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Abstract: In the real world, in order to avoid the infection risk, people tend to cut off the links with
their infected neighbors, then look for other susceptible individuals to rewire. However, the rewiring
process does not occur immediately, but takes some time. We therefore establish a delayed SIS network
model with adaptive rewiring mechanism and analyze the long-term steady states for the system with
and without the rewiring delay. We find that with the rewiring time, there are infinite equilibria lie
on a line in a high-dimensional state space, which is quite different from normal delayed model. The
numerical simulation results show that the system approaches to different steady state on the line under
the same initial values and different rewiring delays, and the stable limit cycle can appear with the
increase of rewiring delay. These surprising results may provide new insights into the study of delayed
network epidemic model.
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1. Introduction

The so-called network is composed of many nodes and edges connecting the two nodes, where
nodes and edges are used to represent objectives and relationships between the two objectives in real
system, respectively. There are a large number of networks in the real world, such as Internet networks,
social networks, biological networks, railway network and so on. As many ecological and epidemio-
logical processes take place on network structures, more and more scholars in the field pay attention
to complex networks, which mainly include three research contents: (1) the statistical characteristics
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of real networks, such as degree distribution, clustering coefficient, path lengths, degree correlation,
etc [1, 2, 3, 4]; (2) evolution dynamics of the topological structure of networks [5, 6, 7, 8]; (3) the
topological structures of coupled networks, such as multi-layer networks, metapopulation networks,
hyper-networks [9, 10, 11, 12, 13].

Since ancient times, infectious diseases have been frequently prevalent in human society, which
seriously endangered human health, life and social development process [14, 15, 16, 17]. Therefore,
to study the spread of infectious diseases in the population, various infectious disease models are
established and analyzed, the research output provide theoretical bases for the prevention and control
of infectious diseases [18, 19, 20, 21, 22]. The classical epidemic transmission models usually assume
that the population is uniformly mixed, that is, the probability of contact between any two individuals in
the population is same, this is not true in the real world scenarios. In order to describe realistic disease
transmission, it is essential to study the spread of epidemic through the networks. Klovdahl and May
combined social networks with epidemiology to study the spread of HIV in the population [23, 24]. The
SIR model with repeated contacts between the same individuals on regular networks was considered
by Diekmann et al. [25]. Moreno et al. gave the critical threshold of the SIR-type epidemics on degree
distribution with exponential distribution [26]. Volz made use of the probability generating function
to study SIR dynamical model on random networks [27]. Bauch used moment closure methods to
calculate the basic reproductive number of an SIS epidemic network model [28]. Moore and Newman
constructed epidemic model on small-world networks, then calculated critical threshold of epidemic
spread [29]. The absence of an epidemic threshold and its associated critical behavior on a wide range
of scale-free networks are confirmed by Pastor-Satorras and Vespignani [30].

Over the past decades, many scholars investigated how the topological structure of the network
affected the dynamics of disease transmission, while they ignore that the influence of the spread of
infectious disease on the structure of network. For example, during SARS outbreak, the flights into
Hong Kong were found to be 80% lower than usual situations due to the changes of people’s behavior
caused by SARS epidemic in Hong Kong [31]. In fact, the individuals take some measures to protect
themselves from infection in face of the outbreaks of infectious diseases, such as vaccination, wearing a
mask, avoiding going to public places, cutting off contact with infected individuals, etc. The alternation
of the individuals’ behavior caused by diseases has great effects on the structure of network, which
in turn affect the spread process of infectious diseases. Individuals adjust their behavior based on
the prevalence situations of the current disease, namely adaptive behavior in the spread of infectious
disease on networks, which is described by link disconnection and rewiring based on the disease status
of the population [32, 33, 34, 35, 36]. Gross et al. firstly introduced the mechanism of individuals’
adaptive changes in their behavior with assumption that, in order to reduce the infection risk, the
susceptible individuals cut off the connections with the infected neighbors and immediately rewire
other susceptible individuals [32]. Zanette and Risau-Gusm¢n studied that the susceptible agents break
the links with the infected agents and rewire to the rest of population with certain probability, they
further indicated that an appropriate rewiring probability is able to suppress the spread of infectious
diseases [33]. Szabó-Solticzky et al. gave an adaptive mechanism that non-existing links are activated
and existing links are deleted with different rates [35]. In addition, other rewiring mechanisms in
network epidemic models was proposed in recent years [37, 38, 39].

In reality, during the process of adaptive changes of individuals’ behavior, the alternative action of
changes normally do not occur immediately, but take some time to respond, thus we need to consider
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the factor of time taken in such process. Therefore, based on the mechanism of adaptive changes
of individuals’ behavior proposed by Gross et al. [32], we introduce time delay in rewiring process,
namely the susceptible individuals need take a period of time to search for other susceptible persons
and go to rewire. By theoretical analysis, we find that, with such rewiring time, the delayed SIS
network model with adaptive rewiring is quite different from usual delayed model, the long-term steady
states may lie on a line in a high-dimensional state space where the mathematical foundation for its
deep dynamical analysis is lacked. However, from the numerical viewpoint, we can find that the
introduction of rewiring time can greatly impact on the transmission dynamics of infectious disease.
As expected, increasing the rewiring time leads to a suppression in the size of infected population
and higher probability of smaller outbreaks. Our results indicates that once the susceptible persons
disconnect the connections with infected individuals, better to wait some time before creating new
connections with the healthy ones, such strategy has potential influence on disease control.

This article is organized as follows: In Section 2, we establish a delayed SIS network model with
adaptive rewiring mechanism. The long-term steady states for the system with and without the rewiring
delay are analyzed in section 3, we have found that there are at most three equilibria when the system
has no rewiring time, while the equilibria of the system with rewiring delay lie on a line in a four-
dimensional state space. In Section 4, the numerical simulation results show the significant differences
of the dynamical behavior in the system with or without rewiring time, implying that the introduc-
tion of rewiring time promotes obvious effect on controlling disease transmission. Conclusions and
discussions are drawn in Section 5.

2. Model formation

During a disease outbreak, once the healthy individuals recognize the infection risk in disease trans-
mission process, instinctively they incline to protect themselves by cutting off connection with infected
individuals, which is so called individuals’ adaptive behavior in the spread of infectious disease on con-
tact network, resulting in the alteration of the topological structure in the network, an example given in
Figure 1.

To discuss such situation, Gross et al. firstly put forward a mechanism of adaptive behavior by link-
breaking and link-creating, that is, the susceptible individuals disconnect the links with the infected
persons and immediately rewire other susceptible ones [32], and introduced the notations X,Y,Z ∈
{S , I} for the state of each node, [X], [XY], [XYZ] for the number of nodes in state X, links in states
X − Y and triples in states X − Y − Z respectively, here the pairs are counted once in each direction
(namely [XY] = [YX]) and [XX] is counted twice, and considered a susceptible-infected-susceptible
(SIS) epidemic model on such network with a constant number of nodes N,

˙[S ](t) = −β[S I](t) + γ[I](t),
˙[I](t) = β[S I](t) − γ[I](t),

˙[S S ](t) = −2β[S S I](t) + 2γ[S I](t) + 2ω[S I](t),
˙[S I](t) = β([S S I](t) − [IS I](t) − [S I](t)) − γ[S I](t) + γ[II](t) − ω[S I](t),
˙[II](t) = 2β([IS I](t) + [S I](t)) − 2γ[II](t),

(2.1)

where susceptible individuals are infected by their infected neighbors at a transmission rate β in each
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S − I link, γ is the recovery rate of the infected individuals. The susceptible individual breaks the link
with infected one (S − I) at rewiring rate ω and immediately rewiring other susceptible individuals
with the same rate ω. More specifically, the states of two nodes in a link may change: any susceptible
node in the S − S link can be infected by its neighbor in a S − S − I triples (represented by β[S S I]),
which converts S −S link into S − I link; similarly, S − I link turns into I− I link due to the susceptible
node in the S − I link infected by the infected node in S − I link (β[S I]) or another infected neighbor
in I − S − I triple (β[IS I]). The recovery of the infected node in S − I link results in S − S link (γ[S I]);
either of two infected nodes in I − I link can recover yielding S − I link (γ[II]).

  S
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(1) Network diagram with nodes marked disease states (S, I):
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Figure 1. (1) The structure diagram of undirected network with nodes and links, where the
disease states of nodes are marked as susceptible (S ) or infected (I); (2) the adaptive rewiring
of S − I links, that is, susceptible node in S − I link cut off the connection with infected
neighbors and randomly rewire other susceptible nodes.

Based on the above SIS network model with adaptive rewiring given in Gross[32], we introduce
rewiring delay in such reconnection process, and consider the case that once the susceptible individuals
realize the infection possibility from their connected infectious neighbors, they break such connections
and take time τ to look for other susceptible individuals to rewire. In order to close system, assuming
that in the triple links [XYZ], the numbers of neighbors of Y-state node on the network follows Poisson
distribution [40], i.e., [XYZ] = [XY][YZ]

[Y] . By incorporating time delay and the special triple links into
the model (2.1), we can obtain the following delayed SIS network model with adaptive rewiring:

˙[S ](t) = −β[S I](t) + γ[I](t),
˙[I](t) = β[S I](t) − γ[I](t),

˙[S S ](t) = −2β
[S S ](t)[S I](t)

[S ](t)
+ 2γ[S I](t) + 2ω[S I](t − τ),

˙[S I](t) = β
( [S S ](t)[S I](t)

[S ](t)
−

[S I](t)[S I](t)
[S ](t)

− [S I](t)
)
− γ[S I](t) + γ[II](t) − ω[S I](t),

˙[II](t) = 2β
( [S I](t)[S I](t)

[S ](t)
+ [S I](t)

)
− 2γ[II](t).

(2.2)
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In this work, we do not consider the demographic factor in the network connection, so the number
of total nodes

N = [S ](t) + [I](t) (2.3)

is a constant from [Ṡ ](t) + [İ](t) = 0. Consequently, the system (2.2) can be reduced to:

˙[I](t) = β[S I](t) − γ[I](t),

˙[S S ](t) = 2
(
− β

[S S ](t)
N − [I](t)

+ γ
)
[S I](t) + 2ω[S I](t − τ),

˙[S I](t) =

(
β

[S S ](t)
N − [I](t)

− β
[S I](t)

N − [I](t)
− β − γ − ω

)
[S I](t) + γ[II](t),

˙[II](t) = 2β
( [S I](t)
N − [I](t)

+ 1
)
[S I](t) − 2γ[II](t).

(2.4)

In order to simplify the notions, let

u1 = [I], u2 = [S S ], u3 = [S I], u4 = [II], (2.5)

model (2.4) becomes:

u̇1(t) = βu3(t) − γu1(t),

u̇2(t) = 2
(
− β

u2(t)
N − u1(t)

+ γ
)
u3(t) + 2ωu3(t − τ),

u̇3(t) =

(
β

u2(t)
N − u1(t)

− β
u3(t)

N − u1(t)
− β − γ − ω

)
u3(t) + γu4(t),

u̇4(t) = 2β
( u3(t)
N − u1(t)

+ 1
)
u3(t) − 2γu4(t).

(2.6)

In the following, we mainly work on the model (2.6) from the point of view of dynamics analysis.

3. Mathematical analysis

To discuss the dynamical behavior of system (2.6) and the effect of rewiring delay τ, we investigate
the system without and with delay first.

If the rewiring time τ = 0, that means, when the susceptible individuals cut off the connection
with the infected person, they rewire the other susceptible ones immediately. For such case, from
u̇2(t) + 2u̇3(t) + u̇4(t) = 0, we have u2(t) + 2u3(t) + u4(t) = nN, where n is the average degree of the
network, so the system (2.6) can be further reduced to

u̇1(t) = βu3(t) − γu1(t),

u̇2(t) = 2
(
− β

u2(t)
N − u1(t)

+ γ
)
u3(t) + 2ωu3(t),

u̇3(t) =

(
β

u2(t)
N − u1(t)

− β
u3(t)

N − u1(t)
− β − γ − ω

)
u3(t) + γ(nN − u2(t) − 2u3(t)),

(3.1)
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which is studied in [32] numerically. From dynamical point of view, we can see that, in system (3.1),
there is a disease-free equilibrium E0 = (0, nN, 0) and up to two endemic equilibria (u∗1, u

∗
2, u

∗
3) with u∗1

satisfying the following quadratic equation:

(β − ω)(u∗1)2 − (nβ + β − 2ω)Nu∗1 + (nβ − γ − ω)N2 = 0. (3.2)

More specifically,
Case 1: when C1 := ω− β = 0. If C2 := nβ− β− γ > 0, we have unique u∗1 =

nβ−β−γ
nβ−β N =

(
1− γ

nβ−β

)
N

with 0 < u∗1 < N. Thus there exists a unique endemic equilibrium Es = (u∗1, u
∗
2, u

∗
3) in the system (3.1)

with u∗2, u
∗
3 determined in the following (3.3):

u∗2 =
(γ + ω)(N − u∗1)

β
, u∗3 =

γu∗1
β
. (3.3)

Otherwise there is no endemic equilibrium.
Case 2: if C1 = ω − β , 0. From Eq. (3.2), we can obtain:

u∗1± =
1
2

(βn + β − 2ω ±
√

∆)N
β − ω

,

where ∆ = (βn + β − 2ω)2 − 4(β − ω)(nβ − γ − ω) = (n − 1)2β2 + 4γ(β − ω).
Depending on the parameters, we have more subcases for either (i) C1 < 0 and (ii) C1 > 0.
i): when C1 < 0,
a) with C3 = nβ − γ − ω > 0, ∆ < (βn + β − 2ω)2 is obvious and βn + β − 2ω ≥ 2(β − ω) > 0,

therefore u∗1± > 0. In addition,

u∗1± =
1
2

(βn + β − 2ω ±
√

∆)N
β − ω

≥
1
2

(2(β − ω) ±
√

∆)N
β − ω

= N ±
1
2

N
√

∆

β − ω
,

we have u∗1− < N, u∗1+
> N which is impossible since N is the total number of the population. Thus for

this subcase, there is only unique feasible positive equilibrium E1 = (u∗1−, u
∗
2−, u

∗
3−) in (3.1) as well.

b) with C3 = 0, we have u∗1− = 0, u∗1+
= 1

2
2(βn+β−2ω)N

β−ω
≥

2(β−ω)N
β−ω

= 2N, so there is no positive
equilibrium existed in the system (3.1).

c) if C3 < 0, first, we have u∗1− < 0, u∗1+
> 0 and further we can obtain that u∗1+

> 1
2

2(βn+β−2ω)N
β−ω

≥
2(β−ω)N
β−ω

= 2N which is contradict to (2.3). Again, no any positive equilibrium in the system (3.1).
Similarly, we can discuss the subcase for (ii) C1 > 0. We can see that:
a) when C3 > 0, 0 < u∗1− < N, u∗1+

< 0, then system (3.1) has a unique positive equilibrium
E1 = (u∗1−, u

∗
2−, u

∗
3−);

b) when C3 = 0 and C4 = nβ+β−2ω < 0, there is a unique positive equilibrium E1 = (u∗1−, u
∗
2−, u

∗
3−);

c) while if C3 < 0, C4 = nβ + β − 2ω < 0 and ∆ > 0, there are two endemic equilibria E1 =

(u∗1−, u
∗
2−, u

∗
3−) and E2 = (u∗1+

, u∗2+
, u∗3+

) with

u∗1− <
1
2

(βn + β − 2ω − (n − 1)β)N
β − ω

=
1
2

2(β − ω)N
β − ω

= N,

u∗1+ ≤
1
2

(2(β − ω) +
√

∆)N
β − ω

= N +
1
2

√
∆N

β − ω
< N,
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No. E.E Conditions
None C1 = 0,C2 ≤ 0; or C1 < 0,C3 ≤ 0
Es/E1 C1 = 0,C2 > 0; or C1 < 0,C3 > 0; or C1 > 0,C3 > 0;

or C1 > 0,C3 = 0,C4 < 0
E1, E2 C1 > 0,C3 < 0, C4 < 0, ∆ > 0 ∗

Table 1. Conditions for existence of endemic equilibria(E.E) ∗ In addition, if ∆ = 0, then
E1 = E2

when ∆ = 0, we can get u∗1− = u∗1+
, which indicates that E1 and E2 coincide.

Summarizing the above analysis, we can provide the conditions for the existence of none, one or
two endemic equilibria in the simplified system (3.1) without rewiring delay.

The stability of each endemic equilibrium has been studied in [41] through some nonlinear transfor-
mation, and the authors claimed theoretically that the adaptive epidemic model exhibited rich dynamic
behaviors, including backward bifurcation, saddle-node bifurcation, Hopf bifurcation, homoclinic bi-
furcation and Bogdanov-Takens bifurcation of codimension 2, and further confirmed some of the phe-
nomena shown in [32] numerically. Therefore, the interplay between the adaptive changes of individual
behavior and the topological structure of network have profound influence on the spread of network
epidemic.

With the rewiring time τ > 0, different from most of the dynamical systems, it is interesting for us
to find that, instead of the existence of finite steady states or equilibria, in the system (2.6), there are
infinite equilibria sitting on a line L and they are independent of the value of τ, represented by:

L =

{
0 ≤ u1 < N, u2 =

(γ + ω)(N − u1)
β

, u3 =
γ

β
u1, u4 =

(Nβ − βu1 + γu1)u1

β(N − u1)

}
and each equilibrium on line L is a function of u1, implying that, from (2.5), with the constant param-
eters, the number of infected population determines the size of each link of [S S ], [S I] and [II] on the
network.

In particular, when u1 = 0, the disease-free equilibrium in (2.6) is Eτ
0(0, (γ+ω)N

β
, 0, 0), which is

different from E0(0, nN, 0) in system (3.1), due to the fact that, with rewiring time, the process leads to
the number of the total edges of the network is no longer nN. When the infected number is getting to
sufficient small, there is only the connection among the susceptible individuals on network, which is
related to the recovery, rewiring and infection rates.

One can further derive the characteristic equation at Eτ
0,

λ2(λ + γ)(λ + 2γ + β) = 0. (3.4)

It is obvious that beside two eigenvalues λ = −γ and λ = −(2γ + β), there are two zero eigenvalues
which are independent of any system parameters. Thus the stability of Eτ

0 is governed by the dynamical
behavior in a 2-dimensional center manifold. Different from Bogdanov-Takens bifurcation, this bifur-
cation is highly degenerated. This is a challenging research topic in functional differential equations,
we leave it as future research.
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Consequently, it is not trivial to analyze the local stability of each equilibrium on the line L, although
we can still linearize system (2.6) at each equilibrium (u∗1, u

∗
2, u

∗
3, u

∗
4), that is:

u̇1(t) = −γu1(t) + βu3(t),

u̇2(t) = −
2(γ + ω)γu∗1
β(N − u∗1)

u1(t) −
2γu∗1

N − u∗1
u2(t) − 2ωu3(t) + 2ωu3(t − τ),

u̇3(t) =
(Nγ + Nω − 2γu∗1 − ωu∗1)γu∗1

β(N − u∗1)2 u1(t) +
γu∗1

N − u∗1
u2(t) −

Nβ − βu∗1 + 2γu1

N − u∗1
u3(t)

+ γu4(t),

u̇4(t) =
2γ2(u∗1)2

β(N − u∗1)2 u1(t) +
2(Nβ − βu∗1 + 2γu∗1)

N − u∗1
u3(t) − 2γu4(t),

(3.5)

then the corresponding characteristic equation can be derived as:

∆(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0 + (b2λ
2 + b1λ + b0)e−λτ = 0, (3.6)

where
a3 =

(N−u∗1)β+3Nγ+γu∗1
(N−u∗1) > 0,

a2 =
γ(N2β+2N2γ+3Nγu∗1+Nωu∗1−β(u∗1)2−ω(u∗1)2)

(N−u∗1)2 =
γ(β(N2−(u∗1)2)+2N2γ+3Nγu∗1+ωu∗1(N−u∗1))

(N−u∗1)2 > 0

a1 =
2γ2u∗1(N2β+N2γ+2N2ω−2Nβu∗1−4Nωu∗1+β(u∗1)2+2ω(u∗1)2)

(N−u∗1)3 > 0,

a0 =
4γ3ωu∗1
N−u∗1

> 0,

b2 =
−2γωu∗1

N−u∗1
< 0,

b1 =
−6γ2ωu∗1

N−u∗1
< 0,

b0 = −
4γ3ωu∗1
N−u∗1

< 0.

It is obvious that the local stability of equilibrium also depends on u∗1. The difficulty is that we cannot
use the normal method to analyze the distribution of the roots in the characteristic equation (3.6). Even
it can be done numerically, to the best of our knowledge, there is no method yet to investigate their
stability since the introduction of rewiring delay τ gives rise to infinite equiliria.

The existence of line equilibria is a surprising dynamical feature which is rarely found in normal
dynamical systems, let alone the theoretical analysis. Through the literature review, we know that, the
line equilibria in a simple SIR model without time delay was discussed in [42, 43] where 2-dimensional
global center manifold is introduced to understand the global dynamical properties of the system. In
[42, 43], Li et al. gave the local stability of each equilibrium on line by analyzing the eigenvalues
and the corresponding eigenvectors, and further proved a 2-dimensional global center manifold which
consist of heteroclinic orbits connecting a pair of equilibria on line. With respect to our model (2.6)
with time delay and four state variables, we can not provide deep theoretical analysis at this stage,
instead, we investigate the rich dynamics by numerical simulations. Next, we will mainly explore and
compare the system with and without rewiring delay.
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4. Numerical simulations

To verify the different dynamical behavior for the model without and with the rewiring delay numer-
ically, we adopt some parameter values from the literature [32, 36] and choose three sets of parameters
corresponding to different number of equilibria in Table 1 to do the simulations.

First we choose the parameter values

N = 1000, n = 2, γ = 0.03, and β = ω = 0.06. (4.1)

When the rewiring takes place without waiting time, i.e. τ = 0, we have C1 = 0,C2 > 0 in Table 1, then
there is a unique positive equilibrium Es = (500, 750, 250) in system (3.1) (See the red point in Figure
2(f)). Numerical result (Figure 2(a)) shows Es is locally asymptotically stable. With certain rewiring
time, i.e.τ , 0, we understand that there are infinite steady states which lie on the line L (See the black
line in Figure 2(f)). To test the variation of number in infected individuals ([I](t)) and the links between
susceptible group ([S S ](t)), with respect to the rewiring time τ, we increase the value of τ gradually to
a critical threshold τ∗. With the fixed parameter values given in (4.1), we have 220 < τ∗ < 230. We can
find that under the same initial condition I0, the long-term dynamical behavior is similar, in the sense
that, it approaches to a steady state on the line L which is drawn in Figure 2(b)-(e), but with different
strengths, that is, different points on L which are the green points Pi, i = 1, 2, 3, 4 in Figure 2(f). While
when the rewiring time crosses the threshold τ∗, we can observe the periodically oscillatory behavior
which are drawn in Figure 3, where Figure 3(a),(c) represent the time histories and the limit cycles are
confirmed in the three dimensional phase space (see Figure 3(b),(d)), where the black line L represents
the equilibria line and the red closed circle is the stable limit cycle centered at an equilibrium at L.

It is interesting to find, from Figures 2 and 3, that (i) with short rewiring time, the infected population
([I]) and their associated links ([S I]) increases at beginning, then reach the steady states gradually,
in opposite with the decreasing of the links between the susceptible population ([S S ]). When the
rewiring time is closing to the critical value τ∗, the trajectories of each state become oscillatory decay
to a steady state; (ii) with rewiring time, depending on the location of the initial condition (left or
right w.r.t. Es), the system approaches to certain steady state on the left or right of the steady state
Es which is associated to instant rewiring respectively; (iii) with the increase of τ after crossing to the
critical value (i.e. τ > τ∗), this oscillation becomes more strong, in the sense that, the steady state loss
the stability with the increasing amplitudes and slower frequencies. Finally the orbits approach to the
stable limit cycle.

To check the existence of two positive equilibria in system (3.1) when there is no rewiring time , we
fix N = 1000, n = 20, β = 0.003, γ = 0.002 and ω = 0.23 , β, the condition C1 > 0, C3 < 0, C4 < 0,
∆ > 0 in Table 1 holds, we can obtain two endemic steady states E1 = (957.8, 3261.1, 638.6) and
E2 = (791.1, 16157, 527.4) by numerical simulations. By choosing the initial condition closing to these
two endemic states, Figure 4(a) shows that all the trajectories approach to the disease-free equilibrium
E0 and are away from E1 and E2, implying that both E1, E2 are unstable, but E0 is stable. In Figure 4(a)
we specify a green curve showing the solution trajectory from initial value I0 = (700, 1000, 9000, 1000)
which is used to do the comparison with different τ. While with the rewiring time τ , 0, system
(2.6) has infinite equilibria on the line L (see Figure 2(f)). With the increase of τ, Figure 4(b)-(e)
present the similar long-term dynamical behavior under the same initial condition I0. We can see that
the numbers of the infected population [I](t) and [S S ](t)/[S I](t) links eventually approach to steady
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Figure 2. With different rewiring delay: (a) τ = 0, showing Es is stable; (b)-(e) with τ =

1, 12, 60, 220, showing the trajectory approaches to a point P1, P2, P3 and P4 on L in (f)
respectively.
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states Pi, i = 1, 2, 3 (green dots) on the line L (see Figure 4(g)), but the time evolutions is different
at beginning: the infected population [I](t) gradually increases; [S S ](t) links increase to a high peak
value, then decrease rapidly; [S I](t) links decreases in the form of oscillatory decay. The possible
reason is that high rewiring rate ω leads to the in the number of S − I links and the increase of S − S
links simultaneously, which further leads to the entire network separated into two connected clusters
of noninfected and infected groups. These two clusters are connected through S − I. As the spread
of infectious disease reduces, S − I links further decreases, so the number of reconnected S − S links
decrease. Figure 4(f) presents the solution trajectories, from the same initial value I0, approach to
different steady state on line L for different rewiring time. In order to observe the final approach of the
trajectories for different τ (green dots in Figure 4(f)) more clear, we intercept and enlarge the part of
Figure 4(f) in Figure 4(g).
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Figure 3. Long-term oscillatory behavior and phase portraits with different τ. (a)(b)τ = 230;
(c)(d) τ = 389.

With other parameter choice, e.g., N = 1000, n = 10, β = 0.003, γ = 0.005, ω = 0.03 , β

and τ = 0, the condition C1 > 0, C3 < 0, C4 < 0, ∆ > 0 is also satisfied in Table 1, we can still
obtain two positive equilibria E1 = (754.6, 2863.1, 1257.6) and E2 = (245.4, 8803.5, 409.0). Different
from the case in Figure 4, we can observe that E1 and E0 are stable, but E2 is unstable (see Figure
5(a) and (b)). This indicates that under these parameters, bistable phenomenon occur in system (3.1).
The green curve in Figure 5(a) is the solution trajectory from initial value I0 = (10, 2000, 300, 7400).
Based on this initial value I0, next, we present the time evolutions of numbers of the infected nodes
[I](t) and [S S ](t)/[S I](t) links by increasing the value of τ gradually to a critical threshold τ∗ with
400 < τ∗ < 418. The long-term dynamical behavior of system (2.6) is given in Figure 5(c)-(g) with
different value of τ, namely eventually approach to certain steady state Pi, i = 1, 2, 3, 4 (the green dots
in Figure 5(g)). Finally when the rewiring time crosses the threshold τ∗, similar to the case shown in
Figure 3, we can observe the periodically oscillatory behavior and stable limit cycle (See Figure 6).
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Figure 4. (a) the stabilities of E0, E1 and E2 are shown by the phase diagram for τ = 0; (b)
showing E0 is stable with τ = 0; With different rewiring delay: τ = 1, 10, 60, (c)-(e) shows
the trajectory approaches to a point P1, P2 and P3 on L in (f) respectively. (g) is an enlarged
part of (f).
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Figure 5. (a) The bistable phenomenon of system (3.1) is shown by phase portrait. (b) E1

is stable when τ = 0; With different rewiring delay: τ = 10, 30, 92, 400, (c)-(f) shows the
trajectory approaches to a point P1, P2, P3 and P4 in (g) respectively.
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Figure 6. Long-term oscillatory behavior and phase portraits with rewiring delay τ = 418.

5. Conclusions and discussions

In the face of the outbreak of infectious disease, people tend to protect themselves from the transmis-
sion of infectious disease by adjusting their behavior, such as cutting off links with infected neighbors
and rewiring with other healthy individuals. In order to better describe the situation that after breaking
the connection with infected person, the susceptible individuals need to take time to look for the other
susceptible persons to rewire, we thus introduce delay in rewiring process and establish a delayed SIS
network model with adaptive rewiring. By theoretical analysis, we find a novel result that, in the sys-
tem, there are infinite equilibria which lie on a line in a high-dimensional state space, which is rarely
existed in the dynamical systems of normal delay epidemic models, the mathematical foundation for
its deep dynamical analysis is lacked. However, the numerical simulations show that, with appropriate
parameters, the system eventually approaches to the steady state on the equilibria line with different
and relatively small rewiring delay, and the stable limit cycle may appear with the increase of rewiring
delay. These results may provide new insights into the study of delayed network epidemic model.
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