to carry out CF-transformations, and a good principle is to
minimize the changes needed as well as keep further network components invariant under the necessary
changes. In this spirit, the specific goals of the CF-RM method are:

e minimize the number of reactions to be changed and
e leave the reactant subspace invariant, i.e., R* = R.

The first goal is achieved by choosing, for each NF node, a CF subset with the maximal number
of reactions, as the subset to be left unchanged. The second goal is accomplished by selecting the
“catalytic” complexes used as multiples of the reactant complex (as expressed in the acronym CF-
RM).

The CF-RM method proceeds as follows:

e Determine the reactant set p(%) (see Algorithm 1 lines 1-4).

e A CF-node is left unchanged (see Algorithm 1 lines 5-21).

e At an NF-node, select a CF-subset with the maximal number of reactions. Note that there may be
several. This CF-subset is left unchanged (this step minimizes the number of t-reactions overall
and may see Algorithm 1 lines 22-29).

e For each of the remaining Ng(y) — 1 CF-subets, choose successively a multiple of y which is
not among the current set of reactants, i.e., those of the original networks left unchanged and
the already selected new reactants. Various procedures are possible for this selection of a new
reactant; the essential condition is that it is different from those in the current reactant set. After
each choice, the current set must be updated. For each Non-reactant Determined Kinetics (NDK)
reactant complex y, Ng(y) — 1 new reactants are constructed (see Algorithm 1 lines 30-37).

e Since the last expression is also true for a CF-node, the total number of new reactants = ) (Ng(y)—
1) with the sum taken over all reactants. This number = )] Nx(y) — X, 1 = X Nr(y) —n, = Ng —n,.
Under CF-RM the number of CF-subsets NR of the original system is also the number of reactants
of the transformed system, since the latter is equal to n, + Ng — n, = Nk.

Remark 2. If an NF system has at least one NF-node with more than 1 CF-subset with the maximal
number of reactions, then several transforms can be generated, which might have some differing
network properties. It is possible to define an additional procedure for which CF-subset to choose and
leave unchanged.

Remark 3. As mentioned above, various procedures can be defined to select a new reactant. One
possible procedure is the following:

e Determine the set of multiples of y among the current reactants.

e Ifthe set is empty, set m, = 1.

o [fthe set is non-empty, determine the maximum multiple y’ = max,y. Set m, = max,.
o The new reactant is y + m,y.
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Algorithm 1 CF-RM for RIP-NFK

1
2
3
4
5
6
-
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:
39:

procedure INITIAL
INPUT1: reaction set with its kinetic values
OUTPUTI1: reactant set, denote this by p(R)
OUTPUT?2: matrix p’ for the reactant map of the network (from OUTPUT1)

procedure IDENTIFICATION OF BRANCHING COMPLEXES
INPUT?2: column sum of p’ (from OUTPUT?2)
OUTPUTS3: identify the branching complexes
if |0’(y)| > 1 then
return complex y is a branching reactant complex
else
if |o’(y)| = 1 then
return complex y is a non-branching reactant complex
else
if |0’(y)| < 1 then return false

procedure IpenTIFicATION OF RDK AND NDK COMPLEXES
INPUTS3: kinetic order of the identified branching complex (from OUTPUT?3)
OUTPUT4: determine whether the branching complex is RDK or NDK
if all kinetic order associated to the identified branching complex are all equal then
return complex is an RDK
else
return complex is an NDK

procedure GENERATE RDK sUBSETS FOR EVERY NDK COMPLEXES
INPUT4: for every NDK node z (from OUTPUT4)
Let Nk be the number of distinct kinetic order representation for each z.
OUTPUTS: identify Ny for each z
OUTPUTS®: generate the reaction set p~'(z) for each z
OUTPUTT7: generate the RDK subsets, R, (input from OUTPUTS5-6)
where R,(z) = {r € p™'(2)lu(r) = b} and
b is a distinct kinetic order value in the NDK node z.
procedure CF TRANSFORMATION
OUTPUTS: Take max{|R,(z)|} (from OUTPUT?7)
note: the reactions of this RDK-subset is left unchanged.
forc=1to(Nzx—1) do
check the reactant a in p(R)
Let m, be the coefficient of a in p(R).
OUTPUT?Y: transform the reactions in R, as such that the new reactant is a+m,a = (m,+1)a
OUTPUT10: Update p(R) (from OUTPUT9)

REPEAT Procedure CF Transformation (for the remaining distinct kinetic order values)
REPEAT Procedure Generate RDK subsets for every NDK complexes (for the remaining NDK
node)
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Table 1. Key network number of a CF-RM transform.

Network number Value/bounds

Number of species m'=m

Number of complexes ?

Number of reactant complexes n. < nt = Ng (Ng := Y | lp™'(y) | = total
number of RDK subsets)

Number of CF-subsets Ny = Ng

Number of reactions r=r

Number of linkage classes 1 <I"=1[; < (Ng—n,)+ [ ([} := number of new
linkage classes from link-breaking)

Number of terminal strong linkage classes ?

Rank of network s =5

Reactant rank of network qg =q

Deficiency of network ?

Reactant deficiency of network 6; =0,+ (Ng—n,)

Instead of repeating the reactant set check for every CF-subset of y, one could further optimize by
ordering the CF-subsets to be changed, doing the above for the first, and then use y + (m, + i — 1)y for
the i = 2, ...,NR -1.

Table 1 presents the key network numbers of a CF-RM transform in equations or inequalities

involving only network numbers of the original NF network. Thus, the relationships are of predictive
character.

Remark 4. The addition of complexes to both sides of a reaction is similar to the technique used by
M. Johnston for translating mass action systems to generalized mass action systems in [21].

In the next proposition, we provide a proof of a Table 1 entry which is not straightforward.

Proposition 2. i) I' = [} + [} + |, where I; = number of new linkage classes generated by new
reactants and I, = number of new linkage classes due to link-breaking.
i) I'=I; <(Ng—n,) + 1

Proof. For i), the equation expresses the partitioning into 3 subsets. For i7), a new reactant adds at most
1 linkage class (none if it coincides with an old product complex or at least one of the new product
complexes in its linkage class coincides with an old complex). O

The “link-breaking” effect of CF-RM is shown in the CRN in Figure 2: if R;_1) : X; — X; for
i =2,.,5Rs : X4 » X6, Rg : Xs — X7 and X; NF with CF-subsets {R;,R,} and {Rs, R¢}, then
0'=10-4-6=0=0.
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Figure 2. The “link-breaking” effect of CF-RM in the given CRN.

One notes however that three key network numbers of .4 have question marks: the number of
complexes n*, the deficiency ¢* and the number of terminal strong linkage classes ¢*. Indeed, for many
networks, the deficiency increases under CF-RM, but, as the following Proposition shows, for certain
network classes, it decreases.

Proposition 3. Let d be an integer > 2. Let A, be the CRN with species X,, X, and the following
reactions:

R, : X — 2X1

R : X\ - 2iXi+ X, fori=2,..,d

Ryi1: X1 — (21 — 1)X1 +X, > X+ (21 - 1)X2 : R2d+,-_2f0ri =2,...d

Let X, be an NF node with CF-subsets {Ry,--- ,R;} and {Rg1,- -+ , Rog_1}.

Then, 6 — 0" =d — 1.

Proof. The new reactions are: 2X; — 2iX; + X, fori = 2, ..., d. The remaining reactant complexes are
all non-branching, thus RDK and unchanged. Hence there is no new complex, while there are d — 1
new linkage classes due to the “link-breaking” effect, i.e.,n* =n,l* =1+(d-1)=d = 6" =n—-d-2.
Therefore,6 —6*"=n—-1-2)—-(n—-2-d)=d - 1. O

In the next section, we present a special variant of CF-RM where these network numbers can be
better estimated.

3.4. CF-RM.: a “choosier” CF-RM variant

CF-RM., is a variant of CF-RM which uses additional criteria in the selection of the new reactant
multiples. All other steps are identical with the generic CF-RM method, i.e., a CF-RM, transform is
also a CF- transform.

CF-RM, chooses the reactant multiple so that

a) the new reactant differs from all existing complexes, and
b) all the new product complexes in the CF-subset also differ from all existing complexes.

There are of course various ways of ensuring that conditions a) and b) are fulfilled and we leave it to
the first consequence of transforming via CF-RM,, which is a more predictable change in deficiency.

Proposition 4. For a CF-RM, transform A, 6* > 6.

Proof. For any CRN, n = n, + t,, where t, is the number of terminal points. In an CF-RM., transform,
in each subset to be changed, there is one new reactant complex and exactly x new terminal points.
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The number of reactions to be changed in the CF-subset is also pertained by x. Since all terminal point
of the original network are conserved (with no coincidence), we obtain n* —n = (Ng — n,) + (r = 'yef).
On the other hand, I* — I = [} + [;. For any CF-RM, transform, [; < r —r,,.; (a link-break is created per
new reactant—whether it leads to a new linkage class or not depends on specific network properties).
This implies that I* — [ < (Ng —n,) + (r — ryep). Hence, 6" =6 =" =) —-(n-D =" -n)—(I"'-1) >
(NR_nr)+(r_rmcf)_(NR_nr)_(r_rmcf):0~ O

Remark 5. The monomolecular system from Figure 2 shows this lower bound is sharp.

Besides the change in deficiency, the change in the number of terminal strong linkage classes is
difficult to predict under the generic CF-RM transformation. Recall that ¢ has two components, i.e.,
t = t, + ., which are the number of terminal points and the number of cycle terminal classes. Under
CF-RM,, the relationships for its components can be predicted and together provide an expression for
the change in ¢ as shown in the following Proposition:

Proposition 5. For a CF-RM, transform A *, we have:

i) t;‘,—tp:r—rmcf
ii) 1. -1 <0
i) 1" =t <7 = Fief

Proof. i) was already shown (and used) in the previous Section. For ii) note that a reversible pair of
reactions can be broken up into two irreversible reactions under CF-RM,. On the other hand, no new
cycles can emerge since there is no coincidence of new complexes with existing ones. iii) follows by
adding i) and ii). O

Corollary 1. For a CF-RM. transform A *,n* = n+ (Ng — n,) + (r = I'yep).
Proof. In the identity n* —n = (n; —n,) + (1, = 1p), we substitute Ny for n; and use Proposition 5.i. O

Example 3. (Running Example - Part 2) To apply CF-RM to Schmitz’s carbon cycle model, we replace
R3, R4, and Ry with the following reactions:

R; :2M1 —)M5+M1
RZ . 2M2 - M, + M,
R; 2Ms; > M, + M,

Each of the new reactions forms a linkage class of N *, with the remaining original 10 reactions of N
forming the fourth one depicted in Figure 3:

R

\/' '\ 2M, —>—Ms + M,
RlO

/'\ / 2M;——7—>M; + M;

Figure 3. The CRN after applying CF-RM to Schimtz’s carbon cycle model in Figure 1.

Table 2 presents the network numbers of the N *.
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Table 2. Key network number of CRN .4"* of Schimtz’s carbon cycle model.

Network number Value/bounds
Number of species 6

Number of complexes 12

Number of reactions 13

Number of reactant complexes 9

Number of linkage classes
Number of terminal strong linkage classes
Deficiency

W A~

The network is t-minimal, but clearly not weakly reversible (in fact, it is point-terminal). Note that it
is also a CF-RM, transform.

The T matrix of the CF system (A", K*¥) is given by:

M, My My M, Ms Ms 2M, 2M, 2M,
M1 0 0 0 0 0 03 0 01
M,lo 1 0 o o0 o0 0 94 0

r_Ms|0o 0o 1 0 0 0 0 0 102
Mo o o 1 o o o0 0 0
Mslo o o o 1 o 0 0 0
Milo o o o o 1 o o0 0]

3.5. A Subspace Coincidence Theorem for NF kinetic systems

In this Section, we present an initial application of CF-RM transformation by deriving a Subspace
Coincidence Theorem for NF systems.

Arceo et al. [16] generalized the Subspace Coincidence Theorem of Feinberg and Horn [9] from
MAK systems to CF systems as follows:

Theorem 2. For a complex factorizable system on a network N .

1) Ift—1>6,then K #S.
1’) If0 < t=1 = 6, and a positive steady state exists, then K # S. In factdim S —dim K > t-1-6+1
if the system is also factor span surjective.
2) Ift—1=0(i.e, AN is t—minimal), then K = S.
3) If0 < t—1 < 9 or= 6 and a positive steady state does not exist, then it is rate constant dependent
whether K = S or not.

We first note that for any CF-RM transform .4"*, we not only have coincidence of stoichiometric
subspaces § = S§* but also coincidence of the kinetic subspaces K = K* (due to the dynamic
equivalence, f = f*, implying Im f = Im f* and span(Im f) = span(Im f*).

Our approach is to identify properties for an NF system so that its CF-RM, transform satisfies
the conditions of the Theorem above. Our first step is to extend the kinetics concept of factor span
surjectivity, which is currently defined only for CF systems, to any RID kinetic system.
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A CF-subset %, is characterized by the common interaction map Ix(%;) of the kinetics of its
reactions. This leads to the following definition:

Definition 24. A RID kinetics is interaction span surjective if and only if the set {Ix(%;)} of its CF-
subset interaction maps is linearly independent.

The following Proposition shows that “interaction span surjectivity” is the correct extension of the
factor span surjectivity concept.

Proposition 6. If (1, K) is interaction span surjective, then its CF-transform (*, K*) is also factor
span surjective.

Proof. Since (4", K*) is CF, N; = n;. On the other hand, the latter is equal to Ng. Hence the set of
interaction maps of .#" and .#"* coincide. For a CF system, since Ix = p’ - Yk, it is clear that linear
independence of both sets are equivalent. O

As a second step, we identify the network properties of the NF-system (.4, K) such that the
properties needed to apply the various statements of the Theorem to (4%, K*) are ensured.
We first state two Lemmas.

Lemma 1. If A4 is SRD, then .4 is also SRD.
Proof. n; = Ngp >n, > s = s". O

The second Lemma is a general relationship between TBD and SRD networks derived from a
(submitted) manuscript by Farinas et al. entitled “Species subsets and embedded networks of
S-systems”:

Lemma 2. Ler A be a chemical reaction network.

i) A network with deficiency-bounded terminality (TBD) has sufficient reaction diversity.
ii) If the network is point terminal, then the converse also holds, i.e., TBD < S RD (or equivalently
TND > LRD,).

We can now state and prove a Subspace Coincidence Theorem for NF-systems:
Theorem 3. Let (', K) be an NF RIDK system.

1) If Np < s, then K + S.
If the system is also intersection span surjective, then either
2) A is t—=minimal and r — 1,ycy = Ng — n,, implies K = S; or
3) A is TBD and point terminal, implies that K = S is rate-constant dependent.

Proof. 1) ni = Ng < s = s’ means that .#"* is LRD. By Lemma 2 (i), it follows that it is also TND,
and by (1) of the KSSCin [12], K=K*#S*=S.

2) In order to apply (2) of the Arceo et al. KSSC [12], we need to show that there is a CF-RM
transform such that .4/ is r—minimal, or t* — [I* = 0. We calculate this difference for an CF-
RM, transform as follows: ¢ — [* = r,+ 1 — I' = r— 1y +t, + 1. — I"(by Proposition 5)
=7 —TIpey +1, +1 —((Ng —n,) +1t, +t.) (based on the properties of CF). After canceling terms,
we obtain 0 < " —[" =17 — t, < 0 (by Proposition 5), implying the claim.
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3) ./ is point terminal = .4"* is point terminal ( by Proposition 5.ii), hence after Lemma 1 and
Lemma 2 (ii), .4 is also TBD, and (3) of Arceo et al. Theorem can be applied, implying

K = K*=8"=§ israte constant dependent.
]

Remark 6. Since both the stoichiometric and reactant subspaces of an NF system and its CF-RM
transform coincide, the underlying networks have the same R and S class introduced in [12]. This
implies that a Theorem for the coincidence of kinetic and reactant subspaces of NF systems analogous
to that for CF-systems derived in [12] can also be stated and proved.

4. Linear conjugacy of RID kinetic systems

In this Section, we present a solution to the problem of finding linear conjugates of any RID kinetic
system. After extending the Johnston-Siegel Criterion (JSC) for linear conjugacy to CF systems, we
can generate linear conjugates for any RID kinetic system by applying the JSC to any CF-RM transform
of the given system. We also discuss some computational challenges regarding the solution approach.

4.1. The Johnston-Siegel Criterion for linear conjugacy (JSC) of CF kinetic systems

Theorem 4. Consider two CF systems (A ,K) and (AN',K’) with N = (¥, €,%#) and
N = (S, C", K. Let Y = Y’ be the matrix of complexes for both networks. Suppose further that
the factor maps coincide, i.e., Yyx = Y. Let A, be a Laplacian with the same structure as that of
(N, X)) and c, a positive vector in R such that Y - A, = C - Y - A, , where C = diag(c). Then A is
linearly conjugate to N’ with the Laplacian A} = A;, - diag(g(c))-

Proof. Let ¢ (x,,t) be the solution of the system of ODE x = f(x) = Y - Ay - Yx associated to the
reaction network 4.

Consider the linear map & (x) = C~'x where C = diag(c), c € RZ,,.

Let @ (yo, 1) = C™'¢ (x, 1) so that ¢ (xg,1) = C@ (yo, t). It follows that

& (30,0 = C -/ (3001
= C_l . YAk : wK (QO(X(), t))
= C_l CYA;,!#K(C@()’OJ))

Now,

Y (CP (o, 1) = Yk (diag(c)p (yo, 1))
=D - Yk (o, 1)

cfi, if complex j is a reactant of some reaction k

1, otherwise
So, @' (yo,1) =Y - Ap - D - g (% (yo, 1)). Clearly, & (yo, t) is a solution of the system x = Y - A, - D - Y
corresponding to the reaction network .#”’. We have that i (¢ (xo, 1)) = & (h (xo) , t) for all xo € R and
t > 0 where yy = h(xp) since yo = @ (yo,1) = C~'yo = ¢ (o, 1). It follows that networks .#” and .4 are
linearly conjugate. O

where D = diag(e) and e; = {

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8322-8355.



8340

4.2. A solution to the linear conjugacy problem of RID kinetic systems

A solution approach to the linear conjugacy problem of RID kinetic systems is clearly to first
transform the system if necessary (i.e., if it is an NF system) via CF-RM to a CF system and then
apply the Johnston-Siegel Criterion to generate linearly conjugate systems. The second step could be
done using MILP algorithms based on the JSC, once these are extended to appropriate CF systems
(cf. Section 6).

Example 4. (Running Example - Part 3) In [18], Fortun et al. derived a Deficiency Zero Theorem
for a class of NF power law kinetic systems and applied it to a subsystem of the Schmitz’s carbon
cycle model to establish the existence of positive equilibria for the subsystem. The authors then used
a “Lifting Theorem” of [19] to show the existence of corresponding positive equilibria for the whole
system. Here, we provide an alternative approach for this result by using the MILP algorithm of [7],
a special case of the MILP algorithm introduced in Section 6, to construct a weakly reversible PL-TIK
system, which is linearly conjugate to the CF-transform of Schmitz’s model discussed previously. The
results of [22] show that this weakly reversible system has positive equilibria, and hence so does its
linear conjugate, the Schmitz’s carbon cycle model.

The sparse linear conjugate of (.4, K*) was obtained using the MILP algorithm, described in [7]. The
algorithm seeks to generate linearly conjugate realizations for a class of power-law kinetic systems,
1.e., PL-RDK. Prior to the implementation of the algorithm, the map of complexes Y, the Laplacian
map Ay, and kinetic order matrix F' are required to be set first. The matrix F was given in the preceding
section. The following are the associated matrices Y and A; of the system.

Ci G G G Cs Cs C7 Cg Co Cip Cpp Cpp

M 1 O o0 2 1 0 1 0O O 1 0 0
M, |0 1 O 0 o0 2 1 0 O 0 0 0
Y = M; |0 O 1 o o0 o o o0 2 1 0 0
M, 10 O O O O O O 1 0 0 0 0
Ms 1O 0 0 O 1 O 0 0 O 0 1 0
Mg LO O O O O O O 0 O 0 0 1
Ci C, G C, Cs Co C; Gy Co Cip Cpy Ci
C, 1-0.12 0 0 0 0 0 0 0 0 0 0.086 0.037
C, 10.09 -0.10 0 0 0 0 0 0.002 0 0 0 0
C; 1003 0.08 -0.71 0 0 0 0 0.001 0 0 0 0
Cy 0 0 0 -10.09 O 0 0 0 0 0 0 0
Cs 0 0 0 10.09 O 0 0 0 0 0 0 0
A = Ce 0 0 0 0 0O -070 O 0 0 0 0 0
C; 0 0 0 0 0O 070 O 0 0 0 0 0
Cy 0 0.016 0.71 0 0 0 0 -0.003 0 0 0 0
Cy 0 0 0 0 0 0 0 0 02 0 0 0
Cio 0 0 0 0 0 0 0 0 02 O 0 0
Ci 0 0 0 0 0 0 0 0 0 0 -0.17 0
Cpop L O 0 0 0 0 0 0 0 0 0 0.09 -0.03]
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where Ci: M, C,: M, C3 : M3, Cy : 2M1, C5 : M5 + My, C6 : 2M2, C7 My + M, Cg T My,
Cy: 2M3, Cio: M+ M5, Cq : Ms, and Cio: M.

Additionally, the parameters were set as follows: € = 0.001 and u;; = 20,7, j=1,2,...,12,i # j.
Using MATLAB R2018b, the linearly conjugate weakly reversible sparse realization (.4, K) was

obtained with the corresponding Laplacian map A,”"*.

A]iparse —
Ci G, C; Ci Cs C¢ C7 Gy Co Cpp Cin  Cp
Cc, 1-0.12 0 0 0 0O 105 O 0 0.33 0 0 0 7
C, 0 -0.10 0 0 0 0 0 0.002 0 0 0 0
C; 0 0.08 -0.71 0 0 0 0 0.001 0 0 0 0
Cy 0 0 0 298 0 0 0 0 0 0 009 0.03
Cs 0 0 0 0 0 0 0 0 0 0 0 0
Ce 10.09 0 0 0 0O -105 O 0 0 0 0 0
C, 0 0 0 0 0 0 0 0 0 0 0 0
Cg 0 0.02 0.71 0 0 0 0 -0.003 0 0 0 0
Cy 10.03 0 0 0 0 0 0 0 -033 0 0 0
Cio 0 0 0 0 0 0 0 0 0 0 0 0
Cn 0 0 0 298 O 0 0 0 0 0o -0.17 0
Cpp 0 0 0 0 0 0 0 0 0 0 0.09 -0.03]

The linear conjugacy constants are ¢; = 2.28, ¢, = 1.14, ¢3 = 1.14, ¢4 = 1.14, ¢s = 4.56, and
c¢ = 4.56. Furthermore, the associated system of ODEs is given below:

M
d—t‘ = —0.1242M, — 5.953M*" + 1.052M3* + 0.334M;" + 0.172M5 + 0.067 M
M
—2 = 0.186M; — 0.095M, — 2.104M3* + .002M,
dt
M
d—; = 0.062M; + 0.078M, — 2 + 0.334M}°? — 0.714M; + 0.001 M,
dM.
d—t“ = 0.016M, + 0.714M; — 0.003M,
M.
d—ts = 2.977M%3 — 0.172M5
dM,
d—; = 0.0862Ms — 0.0333 M,

The network .#” and its numbers are shown in the following Figure 4 and Table 3:
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Figure 4. Sparse linearly conjugate realization.

Table 3. Network number of the sparse network .4 .

Network number

Value/bounds

Number of species

Number of complexes

Number of reactions

Number of reactant complexes

Number of linkage classes

Number of terminal strong linkage classes

Rank
Deficiency

6
9

—_— W W WO =

The 7' matrix of the system is given by:

M1 0 0 0
M, |0 94 0 1
My |0 0 102 0
M0 0 0 0
T=M500 0 0 0
Mg |0 0 0 0
L1 1 1 0
L |0 0 o0 1
Llo o 0o o0

0

SO = O O O o =0

0

=N el ol =]

0.36
0

—_— O O O O o O

0

—_— O OO = O OO

M, 2M, 2M; M, M; M, 2M, Ms M;

0

—_ o O = O O O O

One readily computes that it has maximal rank, 9, and hence (.4, K) is a PL-TIK system. Since
each of the linkage classes has zero deficiency, according to the Deficiency Zero Theorem for PL-TIK
systems (Theorem 5 and Corollary 6 , [22]), each subsystem possesses positive equilibria. It then
follows from Theorem 4 of [22] that the whole system also has positive equilibria. Hence, the linearly
conjugate system (.4, K) also has positive equilibria, which are necessarily complex balanced since
the system has zero deficiency. The graphs of the individual trajectories of (#*, K*) and (/' K) are

depicted in Figure 5.
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Figure 5. The graphs of the trajectories for (.4 *, K*) and (4, K). M ! represents a trajectory
in the sparse realization.

There are however several challenges with this “solution in principle”: It may be difficult to compute
the CF subsets of a RID kinetic system, which form the basis of the CF-RM method, as it involves
determining if interaction functions (for an infinite number of domain values) are equal. This clarity
depends on how explicit and complex the functional expressions are. Similarly, applying the JSC to a
CF system, one needs to establish the equality of the factor maps, which is equivalent to the difficulty
with interaction functions cited above.

In the next section, we identify a large subset of RID kinetics, where the solution approach can be
applied in general.

5. Linear conjugacy of RIP Kinetic systems

This section introduces the large subset of RID kinetics with interaction parameter maps (RIPK).
The subset includes power law kinetics (PLK), Hill-type kinetics (HTK)—originally called “Saturation-
Cooperativity” (SC) Formalism [2], and other published biochemical kinetics such as linlog [23] and
loglin kinetics [24]. We extend the 7" matrix concept of [22] to complex factorizable RIP kinetics
(denoted by RIP-CFK) and obtain a computationally feasible form of the JSC for this kinetics set,
which leads to executable solutions of the linear conjugacy problem.

5.1. RIP kinetics: RID kinetics with interaction parameter map

Definition 25. A set % € RIDK is said to be of type “RID kinetics with interaction parameter maps”
if there is a family of maps {p% :# —>R"Mx..XxXR"™|Ke %/} such that
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i) px(r) = px(r') = Ix(x), = Ix(x), for all x in Q and
ii) px = pxr = Ix(x) = Ix(x) for all x in Q

Example 5. PLK with the family of kinetic order matrices, i.e., p(r) = F,, (kinetic order row vector
or interaction), is the primary example. Since Ix(x) = x', the properties i) and ii) are straightforward.

Example 6. Hill-type kinetics (HTK)—-originally called “Saturation-Cooperativity (SC) Formalism” in
2007 by Sorribas et al. [2]. We recall the definition of [16]:

Definition 26. Hill-type kinetics (HTK) is defined as follows:

Vii

Ki(c) = kjﬁ 4%

i
Vi
i1 dji +¢;

with ¢ € RL (defined by continuity at the boundary), kj € R, d; € RL and v; € R" for j = 1,...,m. Note
that the v; have to be nonegative.

The family of interaction parameter maps is given by Px : % — R”" x R"™ with
pr(r) = Vi, ..., Vi, dy, ..., d,y), Wwhere we leave out the index j.

5.2. CF-RM for RIP-NFK and the JSC for RIP-CFK

Since under CF-RM, there is a bijection n : Z — %%, if (./, K) is an NF RIP kinetic system, then
(4/*,K) is a CF RIP kinetic system with the interaction parameter map p (1n(r)) := pg(r).

We denote the set of all complex factorizable kinetics with interaction parameter maps with RIP-
CFK.

For an interaction parameter map px : #Z — Ry X ... X Ry, we write p = ml + ... + mk. It is now
easy to formally introduce the 7" matrix of a RIP-CFK kinetics:

Definition 27. The T matrix of a RIP-CFK kinetics K is the p X n, matrix whose jth column is pg(r)’,
where p(r) = j. The T matrix is the (p + l)x given by adjoining the characteristic functions of the
linkage classes as rows to the T matrix. The rank of the T matrix is denoted by §.

We have the following useful Proposition:
Proposition 7. Let (A, K) and (V', K’) be RIP-CFK systems. If T = T’, then yx = Y.

Proof. T = T' = pg = pg for all K, K’ of the same type = Ix = I (by definition of interaction
parameter map) <& g = Y (since the maps differ only with the reactions map). Hence, RIP-CF
kinetics, it suffices to check a finite set of vectors to establish the coincidence of the factor maps. This
allows the extension of the JSC-based MILP algorithms for PL-RDK systems to RIP-CFK systems.
Since the CF-RM transform of a RIP-NFK system is clearly a RIP-CFK system, we obtain a general
computational solution for the linear conjugacy of RIP kinetic systems. O

Remark 7. The set {_# € RIPK | p(r) = p(r') = px(r) = px(r')} may, in general, be a proper subset
of RIP-CFK. This may result in computing a smaller set of linear conjugates as when the whole set
RIP-CFK is used. This is a small price one pays for ensuring the computational feasibility. There are,
however, various RIP kinetics for which the converse Yg(x) = Yyx(x) = pg(r) = px(r’) also holds, so
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that the corresponding sets are equal. Examples are PLK and PY K}, (the set of poly-PL kinetics with h
summands), which form a covering of PYK (cf. a manuscript in preparation by Talabis et al. entitled
“A Weak Reversibility Theorem for poly-PL kinetics and the replicator equation”).

In [16], we introduced the notations PL-RDK and HT-RDKD for the subsets of PLK and HTK
respectively, which satisfy p(r) = p(r') = pg(r) = px(r’). For any other subset A of RIPK, we will
denote {# € RIPK | p(r) = p(r') = pk(r) = pg(r')} with A-RDP (kinetics with reactant-determined
parameter maps). This notation is consistent with earlier ones since the corresponding letters there
indicate the specific parameter maps, too.

6. Extension of MILP algorithms to RIP-CFK systems

Cortez et al. [7] extended the MILP algorithm developed by Johnston et al. [25] to find linearly
conjugate networks of PL-RDK systems. Aside from linear conjugacy, other desirable properties can
be incorporated in the algorithm such as weak reversibility and minimal deficiency (e.g. deficiency
zero). In this study, we focus on extending the algorithm to find linearly conjugates of RIP-CFK
kinetic systems.

6.1. Key components of the MILP algorithm

The algorithm considers two CF systems: the original system (.4, K) with 4" = (., ¢, %) and
the target system (4", K’) with A" = (", €¢',%’). The algorithm determines the corresponding
network structure of the target system satisfying the linear conjugacy property. The two networks
A and 4" have the same set of species and complexes. As a consequence, their corresponding
molecularity matrices and the coefficient maps coincide. The algorithm requires that % and K be
known while &%’ and K’ are to be obtained. The following are needed to be ascertained prior to the
MILP implementation:

molecularity matrix ¥ € R7;";
matrix M =Y - A;, where Ay is the Laplacian map;
parameter € > 0, that is set to be sufficiently small; and

parameter u;; > 0, where i, j = 1,...,m, i # j.

Remark 8. Note that € and u are introduced to ensure the correct structure of the linearly conjugate
realization.

6.2. MILP algorithm to CF systems

The MILP algorithm finds a sparse linearly conjugate realization of the original network .4~ . A
sparse realization contains the minimum number of reactions, hence the associated objective function
of the MILP model is

Minimize Z 5. 6.1)

ij=1

There are two sets of constraints in the model which indicate the linear conjugacy condition and
desired structure of the network.
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Y-A,=C'- M, C = diag|c)

> Aly=0,j=1,..m

i=1i#j
[Ap);j 2 0,fori=1,...m, i # j
[A,];i <0, fori=1,..,m

(LO) (6.2)

e<c, <—, fori=1,..,n
€

0< _[Ab]ij + Ujj - 61']" l,] = 1,...,m, l;t]
(LC-S){0< [A)y — € Giisj=1,oum, i # ] 6.3)
0;;€1{0,1} fori,j=1,...m, i #j

Table 4. List of variables used in the MILP

Notation Description

Oijy i, j=1,..,m binary variable that keeps track of the presence of the
reaction in the target network

[Ap)ijni,j=1,2,...,m kinetic matrix with the same structure as the target network

c a vector which is an element of RZ,

C a diagonal matrix diag(c) with vector ¢ € R,

Table 4 shows the description of the variables used in the model. Constraint (6.2) imposes the
linear conjugacy specification while constraint (6.3) ensures that the target network .4 has the
correct structure. A dense linearly conjugate network can also be determined by considering the
maximization problem analog.

The optimal solution (if it exists) of the MILP would yield the matrix A, with the same structure as
-/, and the conjugacy constant vector ¢. The Laplacian map A; of the target network is computed as:

A;:Ab'D

Fi if lex ji f ion k
. c¢"J,if complex jis a reactant of some reaction
where D = diag(e) and e; = { piexJ 1. otherwise

6.3. MILP algorithm to RIP-CFK systems

It is important to note that the algorithm developed by Cortez et al. [7] is only applicable to CF
systems (e.g. PL-RDK). For NF systems, the MILP cannot be immediately utilized to generate
linearly conjugate realizations. It is necessary to transform it into a CF system through the CF-RM
algorithm described in Section 5. This framework is applicable to RIPK systems which include both
the power law kinetics (PLK) and Hill-type kinetics (HTK). The computation of the matrix A, and
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linear conjugacy vector ¢ is the same for both systems. The process of finding linearly conjugate
realizations differs only in the derivation of corresponding sytem of ODEs wherein the respective
kinetic order matrix/interaction parameter matrix is incorporated accordingly. Additionally, to obtain
a proper form of the rational terms in the target HTK system, a linear scaling of the variable of
rational term must be carried out, that is the variable must be multiplied by its corresponding linear
conjugacy constant. This approach is similar to the approach of [26] to linear conjugacy of bio-CRNs.

7. Application to Hill-type Kinetic system

In [16] and [8], we introduced CRN representations of GMA systems—as defined in Biochemical
Systems Theory (BST)-by means of the biochemical maps usually used to define them. These
representations are actually independent of the power law kinetics assigned to the reactions from BST
and we will use them for other RID kinetic systems too, as illustrated in the following examples.

In the following, after a brief review of Hill-type kinetics, we consider a reference metabolic system
of [2]. We apply the MILP algorithm to Hill-type kinetics and compare the set of linear conjugates
with those of power law kinetics on the same chemical reaction network.

7.1. Review of Hill-type kinetics

The set of Hill-type kinetics was introduced in 2007 by Sorribas et al. [2] under the name of
“Saturation-Cooperativity Formalism” (SC-Formalism). This framework generalizes the well-known
Michaelis-Menten and Hill functions in one variable. The term “Hill-type kinetics” (HTK) was
introduced in 2013 in the paper of Wiuf and Feliu [10]. In [16], it was shown that a Hill-type kinetics
can be written as follows:

Given

oe;:Qx— Rf with e;(x) = (xf('/)‘, o X0, ri €%
° djR‘Z%RiﬂWlthdj(X):X-i'Dj,rJE%
o m: Rf — R, withm(x) =Ilx;,i=1,...,m.

then Iy = I,/1, , with I, a PLK interaction map with kinetic order matrix ' and (/>(x)); = m-d; - e;(x).
Furthermore, the dissociation vectors d; (s. Definition 22) were organized in an r X m matrix called
the “dissociation matrix” and the set of complex factorizable Hill-type kinetics was denoted by
HT-RDKD (Hill-type with reactant-determined kinetic and dissociation), expressing the fact that it is
the pre-image of the interaction parameter map given by the kinetic order and dissociation matrices.

Remark 9. The method for determining linear conjugates for Bio-CRNs in [6] is applicable to HTK if
the exponents are non-negative integers.

7.2. The reference system with Hill-type kinetics

Now, we apply the integrated algorithm to a particular biological system. Specifically, we consider
a metabolic network with one positive feedforward and a negative feedback (see Figure 6) taken from
the published work of [2].
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Figure 6. An example of Hill-type metabolic network model [2].

The corresponding embedded representation of the metabolic network, with X5 as an independent
variable, is as follows:

R1:O—>X1 R5:X3—>0
R : Xi+X5-X3+X, R6ZX4—>0
R3:X2—)X3

R4ZX1+X2—>X1+X4

We apply the MILP algorithm on the SC Formalism approximation by [2] of the reference model
depicted in Figure 6. Using the framework, the corresponding system of ODEs for the reference model
is given as:

d Xl V2 X;lzl X;m
dt — (k21 + X;m)(kB + X’;z%)
d X2 V2 X;m X;m V3 X;32 V4 X;M] X;Mz

di U+ X + X05) ke 4+ X2 (et + X (ke + X0)
d X3 V3 X’2132 VS X;lSS

dt _k32 + X};z ks3 + ngz
d X4 _ V4 Xil4| X;Mz ~ V6 XZM

dt (k41 + X’]ul)(k42 + XIZMZ) k64 + XZG4

(7.1)

where V| = 8, V, = 84.2175, V3 = 8, V4, = 115.341, V5 = §, and Vi = 8. The interaction parameter
matrix (containing the kinetic orders and dissociation constants) for the given system is:

[0 0 O O O O O O]
Ny 0 np3 0 k21 0 k32 0
0 nsp 0 0 0 k32 0 0
ng nyp o 0 0 kg kan O 0
0 0 ns3 0 0 0 k53 0
| 0 0 0 Ne4 0 0 0 k64_

with ny = 1, ny3 = —08429, nip = 1, ng = 29460, N4y = 3, ns3 = 1, Neg4 = 1, k21 = 06705,
ks = 0.8581, kyp = 44.7121, ks3 = 1, and kg4 = 1.

Using the parameter values u;; = 20,7, j = 1,2,...,9 fori # j and € = 0.1 and considering the same
matrices Y and M, the sparse linearly conjugate network of the Hill-type system is
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Rsl"parseZ 00— X RiparseZ X1+ X - X+ Xy
RP? X+ X3 = Xy + X, R X3 — 0
R;parseZ . X2 N X3 R;parseZ . X4 -0
with the corresponding system of ODEs
d Xl V ‘72 Xllm X;lzs
di ' (ko + (e X)™) (ks + (c3X3)™)
d Xz ‘72 X?Zl X;m ‘73 X;Bz ‘74 Xil“ X;m
dt ~ (kay + (1 X)) (kaz + (3X3)3) kg + (2Xo)m2  (kay + (1 X)) (kg + (€2 X2)™2) (72)
d X3 ‘73 X;Bz ‘75 X’3153 .
dt  kap +(2Xo)m sy + (c3X3)
d X, ‘74 X11141 X;Mz ‘75 XZS4

dt :(k41 + (1 X)) (kap + 2 X)) - ksq + (caXg)ms+

where V; = 0.8, V, = 12.0921, V3 = 8, V, = 10185531.88, V5 = 8, and Vs = 8.
The linearly conjugate dense realization was also obtained. The structure of the network is given

as:

R(]ienseZ -0 > Xl R;ienseZ
RIm . X + X3 — X3+ X, Rdense?
Rgiener : Xl + X3 — X3 RgenseZ
RienseZ . X2 -0 RcllgnseZ
RIm2 . X, — X5+ X,

R&m X, — X,

:X;5—-0
X1+ X - X,
X1+ X - X+ X,
Xy —0

The conjugacy constants of the derived network are: ¢; = 2.9555, ¢, = 9.9140, ¢; = 0.4, and ¢4, = 10.
Using these constants and the computed A,, we obtained the corresponding Kirchhoff matrix for the

network:

[-2.7068 0 0 0 1.840
27068 0 0 0 0
0 0 -85470 0 0
0 0 25480 0 52.067
Adense2 =10 0 0 0 -54.168
0 0 5999 0 0260
o 0 0 0 0
o 0 0 0 0
o o0 0 0 0

The associated ODEs for the dense realization is

Mathematical Biosciences and Engineering

0 0 0 3.062 |
0 320697 O 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 -37310.233 0 0
0 36989.536 0 0
0 0 0 -3.062
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d Xl _ W2 qu X;m W3 Xllm X;m

di 1 (k@ X)) (ks + (e3X3)™)  (kay + (1 Xy (kas + (c3 X))
ng _ W2 Xllm Xl3123 W4 X;Mz W(S X;ez

dt — (ka + (1 X)) ks + (¢3X3)2)  (kap + (©2X0)2)  (kea + (€2X2)™)

Wg X;lzn Xizlsz W9 X;ZQI X£192 (7 3)
(kg1 + (c1X1)")(ksa + (2X2)™2)  (koy + (c1X1)")(kop + (c2X2)"?) .
d X3 WS X'2152 WG X;sz W7 X;m
= + —

dt  (ksy + (2X2)2) (kg2 + (c2X2)") (kg3 + (¢3X3)"7)

d X4 W9 Xilml X;;z WIO XZIM

dt  (koy + (c1X1)"™")(koy + (c2X2)™2) (K14 + (caXg)™4)
with W, = 2.7068, W, = 54.3516, W5 = 127.9649, W, = 7.0009, W5 = 52.067, Ws = 0.9914, W, = 8,
Ws = 2372.74, Wy = 273674.2, and W,, = 8. The kinetic orders and dissociation constants are
ny1 = n3p = 1, Ny3 = N33 = —08429, N4y = N5y = Ngp = 1, nyp3 = 1, ngy = Ngp = 29460, ngy = Ngp = 3,
and niog = 1, kz] = k31 = 06705, k23 = k33 = 39065, k42 = k52 = k62 = 1, k73 = 1, kgl = kg] = 08581,
k82 = k92 = 447121, and k104 =1.

The linearly conjugate sparse network has also 6 reactions which is equal to the number of
reactions of the derived linearly conjugate sparse system with power-law kinetics. Whereas, the dense
realization of the SC model has 10 reactions. The graphs of the individual trajectories of the original
Hill-type system and the linearly conjugate systems are depicted in Figures Sla-S1d and
Figures S1e-S1h, respectively.

8. Conclusion

Different networks could generate the same set of ODEs making them dynamically equivalent. In
the past few years, various authors have pioneered the use of MILP algorithms for determining linear
conjugacy between MAK systems [5, 13,25, 27], between rational functions systems [26], between
GMAK systems [28] and between PL-RDK systems [7]. In the work of [7], they extended the JSC for
linear conjugacy from MAK systems to PL-RDK systems. It is limited to power law kinetic systems
with branching reactant complexes that have identical kinetic orders. In this study, we further extended
the algorithm for branching reactant complexes with different kinetic orders.

We summarize below main results presented in this paper:

1. We showed that any non-complex factorizable (NF) RID kinetic system can be dynamically
equivalent to a CF system via CF-transformation (Theorem 1).

2. We further illustrated the usefulness of CF-RMA through the extended proof of Subspace
Coincidence Theorem for the kinetic and stoichiometric subspaces (KSSC) of NF kinetic
systems.

3. We extended the JSC for linear conjugacy to the CF subset of RID kinetic systems, i.e., those
whose interaction map I : Q — RZ factorizes via the space of complexes R?: Iy = I; o g with
Wi Q — R as factor map and I, = diag(k) o p’ with p’ : R — R assigning the value at a
reactant complex to all its reactions (Theorem 4).

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8322-8355.
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4. We demonstrated (with running examples: Examples 2 - 4) that linear conjugacy can be generated
for any RID kinetic systems by applying the JSC to any NF kinetic system that are transformed to
CF kinetic system. The extended JSC for linear conjugacy to CF-RID systems is combined with
the CF-RM method to provide the general computational solution to construct linear conjugates
of any RID system.

5. For a large subset of RID kinetic systems RIPK, which have interaction parameter maps, we
illustrated how the proposed approach of this paper can also be applied and that the computational
solution is always feasible. We presented an example of HTK which was also known as SC
Formalism.
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Supplementary
Table S1. List of abbreviations.
Abbreviations | Meaning
CF Complex Factorizable
CFM maximal CF-subsystem
CFS CF-subsets
CF-RM Complex Factorization by Reactant Multiples
CKS Chemical Kinetic System
CRN Chemical Reaction Network
CRNT Chemical Reaction Network Theory
FSS Factor Span Surjective
GMAK Generalized Mass Action Kinetics
HTK Hill-Type Kinetics
JSC Johnston-Siegel Criterion
KSSC Kinetic and Stoichiometric Subspace Coincidence
LRD Low Reactant Deficiency
MAK Mass Action Kinetics
MILP Mixed Integer Linear Programming
NDK Non-reactant Determined Kinetics
NF Non-complex Factorizable
ODE Ordinary Differential Equation
PLK Power Law Kinetics
PL-RDK Power Law - Reactant Determined Kinetics
PL-TIK T-rank maximal Kinetics
PT Point Terminal
RDK Reactant Determined Kinetics
RID Rate constant Interaction map Decomposable
RIDK Rate constant Interaction map Decomposable Kinetics
RIPK RID kinetics with Intersection Parameters map
RIP-CFK CF RIPK
RIP-NFK NF RIPK
SC Saturation-Cooperativity
SFRF Species Formation Rate Function
SRD Sufficient Reactant Deficiency
TBD Terminality Bounded by Deficiency
TND Terminality Not Bounded by Deficiency
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Table S2. List of symbols.

] List of Symbols \ Meaning

R? complex vector space

(N*,K¥) CRN of CF-transform of an NF system
0 deficiency of a CRN

/7% factor map

1, incidence mapping

Ix interaction mapping

Ag k-Laplacian map

F kinetic order matrix

Y matrix of complexes

Ng number or CF-subsets

n number of complexes

[ number of linkage classes

r number of linkage classes of (.4, K*)
L number of new linkage classes due to link-breaking
[ number of new linkage classes by new reactants
n, number of reactants

r number of reactions

m number of species

sl number of strong linkage classes

t number of terminal linkage classes

r product mapping

s rank of the CRN

Op reactant deficiency

e reactant mapping

q reactant rank

R reactant subspace

RZ reaction vector space

Z(y) set of branching reactions

€ set of complexes

Z set of linkage classes

E.(AN,K) set of positive equilibria of CKS

X set of reactions

5 set of species

R species vector space

S stoichiometric subspace of CRN
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Figure S1. The graphs of the trajectories for the original hill-type model and a linearly
conjugate of sparse (first row) and dense (second row) realization. X represents a trajectory
in the sparse realization (shown in first row) and dense realization(shown in second row).
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