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Abstract: In this paper, we study a single-species population model with pulse toxicant input in a
small polluted environment. The intrinsic rate of population change is affected by the environmental
toxin load and toxin in the organisms which is influenced by toxin in the environment and the food
chain. A new mathematical model is established. By the Pulse Compare Theorem, we find the
surviving threshold of the population and obtain the sufficient conditions of persistence and extinction
of the population.
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1. Introduction

In the real world, with the rapid development of modern industry and agriculture, environmental
pollution has become an increasingly serious problem. Untreated pollutants are continuously release
into the environment. It causes many serious environmental problems and damages ecological system.
The issue is global. Many populations have become extinct or endangered [1, 2]. Therefore, it is very
important to study living conditions of the population in a polluted environment.

In the 1980s, Hallam et al. (1983–1984) studied the toxicant effects in the polluted environment
on a single-species population. During the discussion in their paper, they assumed that, relative to
population size, the capacity of the environment is large, so the population absorption and excretion
of toxins can be omitted. Many good results were obtained about the extinction and persistence of
the population [3–5]. But in a relatively closed environment with a large population the effect of
the populations own emission of toxins cant be omitted. He, et al. (2007, 2009) studied the survival
problem of the population assuming the intrinsic rate of population change affected by the environment
and the toxins of the body [6–12].

In most cases, the toxins entering into the environment are assumed to be continuous, but in the real
life, discharging toxins are not always ture, and the majority of cases are often expressed as a periodic
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emission, such as industrial waste water or waste water discharge, agricultural pesticide spraying, etc.
In these cases, the discharge time of toxins, compared with the population’s life cycle, is very short,
but their effect on the organism is long. Liu, et al. (2003) studied the survival effects of population on
the pulse cycle toxin emissions under a fixed input quantitative toxin [13] at a fixed time. Zhang, et
al. (2008) established a single population model in a polluted environment by assuming other outside
toxins discharged into the environment at a fixed time. They showed that the population is extinct,
when the pulse period is less than a certain threshold. On the contrary, the population is permanent.
They also demonstrated that sustained living conditions can ensure existence and uniqueness of positive
periodic solutions which are globally asymptotically stable [14–16]. Jiao, et al. (2009) established a
single population model in which toxins in polluted environment are impulsive inputs on the basis of
the hypothesis that toxins in the population are also affected by toxins in the food chain. Discussed the
extinction and permanent existence of the population, and drew a conclusion that the population can
be protected by changing the input toxin quantity and period [17–19].

Based on the work that has been done [16], this paper studies the survival of a single population
in a less polluted space. Assuming that the population density is uniform, the input and output of the
population are not considered. If toxins concentration of individuals in population Co(t) is considered
to be the individual endotoxin mass divided by the individual average mass m0. Environmental toxin
concentration Ce(t) is considered to contain toxin mass in environment medium divided by total mass
of medium in environment me. Influenced by the concentration of environmental toxin Ce(t) and the
concentration of individual toxin Co(t), the intrinsic growth rate of population density x(t), which
accords with the Logistic law, is considered as the linear dose response function r0 − αCo(t) − βCe(t)
of the populations and environmental toxins. Concentration of individual Co(t) was mainly derived
from the environmental toxin absorption rate KCe(t) and the food intake rate fCe(t). However, the
individual excretion rate gCo(t), the metabolic rate mCo(t) and the death rate doCo(t) could reduce
endotoxin concentration in population. The change rate of total environmental endotoxin is caused by
the following two aspects: On the one hand, the periodic impulse emission rate of pollutants µ and the
amount of toxin released to the environment (g + d0 + αCo(t) + βCe(t))Co(t)mox(t) by individual toxin
excretion, death decomposition, individual toxin and environmental toxin population death, and the
periodic impulse emission rate of pollutants; on the other hand, the individual absorption rate of the
population kmoCo(t)x(t), and the reduction rate of environmental toxin concentration hmeCe(t) caused
by natural volatilization of environmental toxin, photosynthesis and bacterial degradation. Suppose
h > m. In summary, the following models are established (1.1).

dx(t)
dt = x(t)

(
r0 − αCo(t) − βCe(t) − λx(t)

)
, t , nT

dCo(t)
dt = KCe(t) + fCe(t) −

(
g + m + d0 − λx(t)

)
Co(t), t , nT

dCe(t)
dt =

[
− K1Ce(t) +

(
g1 + d1 + α1Co(t) + β1Ce(t)

)
Co(t)

]
x(t) − hCe(t), t , nT

4x(t) = 0,4Co(t) = 0,4Ce(t) = µ, t = nT.

(1.1)

where

g1 =
gm0

me
,K1 =

Km0

me
, d1 =

d0m0

me
, α1 =

αm0

me
, β1 =

βm0

me
. (1.2)

All symbols g1, K1, r0, d0, d1, g, m, K, h in model (1.1) are positive constants. The symbols in the
model (1.1) are shown in Table 1.
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Table 1. Model (1.1) of related parameters.

Parameter Description Unit

X(t)
Single population biomass in a given

space at time t
Quantity / litre

C0(t)
Average mass toxin concentration of

individuals in population at time t

Ce(t)
Toxin concentration in environmental

mass medium at time t

r0(t)
Intrinsic growth rate of the population without

toxicant
1 day−1

α
Individual toxins inhibit population

growth rate
1 day−1

β
Environmental toxins inhibit

population growth rate
1 day−1

λ
Intra specific competition of the

population
litre/Quantity· day

d0
The death rate of the population without

toxicant
1 day−1

m0 Average mass of Individuals in a Population kg

me
The total mass of the medium in the

environment
kg

µ The toxicant input amount at every time

T
The period of the impulsive effect about

the exogenous input of toxicant
day

K
Individual absorption rate of

environmental toxicant
1 day−1

f
Individual intake rate of toxin in

environmental food
1 day−1

g Excretion rate of individual toxin 1 day−1

m Purification rate of individual toxin 1 day−1

h
Toxicant loss rate from the environment

itself by volatilization and so on
1 day−1

In this paper, we study the dynamic behavior of model (1.1). In section 2, we prove that the
model (1.1) has the non-negative solutions and they are ultimately bounded by inequality scaling
method, thus the survival upper bound of the population is found. In section 3, by the Pulse Compare
Theorem, we get the solution of model (1.1), which has a non-negative lower bound and derive the
sufficient condition of persistent survival of the population. In section 4, we obtain the sufficient
condition for extinction of the population. In section 5, numerical conclusions are obtained by
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MATLAB. Some summaries are given in the last section.

2. Non-negative and boundedness of solutions

In order to prove the persistence of solutions for model (1.1), we need to show that they are non-
negative and have upper and lower bounds. First we prove there exists the positive solution.

We set initial values of model (1.1) as follows:

x(0) > 0, 0 ≤ Co(0) ≤ 1, 0 ≤ Ce(0) ≤ 1. (2.1)

First, we have the following conclusion regarding to the positive property of solutions of
model (1.1).

Theorem 2.1. The solution (x(t),Co(t),Ce(t)) of model (1.1) with initial conditions (2.1) is
non-negative.

Proof. Integrating the first function of model (1.1) from 0 to t gives

x(t) = x(0)exp
(∫ t

0

(
r0 − αCo(τ) − βCe(τ) − λx(τ)

)
dτ

)
,

So, if x(0) > 0, we have x(t) > 0 for t ≥ 0.
Next, we prove Co(t) > 0, Ce(t) > 0.
Since Ce(0) ≥ 0, 4Ce(t) = µ > 0, it is obvious Ce(0+) > 0. However, for Co(0), we have two cases

as follows.
Case I: Co(0) = 0.
As 4Co(t) = 0, from the second and third functions of model (1.1), we have

dCo(t)
dt

∣∣∣∣∣
t=0+

= KCe(0+) + fCe(0+) −
(
g + m + d0 − λx(0+)

)
Co(0+) = (K + f )Ce(0+) > 0,

dCe(t)
dt

∣∣∣∣∣
t=0+

= −K1Ce(0+)x(0+) − hCe(0+) < 0.

Hence there must exist a positive number ε such that Co(t) > 0,Ce(t) > 0 for t ∈ (0, ε).
Then, when t > 0, we have

Co(t) > 0,Ce(t) > 0. (2.2)

If it is not, there must exist a positive number t∗ such that Co(t∗) · Ce(t∗) = 0 for t ∈
(
(n − 1)T, nT

]
and Co(t) > 0,Ce(t) > 0 for t ∈ (0, t∗). Therefore there are only three situations at the endpoint t∗:

For the first situation: Co(t∗) = 0, Ce(t∗) > 0.
If Co(t) > 0 is true, then it is obvious dCo(t∗)

dt ≤ 0 for t ∈ (0, t∗). But from the second function of
model (1.1), we have

dCo(t)
dt

∣∣∣∣∣
t=t∗

= (K + f )Ce(t∗) > 0.

There is a contradiction, so the first situation does not hold.
For the second situation: Co(t∗) > 0, Ce(t∗) = 0.
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If Ce(t) > 0 is true, then it is obvious dCe(t∗)
dt ≤ 0 for t ∈ (0, t∗). But from the third function of

model (1.1), we have
dCe(t)

dt

∣∣∣∣∣
t=t∗

=
[
g1 + d1 + α1Co(t∗)

]
Co(t∗)x(t∗) > 0.

There is a contradiction, thus the second situation is not true.
For the third situation: Co(t∗) = 0, Ce(t∗) = 0.
It is obvious that

(
x(t), 0, 0

)
is the solution of model (1.1). At the same time, it is also the solution of

model (1.1) with initial values x(t∗) > 0,Co(t∗) = 0,Ce(t∗) = 0. The uniqueness theorems of solution
yields Co(t) ≡ 0, Ce(t) ≡ 0 for t > 0. This is also a contradiction. Hence the third situation doesn’t
hold. We conclude that Co(0) = 0.

Case II: Co(0) > 0.
From Co(0) > 0 and the continuity of Co(t), for any ε1 > 0, we have Co(t) > 0 for t ∈ (0, ε1).
Furthermore, Ce(0+) > 0, whatever dCe(t)

dt

∣∣∣
t=0+ is positive or negative, we can promise that, for any

ε2 > 0, we have Ce(t) > 0 for t ∈ (0, ε2).
So let ε = min(ε1, ε2) > 0, there is Co(t) > 0,Ce(t) > 0 for t ∈ (0, ε).
Next we prove, when t > 0, there is

Co(t) > 0,Ce(t) > 0.

Then the proof of Case II is similar to that of Case I, the result still holds. �

Next we prove that all positive solutions of model (1.1) have upper bounds.

Theorem 2.2. For model (1.1), if f r0
λ

+
mg
g1
< hg

g1
, for any t ∈ R+, there must exist a positive number M,

such that
lim sup

t→∞
x(t) ≤ M, lim sup

t→∞
Co(t) ≤ M, lim sup

t→∞
Ce(t) ≤ M.

Proof. From Theorem 2.1 and the first equation of model (1.1), we have

dx(t)
dt
≤ x(t)

(
r0 − λx(t)

)
.

Standard comparison theorem produces

lim sup
t→∞

x(t) ≤
r0

λ
, M1. (2.3)

Defining V(t) = Co(t)x(t) +
g
g1

Ce(t) and using (1.2), one can obtain

D+V(t) + mV(t) = fCe(t)x(t) −
g
g1

(h − m)Ce(t).

Expression (2.3) and f r0
λ

+
mg
g1
< hg

g1
, when t , nT , gives

D+V(t) + mV(t) ≤
(

f r0

λ
−

(h − m)g
g1

)
Ce(t) < 0.
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When t = nT , there is V(nT +) = V(nT ) +
µg
g1

, so for t ∈
(
nT, (n + 1)T

]
, pulse inequality (Lemma 2.2)

in [20] gives

V(t) ≤ V(0)e−mt +
µg
g1

e−m(t−T )

1 − e−mT +
µg
g1

emT

emT − 1
,

Hence V(t) is uniformly bounded, which is

lim sup
t→∞

V(t) ≤
µg
g1

emT

emT − 1
, M2.

According to the definition of V(t) and Theorem 2.1, one can derive

lim sup
t→∞

Co(t)x(t) ≤ M2, lim sup
t→∞

Ce(t) ≤
g1

g
M2. (2.4)

The second function of model (1.1) and (2.4) leads to

lim sup
t→∞

Co(t) ≤
(K + f )g1M2 + λgM2

g(g + m + d0)
, M3.

Let M = max(M1,
g1
g M2,M3), so there is

lim sup
t→∞

x(t) ≤ M, lim sup
t→∞

Co(t) ≤ M, lim sup
t→∞

Ce(t) ≤ M.

�

From Theorem 2.1 and Theorem 2.2, there is a invariant set in mode (1.1), that is
Ω =

{ (
x(t),Co(t),Ce(t)

)∣∣∣ 0 ≤ x(t) ≤ M, 0 ≤ Co(t) ≤ M, 0 ≤ Ce(t) ≤ M
}
.

let

R0 =
µ

r0T

(
α(K + f )

h(g + m + d0)
+
β

h

)
.

3. Persistence survival of population

In Theorem 2.2, we know that the solutions of model (1.1) have upper bounds. In this section, in
order to investigate the survival of the population, we will prove the model (1.1) has a non-negative
lower bound. Now we can analyze the model (1.1) by the impulsive differential equations comparison
theorem to find the lower bound as follows.

Theorem 3.1. For model (1.1), if R0 < 1, then the population x(t) will be uniformly persistent.

Proof. From Theorem 2.2, we know that is x(t) ultimately bounded. Hence, in order to prove that the
population x(t) is uniformly persistent, we can only need to show that x(t) has the lower bound. If not,
for any δ > 0, when t > 0, there is

x(t) < δ, (3.1)

Considering the last two equations of model (1.1)
dCo(t)

dt = KCe(t) + fCe(t) −
(
g + m + d0 − λx(t)

)
Co(t), t , nT

dCe(t)
dt =

[
− K1Ce(t) + (g1 + d1 + α1Co(t) + β1Ce(t))Co(t)

]
x(t) − hCe(t), t , nT

4Co(t) = 0,4Ce(t) = µ, t = nT.

(3.2)
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We set up (Co(t),Ce(t)) is the solution of model (3.2).
From Theorem 2.2 and (3.1), we get the pulse comparison equation corresponding equation of

model (3.2): 
du(t)

dt = Kv(t) + f v(t) − (g + m + d0)u(t) + λMδ, t , nT
dv(t)

dt = a − hv(t), t , nT

4u(t) = 0,4v(t) = µ, t = nT.

(3.3)

where a = (g1 + d1 + α1M + β1M)Mδ.
Let

(
u(t), v(t)

)
be the solution of model (3.3) with initial values u(0) = Co(0), v(0) = Ce(0).

First we prove that model (3.3) only has a positive periodic solution
(
u(t), v(t)

)
, which is globally

attractive.
In the interval

(
nT, (n + 1)T

]
, the solution of the second function of model (3.3) is

v(t) =
a
h

+

(
v(nT +) −

a
h

)
e−h(t−nT ). (3.4)

From 4v(t) = µ and (3.4), we have

v
(
(n + 1)T +) =

(
v(nT +) −

a
h

)
e−hT +

a
h

+ µ, (3.5)

which implies a stroboscopic map

v
(
(n + 1)T +) = H

(
v(nT +)

)
, (3.6)

where
H(y) =

(
y −

a
h

)
e−hT +

a
h

+ µ,

We get the only fixed point of map (3.6), that is

v∗ =
µ

1 − e−hT +
a
h
. (3.7)

It is easily to show that |H
′

(v∗)| = e−hT < 1, so sequence
{(

v(n + 1)T +
)}

converges to v∗.
Using (3.4) and (3.7), we have

v(t) =
a
h

+

(
v∗ −

a
h

)
e−h(t−nT ), nT < t ≤ (n + 1)T.

Similarly, from the first function of model (3.3), we can get

u(t) = p +
q(v∗ − a/h)

µ
e−h(t−nT ) +

(
u∗ − p −

q(v∗ − a/h)
µ

)
e−(g+m+d0)(t−nT ),

nT < t ≤ (n + 1)T.

where
p =

(K + f )a/h + λMδ

g + m + d0
, q =

µ(K + f )
g + m + d0 − h

,
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u∗ = p +
q(v∗ − a/h)(e−hT − e−(g+m+d0)T )

µ(1 − e−(g+m+d0)T )
.

Therefore the model (3.3) only has a positive periodic solution
(
u(t), v(t)

)
.

Now we prove the positive periodic solution
(
u(t), v(t)

)
is also globally asymptotically stable.

If
(
u(t), v(t)

)
is the any solution of model (3.3), define the conversion

M(t) = u(t) − u(t),N(t) = v(t) − v(t). (3.8)

Then expression (3.3) is changed as follows: dM(t)
dt = (K + f )N(t) − (g + m + d0)M(t),

dN(t)
dt = −hN(t).

(3.9)

Let M(0) = u(0),N(0) = v(0) be initial values of model (3.9).
From the second function of model (3.9), we have

N(t) = v(0)e−ht. (3.10)

First function of model (3.9) also gives

M(t) =
(K + f )v(0)

h − (g + m + d0)
e−ht +

(
u(0) −

(K + f )v(0)
h − (g + m + d0)

)
e−(g+m+d0)t. (3.11)

Using (3.10) and (3.11), we get lim
t→∞

N(t) = 0, lim
t→∞

M(t) = 0. So
(
u(t), v(t)

)
is globally attractive.

Next we prove the population x(t) is uniformly persistent.
Using the Comparison Theorem [21] and the globally asymptotically stable property of

(
u(t), v(t)

)
,

there exists a positive number T0 > 0, for arbitrarily small ε > 0, and when t > T0, we have

C0(t) ≤ u(t) ≤ u(t) + ε,Ce(t) ≤ v(t) ≤ v(t) + ε. (3.12)

Using (3.12) and the first function of model (1.1),we have

dx(t)
dt

= x(t)
(
r0 − αC0(t) − βCe(t) − λx(t)

)
≥ x(t)

(
r0 − α

(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

)
. (3.13)

Setting n1 ∈ N and n1T > T0, and integrating (3.13) from nT to (n + 1)T (n > n1) leads to

x
(
(n + 1)T

)
≥ x(nT )exp

(∫ (n+1)T

nT

(
r0 − α

(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

)
dt

)
= x(nT )exp

(∫ (n+1)T

nT

[
(r0 − αε − βε − λδ) − αu(t) − βv(t)

]
dt

)
= x(nT )exp

[
(r0 − λδ − αε − βε)T − α

(
pT −

q(e−hT − 1)
h(1 − e−hT )

−
1

g + m + d0

(
u∗ − p −

q
1 − e−hT

)
(e−(g+m+d0)T − 1)

)
Mathematical Biosciences and Engineering Volume 16, Issue 6, 8179–8194.
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−β

(
aT
h
−

(v∗ − a/h)(e−hT − 1)
h

) ]
= x(nT )exp

[
(r0 − λδ − αε − βε)T

−α

(
pT +

q
h
−

q
g + m + d0

)
− β

(aT
h

+
µ

h

) ]
= x(nT )exp(κ) ≥ x(0+)exp(nκ), (3.14)

where

κ = (r0 − λδ − αε − βε)T − α
(
pT +

q
h
−

q
g + m + d0

)
− β

(aT
h

+
µ

h

)
=

(
r0 − λδ − αε − βε −

α(K + f )a/h + λαMδ

g + m + d0
−

aβ
h

)
T

−
α2µ(K + f )

h(g + m + d0)
−
βµ

h
. (3.15)

From R0 < 1, we know r0T > αµ(K+ f )
h(g+m+d0) +

βµ

h . Hence, for given M > 0, we choose sufficiently small
δ > 0 and ε > 0, such that(

r0 − αε − βε − λδ −
α(K + f )a/h + λαMδ

g + m + d0
−

aβ
h

)
T >

αµ(K + f )
h(g + m + d0)

+
βµ

h
.

From (3.15), we get κ > 0. So (3.14) yields lim
n→∞

x(nT ) = ∞. This is a contradiction with (3.1).
Hence there exists a positive number t1 ≥ T0 such that x(t1) > δ.

Next prove, when t ≥ t1, we have

x(t) ≥ δexp(−ωT ), (3.16)

where ω = sup
t≥0

{∣∣∣∣∣r0 − α
(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

∣∣∣∣∣}.

If not, there exist t2 > t1 such that x(t2) < δexp(−ωT ). According to the continuity of x(t) with t,
there exists t∗ ∈ (t1, t2) such that x(t∗) = δ and x(t) < δ for t ∈ (t∗, t2). From (3.14), (3.15) and R0 < 1,
we know κ > 0, that is r0−α

(
u(t)+ε

)
−β

(
v(t)+ε

)
−λδ > 0. For any t ∈ (t∗, t2), we choose anon-negative

integer l such that t2 ∈
(
t∗ + lT, t∗ + (l + 1)T

]
. Integrating (3.13) from t∗ to t2, we get

δexp(−ωT ) > x(t2) ≥ x(t∗)exp
(∫ t2

t∗

(
r0 − α

(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

)
dt

)
= δexp

( (∫ t∗+lh

t∗
+

∫ t2

t∗+lh

) (
r0 − α

(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

)
dt

)
> δexp

(∫ t2

t∗+lT

(
r0 − α

(
u(t) + ε

)
− β

(
v(t) + ε

)
− λδ

)
dt

)
≥ δexp(−ωt).

There is a contradiction. So (3.16) is right.
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In summary, we have
lim inf

t→∞
x(t) ≥ δexp(−ωT ).

�

Sufficient conditions of persistence of the population are obtained from Theorem 3.1. On the
contrary, if the condition of Theorem 3.1 is false, the population may be extinct. Next we study the
conditions of the extinction of the population.

4. Extinction of population

Theorem 4.1. For model (1.1), if R0 ≥ 1, then the population x(t) becomes extinct.

Proof. For proving the extinction of population x(t), we only prove lim
t→∞

x(t) = 0.

Using Theorem 2.2 and the last two functions of model (1.1), we have
dCo(t)

dt ≥ KCe(t) + fCe(t) − (g + m + d0)Co(t), t , nT
dCe(t)

dt ≥ −(−K1M + h)Ce(t), t , nT

4Co(t) = 0,4Ce(t) = µ, t = nT.

(4.1)

The pulse comparison equation corresponding to the model (4.1) is
ds(t)

dt = Kw(t) + f w(t) − (g + m + d0)s(t), t , nT
dw(t)

dt = −(−K1M + h)w(t), t , nT

4s(t) = 0,4w(t) = µ, t = nT.

(4.2)

Let
(
s(t),w(t)

)
denote the solution of model (4.2) with the initial values s(0) = Co(0),w(0) = Ce(0).

Following the same procedure as the solving process of model (3.2), model (4.2) has a positive
periodic solution as follows:s(t) = s∗e−(g+m+d0)(t−nT ) +

µ(K+ f )(e−(g+m+d0)(t−nT )−e−(K1 M+h)(t−nT ))
(K1 M+h−g−m−d0)(1−e−(K1 M+h)T ) ,

w(t) = w∗e−(K1 M+h)(t−nT ).

where s∗ =
µ(K+ f )(e−(g+m+d0)T−e−(K1 M+h)T )

(K1 M+h−g−m−d0)(1−e−(K1m+h)T )(1−e−(g+m+d0)T ) ,

w∗ =
µ

1−e−(K1 M+h)T .

And the positive periodic solution
(
s(t),w(t)

)
of (4.2) is globally asymptotically stable.

Using the Comparison Theorem [21] and the globally asymptotically stable property of
(
s(t),w(t)

)
,

there exists a positive number t0 > 0, for arbitrarily small ε0 > 0, and when t > t0, we have

Co(t) ≥ s(t) ≥ s(t) − ε0,Ce(t) ≥ w(t) ≥ w(t) − ε0. (4.3)
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For proving the extinction of the population x(t) of model (1.1), the contradiction method is used.
Assuming that, for arbitrarily small η > 0, when t > t0, there is

x(t) ≥ η. (4.4)

Using (4.3), (4.4) and the first function of model (1.1), we get, when t > t0

dx(t)
dt
≤ x(t)

(
r0 − α

(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη

)
. (4.5)

Setting n2 ∈ N and n2T > t0, and integrating (4.5) from nT to (n + 1)T (n ≥ n2) yields to

x
(
(n + 1)T

)
≤ x(nT )exp

(∫ (n+1)T

nT

(
r0 − α

(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη

)
dt

)
= x(nT )exp

[
(r0 + αε0 + βε0 − λη)T

−
αµ(K + f )

(g + m + d0)(K1M + h)
−

βµ

K1M + h

]
= x(nT )expκ1 ≤ x(0+)exp(nκ1), (4.6)

where

κ1 = (r0 + αε0 + βε0 − λη)T −
αµ(K + f )

(g + m + d0)(K1M + h)
−

βµ

K1M + h
. (4.7)

From R0 ≥ 1, we know r0T ≤ αµ(K+ f )
h(g+m+d0) +

βµ

h . For given M > 0, we choose sufficiently small ε0 > 0
and η > 0 such that

(r0 + αε0 + βε0 − λη)T ≤
αµ(K + f )

(g + m + d0)(K1M + h)
+

βµ

K1M + h
,

From (4.7), we get κ1 ≤ 0.
When κ1 = 0, (4.6) gives x

(
(n + 1)T

)
≤ 0. From Theorem 2.1, we also get x

(
(n + 1)T

)
≥ 0, which

is x
(
(n + 1)T

)
= 0. It demonstrates that the population x(t) is eventually extinct.

When κ1 < 0, (4.6) shows x
(
(n + 1)T

)
≤ x(0+)exp(nκ1) → 0(n → ∞), which is contradiction

with (4.4). So there exists t1 > t0 such that x(t1) < η.
Now we prove that, when t > t1, we have

x(t) < ηexp(ω1T ), (4.8)

where ω1 = sup
t≥0

{∣∣∣∣r0 − α
(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη

∣∣∣∣}.

If not, there exists t2 > t1 such that x(t2) ≥ ηexp(ω1T ). Hence there exists t∗ ∈ (t1, t2) such that
x(t∗) = η and x(t) > η for t ∈ (t∗, t2). From (4.6), (4.7) and R0 ≥ 1, we know κ1 ≤ 0, that is
r0 − α

(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη ≤ 0. We choose anon-negative integer l0 such that t2 ∈

(
t∗ +

l0T, t∗ + (l0 + 1)T
]
. Integrating (4.5) from t∗ to t2 leads to

ηexp(ω1T ) ≤ x(t2) < x(t∗)exp
(∫ t2

t∗

(
r0 − α

(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη

)
dt

)
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= ηexp
((∫ t∗+l0T

t∗
+

∫ t2

t∗+l0T

) (
r0 − α

(
s(t) − ε0

)
− β

(
w(t) − ε0

)
− λη

)
dt

)
≤ ηexp(−ω1T ).

There is a contradiction. Therefore (4.8) is right. As the arbitrariness of η, we have lim
t→∞

x(t) = 0. �

Above we present the theoretical results of the model. Next we use MATLAB to draw the diagram
of model (1.1) to verify the correctness of the theoretical results.

5. Uniform persistence of population

Pollutant regularly input towards the environment is directly related to the survival of the population
x(t). Theorems 3.1 and 4.1 give the sufficient conditions for survival and extinction of population x(t).
Using numerical simulation, we analysis the influence of T and µ on the survival of population x(t).
Assuming r0 = 0.6, α = β = 0.1, λ = 0.2,K = 0.2, f = 0.1, g = m = 0.1, d0 = 0.8,K1 = 0.1, g1 = α1 =

β1 = 0.05, d1 = 0.1, h = 0.1, x(0) = 1,Co(0) = 0.5,Ce(t) = 0.8.

Let µ = 1,T = 3, we can get R0 = 0.73 < 1, then the conditions of Theorem 3.1 are satisfied,
population x(t) is survived. As shown in Figure 1.

Let µ = 2,T = 3, we can get R0 = 1.44 ≥ 1, then the conditions of Theorem 4.1 are satisfied,
population x(t) is extinct. As shown in Figure 2.

Figure 1. Existence of x(t) when µ = 1,T = 3.
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Figure 2. Extinction of x(t) when µ = 2,T = 3.

From Figures 1 and 2, we can observe that when T is the same and µ increases, population x(t)
changes from survival to extinction.

Let µ = 1,T = 2.5, we can get R0 = 0.88 < 1, then the conditions of Theorem 3.1 are satisfied,
population x(t) is survived. As shown in Figure 3.

Let µ = 1,T = 1, we can get R0 = 2.2 ≥ 1, then the conditions of Theorem 4.1 are satisfied,
population x(t) is extinct. As shown in Figure 4.

Figure 3. Existence of x(t) when µ = 1,T = 2.5.
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Figure 4. Extinction of x(t) when µ = 1,T = 1.

From Figures 3 and 4, we can observe that when µ is the same and T lessens, population x(t)
changes from survival to extinction.

6. Conclusion

In this paper, we study a single-population model with pulse input of environmental toxin in a
small polluted environment. We obtain the conditions and a threshold of extinction and persistence of
the population. The threshold is R0 = µ

(
αµ(K+ f )

h(g+m+d0) +
β

h

) /
r0T , that is, when R0 < 1, the population is

persistence. When R0 ≥ 1, the population is extinction.
The degree of pollution of the environment is directly related to survival and extinction of the

population. As the definition of threshold, if the toxicant input amount is constant, in order to ensure
the survival of the population, we must extend the period of the exogenous input of toxicant. If the
period of the exogenous input of toxicant discharge is unchanging, in view of ensuring the survival of
population, we must decrease the toxicant input amount. At the same time, the results of numerical
simulation demonstrate the influence of the period and amount of the exogenous input of toxicant on
survival and extinction of populations.

Due to the limitations of the population to survive, the pollution problem in a small environment
in this paper is more consistent with real problem than that in a big environment. Comparing the
results of two types of environment, we can note that when the toxicant input amount is the same,
the threshold of extinction and persistence of the population in a small environment is smaller and the
survival condition of population weakens. So in order to make the population to survive in a small
environment, we only reduce the amount of discharge toxins and extend the time of emission. In
real life, when facing pollutants from the environment, young population and adult population have
different reactions. Considering the population with the different age structure has more practical
significance, so this issue can be studied as a follow-up research on the basis of the current research
work.
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