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Abstract: Hashimoto’s thyroiditis (HT) is an autoimmune disorder that drives the function of thyroid
gland to the sequential clinical states: euthyroidism (normal condition), subclinical hypothyroidism
(asymptomatic period) and overt hypothyroidism (symptomatic period). In this disease, serum thyroid-
stimulating hormone (TSH) levels increase monotonically, stimulating the thyroid follicular cells
chronically and initiating benign (non-cancerous) thyroid nodules at various sites of the thyroid gland.
This process can also encourage growth of papillary thyroid microcarcinoma. Due to prolonged TSH
stimulation, thyroid nodules may grow and become clinically relevant without the administration of
treatment by thyroid hormone replacement. Papillary thyroid cancer (80% of thyroid cancer) whose
incidence is increasing worldwide, is associated with Hashimoto’s thyroiditis. A stochastic model
is developed here to produce the statistical distribution of thyroid nodule sizes and growth by taking
serum TSH value as the continuous input to the model using TSH values from the output of the patient-
specific deterministic model developed for the clinical progression of Hashimoto’s thyroiditis.

Keywords: Hashimoto’s thyroiditis; thyroid nodules; thyroid cancer; hypothyroidism; thyroid
hormones; thyroid stimulating hormone

1. Introduction

The functional unit in the thyroid gland is the follicle, which consists of follicular cells surrounding
colloid [1]. The size of a follicle depends on the number of cells and the amount of colloid (see
Figure 1). Circulating serum TSH binds to specific thyroid follicular cell surface receptors where
it stimulates the production and secretion of thyroid hormones, triiodothyroxine (T3) and thyroxine
(T4) into the serum [2]. Thyroid hormones help the body with the regulation of metabolic processes,
normal growth and development. In fact, the hormones enter each cell nucleus throughout the body
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and regulate gene transcription. Low levels of T3 and T4 initiate the release of thyrotropin-releasing
hormone (TRH) from the hypothalamus and thyroid stimulating hormone (TSH) from the pituitary.
High levels of T3 and T4 inhibit the release of TRH and TSH (see Figure 2). Serum T3 and T4 are
regulated by the hypothalamic-pituitary-thyroid (HPT) axis through a negative feedback control [1,2].
Each day the healthy thyroid gland produces (15 − 30) µg of T3 and (70 − 90) µg of T4 approximately
[3, 4]. Both hormones are active; however the nucleus of most cells has receptors that have ten fold
greater affinity for T3. Since the body produces less T3, 80% of the T4 is converted to T3 for body’s
requirement [5].

Figure 1. This figure shows a typical follicle from the thyroid gland. It is roughly spherical
in shape with normal follicle cells, thyroid receptors (TSHR), thyroid peroxidase (TPO) and
thyroglobulin (TG) in the colloid.

Figure 2. A negative feedback loop of the hypothalamus-pituitary-thyroid (HPT) axis is
shown in this picture. The thyroid stimulating hormone (TSH) stimulates the thyroid gland
to produce and secrete the hormones, triiodothyrnoine (T3) and thyroxine (T4), which in turn
inhibits the production of TSH. A minus sign indicates the negative feedback.
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Serum TSH regulates the growth of thyroid follicular cells by governing the internal cell division
mechanisms. The normal reference interval of serum TSH levels is approximately (0.4–4) mU/L for
adults with the normal function of the HPT axis [6]. Serum TSH level is often increased in the
hypothyroidism due to the existence of the negative feedback loop in the HPT axis. Hashimoto’s
thyroiditis (HT) is the most common autoimmune disorder of the thyroid gland; it can cause
hypothyroidism and goiter [7, 8]. In HT, the thyroid follicular cells are damaged by the immune
system through humoral and cellular mechanisms with a strong association of genes and
environment [9]. The involvement of humoral mechanism can be verified through a simple blood test
of anti-thyroid peroxidase antibodies (TPOAb) titers. More specifically, TPOAb titers can be
considered as a biomarker for the tissue destructive processes associated with the hypothyroidism
observed in Hashimoto’s and atrophic thyroiditis.

As a result of the destruction of the cells, the functional follicle shrinks and the amount of colloid
is reduced. Importantly, serum TSH levels increase gradually and rise above the upper reference limit,
while thyroid hormone levels can be normal or low. Elevated serum TSH levels continuously
stimulate the thyroid tissue or cells affected by the HT, which could be the main factor responsible for
the development of thyroid nodules (lump or bump) and cancer [10]. Although most thyroid nodules
are benign, some can undergo transformation and become cancerous. To be accurate, the direct
relationship between serum TSH levels and thyroid cancer also exists within the reference interval of
serum TSH itself. This risk intensifies further for TSH levels above the upper reference limit [11–13].
Furthermore, serum TSH levels can be used as an important biomarker for the diagnosis of HT,
nodules and the presence of malignancy in a thyroid nodule [14, 15].

Clinically, a nodule is defined as an abnormal accumulation of thyroid follicular cells at a site
within the thyroid gland. The growth of cells can form a solid or fluid-filled (i.e., cystic) lump.
According to current guidelines, a nodule size greater than 1 cm in diameter should be tested for one
of the clinically stages - suspicious or positive for malignancy [16–18]. A small percentage of nodules
become malignant, but this is considered rare since more than 90% of detected nodules are
benign [19]. Benign thyroid nodules less than 1 cm require a follow-up with frequency of 38 months
as one study reported since benign nodule size increases slowly [20]. When thyroid-pituitary
homeostasis is maintained, the steps leading to nodule formation are not expected to develop and the
chances of nodule development are negligible. In HT, thyroid-pituitary homeostasis is disrupted and
therefore TSH levels are chronically elevated, which leads to thyroid cell hypertrophy (increased
size), hyperplasia (increased number of cells), and some potential for neoplasia (uncontrolled growth
of cells) [21]. Thus, the HT patients are recommended for regular examination of nodule growth.

The ultrasound and fine-needle aspiration biopsy are tests used in thyroid clinics to identify and
examine thyroid nodules [22, 23]. The ultrasound is an imaging test in which sound waves are sent to
take a picture of the gland and the enlarged lymph nodes. The ultrasound estimates the size and
location of the nodule and whether it is solid, fluid-filled or mixed viz solid with a fluid component.
However it cannot accurately differentiate between a benign and cancerous nodule [24]. Solid nodules
that have little fluid or colloid are more likely to be cancerous than are fluid-filled nodules. Still, some
types of solid nodules, such as hyperplastic nodules and adenomas, have too many cells, but the cells
are not cancer cells. So, the fine-needle aspiration cytology (or biopsy) is the best investigation that
can evaluate pre-operatively the malignancy risk of a nodule [23]. The biopsy removes a small sample
of tissue for evaluation under the microscope. More precisely, Rizzo et al state that the fine needle
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aspiration biopsy were considered adequate when a smear contained at least six groups of
well-preserved, well-visualized follicular cells, each group containing more than 10 cells [25].
Papillary microcarcinoma is frequently discovered in nodules less than 1 cm in diameter, often in
tissue removed for treatment of benign disease [26]. The origin of these nodules appear to be related
to the BRAF(V600E) mutation, and may not be initiated by TSH. Although, higher TSH may be
associated with more aggressive malignancy in these BRAF mutations [27].

Thyroid cancer occurs when cells in the gland undergo genetic mutations that allow the cells to
grow, multiply and spread rapidly [21, 28]. There are five types of thyroid cancer: papillary, follicular,
medullary, anaplastic and thyroid lymphoma of which papillary and thyroid lymphoma are associated
with the HT and higher serum TSH [11,29,30]. The types are based on how the cancer cells look under
a microscope inspection. The papillary, follicular and anaplastic cancers arise from the mutations of
follicular cells of the thyroid [31–33]. Anaplastic thyroid cancer is a rare aggressive cancer that is very
difficult to treat and has a median survival time not longer than 6 − 8 months [33]. The medullary
thyroid cancer begins in parafollicular cells called C cells, which produce the hormone calcitonin [34].
Thyroid lymphoma is a rare form of thyroid cancer that begins in the immune system cells in the
thyroid and grows very rapidly [35]. Anaplastic and thyroid lymphoma occur frequently in the older
population. Overall, thyroid cancer is most frequently diagnosed among people aged 45–54 [36] and
the percent of thyroid cancer deaths is highest among people aged 75–84 [36]. In the United States
from 2006 − 2015, the number of new cases of thyroid cancer has been rising on average 3.1% each
year while the number of deaths has been rising on average 0.7% per year [36].

2. An outline of the HT model

Modeling the mechanisms of thyroid physiology coupled with disease process is a way to explore
the underlying complex phenomenon of cancer [37, 38]. In this section, we will provide a brief review
of the construction and results of the Hashimoto’s thyroiditis (HT) model. The modeling of HT is to
explain the clinical progression of euthyroidism → subclinical hypothyroidism → hypothyroidism
due to the destruction of thyroid follicles by the immune system [39]. The model considered four
state variables namely x to represent the concentration of TSH (in mU/L), y to represent the
concentration of FT4 (in pg/mL), z to represent the functional size of thyroid gland (in L) and w to
represent the concentration of TPOAb (in U/mL) respectively. The HT model took the form of the
system of differential equations with initial conditions:

dx
dt

= k1 −
k1y(t)

ka + y(t)
− k2x(t) x(t0) = x0,

dy
dt

=
(k3z(t))x(t)
kd + x(t)

− k4y(t) y(t0) = y0,

dz
dt

= k5

(
x(t)
z(t)
− N

)
− k6z(t)w(t) z(t0) = z0,

dw
dt

= k7z(t)w(t) − k8w(t) w(t0) = w0

(2.1)

where x(t) ≥ 0, y(t) ≥ 0, z(t) > 0 and w(t) ≥ 0.
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Initially, there was one steady state in the model for an appropriate parameter set which
corresponded to the homeostasis or euthyroidism of an individual [38]. After the onset of Hashimoto
disease or the malfunction of the immune system for a prolonged time period, the individual’s steady
state moved away from the euthyroidism - this behavior was captured through the bifurcation analysis
of one parameter k7 in the model while other parameters remained fixed. In the model, k7

corresponded to the production rate of anti-thyroid peroxidase antibodies, a representation of the
malfunction of the immune system. We analytically showed our main result of the model; when
patients’ k7 value was less than k∗7, serum TSH steady state value stayed within the normal reference
limit whereas when k7 value was larger than k∗7, serum TSH steady state value increased above the
upper normal reference limit while free T4 can be normal or low depending upon how high the k7

value was set in the simulation. Notice that k∗7 is a threshold of the system for the progression of
Hashimoto disease. Figure (3) is a bifurcation diagram in which the steady state values of TSH are
shown as k7 varied in the model. These steady state values of TSH can be used as an input for the
stochastic model of nodule formation and development.

Figure 3. Steady state levels of TSH (in mU/L) as k7 varies while other parameters kept fixed
in the model.

3. Concentration to molecules

For a given patient k7 value, the above deterministic model can predict the blood concentration of
TSH after t years of simulation. For example, if a patient k7 = 18.2 and other parameters are fixed as
in paper [38], then the HT model would predict the blood TSH concentration as [TS H] = 7.3 mU/L
after 4 years of simulation. Next, one can convert the blood concentration of TSH into molecules with
a conversion formula stated below [40–42]:

Number of molecules = [TS H]
mU
L
× L ×

1U
1000mU

×
0.0067µg

1U

×
10−9kg

1µg
×

6.022 × 1023kDa
1kg

×
1

30kDa
Suppose the blood concentration of [TS H] = 7.3 mU/L, then the number of TSH molecules is roughly
981786733 in the blood (see Figure 4). One molecule of TSH binds with a receptor protein (TSHR)
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located on the surface of thyroid follicle cell [43] that results in TSH-TSHR pathway. Also, TSH-TSHR
signaling pathway plays a critical role for thyroid cell growth and proliferation in HT. It usually works
through signaling pathways that involve activation of proto-oncogenes and has a role in controlling
cell growth and carcinogenesis [44]. In patients with HT, the number of TSH molecules distributed
to receptor sites at the follicles (affected by HT) is expected to increase stimulation as patients move
through various clinical states. Let Y be a binomial random variable counting the number of successful
first bindings (TSH-TSHR pathways) that can occur on given m independent TSH molecules. So, when
m independent TSH molecules distributed to receptors either binds or misses that follows the binomial
distribution and has the functional form:

f (k) =
m!

(m − k)!k!
pkqm−k, for k = 0, 1, 2, ...,m

where p represents the probability of successful binding to a receptor and q = 1 − p represents the
probability of unsuccessful binding to a receptor. The mean or expected value of a binomial random
variable is E(Y) = mp and the variance of Y is V(Y) = mpq (for more details, see [45]). For instance,
if 53796533 TSH molecules are distributed to thyroid receptors and have 95% chance of binding to
receptors, then there would be on average 51106706 TSH molecules bound to TSHR; in other words
51106706 ligand receptor pathways are successfully established for hormone production and secretion.
In the event of large TSH signaling, each TSH-TSHR pathway poses a threat for mutation or cell
growth. So, all ligand receptor pathways (i.e., TSH-TSHR pathways) are potential growth sites when
there is an over-activation by TSH; in fact a mutation process can take place on these pathways resulting
in nodule formation, TSH-TSHR→ N (benign nodule).

Figure 4. Concentration of TSH (in mU/L) versus the number of TSH molecules.

4. Input rate or distribution

As stated before, nodules appear in the areas of functional follicles that are undergoing immune
attack. Assuming n potential growth sites in the areas of follicles affected by the immune attack,
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consider the distribution of m TSH molecules to those n sites. By applying the Hill dynamics, we can
determine a steady-state approximation for the distribution of m TSH molecules to n receptors with
m specific-binding sites [46, 47]. We first consider the mechanism for multiple binding patterns of a
receptor leading to the nodule formation:

Rm + mTS H 
 RmTS H
λ
−→ N

Herein, N represents a nodule and if Rm represents a receptor with m specific-binding sites and m TSH
molecules are able to bind to the same receptor, then the related dissociation constant Km is:

Km =
[Rm][TS H]m

[RmTS H]

and the Hill equation relates the ratio (λ) of occupied receptor concentration to the total receptor
concentration. That is,

λ =
[RmTS H]

[RmTS H] + [Rm]
=

[TS H]m

Km + [TS H]m

where 0 ≤ λ < 1 and m > 1 represents a dimensionless parameter (the integer value) indicating the
positive cooperativity of the TSHR receptor. Observe that λ is the input rate for the nodule growth in
terms of blood concentration of TSH and for some constant Km. We further assume the total receptor
concentration is directly proportional to total number of functional follicles per given unit volume of
the thyroid gland. Similarly the occupied receptor concentration is directly proportional to the number
of growth sites per given unit volume of the thyroid gland. So, we can extend this rate of nodule
formation in terms of the follicles on the human thyroid gland.

Number of growth sites
Number of functional follicles

= λ =
[TS H]m

Km + [TS H]m

Since there are approximately 315 follicles per 1 square millimeter area of the human thyroid gland
[48], we can further modify and extend the input rate into the surface area level of the gland. It has
been estimated that one TSHR receptor has 3 distinct and discontinuous TSH-binding pockets [49,50].
Therefore, we choose m = 4 to represent positive cooperativity and the birth rate of nodule affected by
HT can be denoted as,

λ(x) =
x4

Km + x4 , where x = [TS H] (4.1)

Next, we denote G(x) as the growth rate of existing nodule affected by HT for any given x [51].

G(x) = 1 − λ(x) =
Km

Km + x4 , where x = [TS H] (4.2)

Here, the threshold value xth = [TS H]th is obtained from the intersection of the cumulative birth and
growth rate of nodules in the follicles. We computed a threshold value for the patient with k7 = 18.2
by running the HT model for 4 years. In the birth rate, the value of Km = 103 was chosen arbitrarily to
show the existence of the threshold (see Figure 5). So, xth ≈ 5.648 mU/L. The survival rate of nodule
can be defined as s(x) = G(x) − λ(x) at a given value of x. That is
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s(x) =


1 − 2λ(x) > 0 x < xth

0 x = xth

1 − 2λ(x) < 0 x > xth

The negative survival rate of nodule implies the birth rate is greater than the growth rate (see Figure 6).

Figure 5. We obtained the threshold value of TSH ≈ 5.648 mU/L at the intersection of the
birth and growth of the nodules per functional follicle of the thyroid gland.

Figure 6. The rates of birth, growth and survival of nodule as TSH varies from 1 to 8 shown
in this figure
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5. Construction of a stochastic model

We construct a stochastic model for the number of thyroid nodules for given TSH since there exists
the natural variance in the population of n growth sites at the follicle cells. The model will be built
based on the following assumptions:

Assumptions

1. Elevated TSH (k7 > k∗7) initiates the birth of thyroid nodule in the follicle cells
2. Elevated TSH (k7 > k∗7) promotes the growth of existing thyroid nodule
3. There are n sites located in the follicle cells where the nodule can be born and grow
4. Exactly one birth can occur in (x, x + ∆x) with probability nλ∆x in a population of n sites
5. Anti-thyroid antibodies do not destroy the nodules (no death)
6. There is no interaction between nodules, so they are Independent

5.1. The initiation of thyroid nodules

Let N(x) denote the discrete random variable for the number of thyroid nodules with associated
probability function

pi(x) = prob{N(x) = i}

where i = n, n + 1, n + 2, .... The probability distribution of thyroid nodules is by letting

p(x) = (pn(x), pn+1(x), ..., pi(x), ...)T

for some TSH value (x). Now, we relate the random variables {N(x)} indexed by x by defining the
probability of a transition from state i to state j, i→ j in TSH ∆t as

p ji(∆x) = prob{N(x + ∆x) = j|N(x) = i}

The stochastic process {N(x)}∞x=1 satisfies the Markov property that means the process at x + ∆x only
depends on the process at the previous step. That is, prob{N(x+∆x)|N(0),N(1), ...,N(x)} = prob{N(x+

∆x)|N(x)}. Since the length of TSH interval ∆x is sufficiently small, so that at most one birth can occur
in (x, x + ∆x), that is to say, i→ i + 1 or i→ i. The transition probabilities can be written in a compact
form as

p ji(∆x) =


λ(x)i∆x j = i + 1
1 − λ(x)i∆x j = i

0 j , i + 1, i

where i = n, n + 1, n + 2, ... and λ(x) represents the birth rate of thyroid nodule (by assumption 1)
whereas G(x) = 1−λ(x) the growth rate of existing nodule (by assumption 2). We constructed the state
diagram using the above assumptions for nodule birth and growth (see Figure 7). The transition matrix
for this Markov chain is

A =



1 − nλ(x)∆x 0 0 0 . . .

nλ(x)∆x 1 − (n + 1)λ(x)∆x 0 0 . . .

0 (n + 1)λ(x)∆x 1 − (n + 2)λ(x)∆x 0 . . .

0 0 (n + 2)λ(x)∆x 1 − (n + 3)λ(x)∆x . . .
...

...
...

...
. . .
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and the state equation can be written as p(x + ∆x) = Ap(x). Upon performing the matrix multiplication
gives the system of equations

pn(x + ∆x) = (1 − nλ(x)∆x)pn(x)
pn+1(x + ∆x) = nλ(x)∆xpn(x) + (1 − (n + 1)λ(x)∆x)pn+1(x)

...

pi(x + ∆x) = (i − 1)λ(x)∆xpi−1(x) + (1 − iλ(x)∆x)pi(x)
...

Next, we let ∆x→ 0 and obtain a system of differential equations. For i = n, we have

p′n(x) = −nλ(x)pn(x) pn(0) = 1 (5.1)

For i = n + 1, n + 2, ..., we have

p′i(x) = (i − 1)λ(x)pi−1(x) − iλ(x)pi(x) pi(0) = 0 (5.2)

Equation (5.1) is the exponential differential equation with the initial probability 1 at TSH x = 0.
Since there are initially n sites in the thyroid, this gives the solution

pn(x) = e−nλ(x)x (5.3)

Equation (5.3) predicts the probability that the thyroid is still at size n at TSH x, that is, the probability
that no births occurred in the interval [0, x]. Using (5.3) with i = n + 1 in (5.2), we obtain a first order
linear differential equation

p′n+1(x) = nλ(x)e−nλ(x)x − (n + 1)λ(x)pn+1(x) (5.4)

Equation (5.4) can be solved using the integrating factor e(n+1)λ(x)x and the initial condition pn+1(0) = 0
for the solution

pn+1(x) = ne−nλ(x)x(1 − e−λ(x)x) (5.5)

By using (5.5) in (5.2), we can find pn+2(x). Continuing on the recursive manner, we can obtain the
general formula for the probability distribution of the number of thyroid nodules at given TSH x value
as,

pi(x) =

(
i − 1
n − 1

)
e−nλ(x)x(1 − e−λ(x)x)(i−n) for i ≥ n (5.6)
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Figure 7. The state diagram for nodule birth and growth.

5.2. Average number of thyroid nodules

To calculate the expected value of number of nodules, we can use the definition of the expected
value of a discrete random variable, that is,

E(N(x)) =

∞∑
i=n

ipi(x)

Differentiating this expression and substitute p′i(x) gives the equation

E′(N(x)) =

∞∑
i=n

ip′i(x)

= λ(x)
∞∑

i=n

i(i − 1)pi−1(x) − i2 pi(x)

= λ(x)
[
n(n − 1)pn−1(x) − n2 pn(x) + (n + 1)(n)pn(x) − (n + 1)2 pn+1(x) + ...

]
= λ(x)

∞∑
i=n

ipi(x) since pn(x) = 0 for i < n

= λ(x)E(N(x))

We obtained the differential equation E′(N(x)) = λ(x)E(N(x)) with initial condition E(N(0)) = n. The
solution to this equation is then the average number of thyroid nodules at TSH x,

E(N(x)) = neλ(x)x where λ(x) =
x4

Km + x4 with Km = 103 (5.7)

Similarly, we can calculate the variance E(N2(x)) = neλ(x)x(eλ(x)x − 1) to provide a measure for the
spread of the nodules.

5.3. Numerical simulation

For all simulation of the HT model, we use the same initial condition (1, 13, 0.015, 1) and
parameter values from Table 1. Notice that Table 1 does not include the value of k7 as it varies
between individuals plus it has been used mainly to provide the clinical progression of Hashimoto
disease. For all simulation of the stochastic model, we use the initial nodule site, n = 1. Using
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Eqs (5.6) and (5.7), our goal in this section is to produce the statistical distribution of number of
thyroid nodules and the mean number of thyroid nodules for given TSH value at each of the clinical
states, euthyrodisim, subclinical and overt hypothyroidism. So, we let k7 = 2 < k∗7 that corresponds to
euthyroidism state of an individual, then run the HT model to obtain TSH output for 4 years with time
step-size of 1 week. The output of TSH did not change from the initial value 1 mU/L, so inputting this
value into the stochastic model with initial number of thyroid nodule, n = 1 predicts its probability
distribution (see Figure 8).

Table 1. Parameter names, values, units and sources.

Names Values Units Sources

k1 5000 mU/L day Literature [52]
k2 16.6 1/day Literature [52]
k3 90.11 pg/mL L day Calculation
k4 0.099021 1/day Literature [52]
k5 1 L3/mU day Simulation
k6 1 mL/U day Simulation
k8 0.035 1/day Literature [53]
ka 0.043 pg/mL Calculation
kd 0.05 mU/L Calculation
N 66.7 mU/L2 Calculation

Figure 8. For the euthyroid patient (k7 = 2), the statistical distribution of number of thyroid
nodules is generated for TSH = 1 mU/L. The mean and standard deviation is shown for the
statistical distribution.

Next, we let k7 = 10 > k∗7 in the HT model, which corresponds to subclinical hypothyroidism state
of an individual, then simulate the model for 4 years with time step-size of 1 week and obtain the
output of TSH values (see Figure 9). Using these TSH values as input, we obtained the birth, growth
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and survival rate of thyroid nodules (see Figure 10). With all this information, the stochastic model can
predict the probability distribution for number of thyroid nodules for various TSH values = 1 mU/L,
1.0142 mU/L, 1.5224 mU/L and 2.4116 mU/L respectively (see Figure 11) and the average number of
thyroid nodules as TSH value varies from 1 to 4 mU/L (see Figure 12). Lastly, we let k7 = 18.2 > k∗7
in the HT model, which corresponds to overt hypothyroidism state of an individual, then simulate the
model for 4 years with time step-size of 1 week and obtain the output of TSH (see Figure 4). For
this case, we already obtained the birth and growth rates with the threshold value xth ≈ 5.648 using
TSH output as input (see Figure 5). So, the stochastic model can predict the probability distribution
for number of thyroid nodules for various given TSH value =1 mU/L, 1.5113 mU/L, 3.633 mU/L and
5.1896 mU/L respectively (see Figure 13) and the average number of nodules for given TSH value
varies from 1 to 7.2 mU/L (see Figure 14).

Figure 9. Elevated TSH is shown if k7 = 10 in the simulation of HT model.

Figure 10. No threshold exists when k7 = 10. That was because the TSH values reached the
steady state concentrations 4 mU/L.
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Figure 11. For the subclinical hypothyroid patient (k7 = 10), the statistical distribution of
number of thyroid nodules is generated for different TSH values = 1 mU/L, 1.0142 mU/L,
1.5224 mU/L and 2.4116 mU/L respectively. The mean and standard deviation is shown for
each statistical distribution.

Figure 12. Over 4 years, the effect of elevated TSH in subclinical hypothyroidism.
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Figure 13. For the hypothyroid patient (k7 = 18.2), the statistical distribution of number of
thyroid nodules is generated for different TSH values = 1 mU/L, 1.5113 mU/L, 3.633 mU/L
and 5.1896 mU/L respectively. The mean and standard deviation is shown for each statistical
distribution.

Figure 14. Over 4 years, the effect of elevated TSH in overt hypothyroidism.
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6. Growth of the largest thyroid nodule

After the birth of a nodule, we can focus on its size and growth at areas of the thyroid gland affected
by HT. The size of largest thyroid nodule in terms of volume has the reference range approximately
(0.27–1.71) mL [19]. The size of largest thyroid nodule depends on the functional size of the thyroid
gland and its rate of birth. We can compute the size of largest thyroid nodule (in mL) denoted by L(x, z)
from the following distribution.

The size of the largest thyroid nodule
The functional size of the thyroid gland

=
x4

Km + x4

i.e. L(x, z) =
zx4

Km + x4 (6.1)

where z is the functional size of the thyroid gland (in mL) can be obtained from the HT model for
any autoimmune patient. The marginal probability density function can be computed for simulation by
taking the derivative on both sides of Eq (6.1) with respect to x, that is,

dL
dx

=
4zKmx3

Km + x4

Similarly, the marginal probability density function can be computed by taking the derivative on both
sides of Eq (6.1) with respect to z, that is,

dL
dz

=
x4

Km + x4

To measure change in the size of largest thyroid nodule, we analyze the nodule size distribution for
given x = x0 and z varies or for given z = z0 and x varies that can be written in the following manner:

Nodule =


Growth if ∆L(x, z) > 0
Shrinkage if ∆L(x, z) < 0
Stable if ∆L(x, z) = 0

where L(x0, z0) is the baseline size of the largest thyroid nodule. Significant growth has been defined
as an increase of 20% of the baseline size of the nodule [19].

6.1. Numerical simulation of nodule growth

Using the output from the HT model in (6.1), we can obtain the distribution of nodule size (in mL)
for the specific TSH value or the functional size of thyroid gland, the results can be visualized through
a histogram. Generally, the existing nodule is likely to grow, mature and possibly become cancerous in
the event of large signals of TSH. So, our goal in this section is to generate the frequency of the nodule
size with the output from the HT model for the same patients used in the previous section. As with
the first case scenario, we simulate the HT model for 4 years with the value of k7 = 10 and obtain the
output of TSH and the functional size of the thyroid gland. By using the output of functional size of
thyroid gland in (6.1), we can produce the distribution of thyroid nodule size for a given value of x (see
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Figure 15). As we expected, the nodule size increases significantly when TSH value goes up. As with
the second case scenario, we simulate the HT model for 4 years with the value of k7 = 18.2 and obtain
the output of TSH and the functional size of the thyroid gland. We noted again as TSH increases,
the nodules become large in size which displays the significant growth that can be seen through the
histogram (see Figure 17). Similarly, we can produce the distribution of thyroid nodule size for a given
value of the functional thyroid size (say z = 15 mL) and using the output of TSH in (6.1). We observed
the frequency of largest thyroid nodule size increases as the effect of increasing TSH (see Figure 16).

(a) TSH=1 mU/L (b) TSH=4.061 mU/L

Figure 15. For the subclinical hypothyroid patient (k7 = 10), thyroid nodule size increases
as TSH increases.

(a) z=15 mL and k7 = 10 (b) z=15 mL and k7 = 18.2

Figure 16. The frequency of largest thyroid nodule size increases as TSH increases.
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(a) TSH=1 mU/L (b) TSH=7.2719 mU/L

Figure 17. For the hypothyroid patient (k7 = 18.2), thyroid nodule size increases as TSH
increases.

6.2. The incidence function of cancer nodules

Let xN be the TSH value that a cancer nodule develops for the first time given that there are no
cancer nodules at x0. We now denote hxN (x) be the probability density function (pdf) of xN and λxN (x)

the cumulative distribution function (cdf) of xN so that hxN (x) =
dλxN

dx
. Then, we define the incidence

function I(x) of cancer nodule onset at a given x as

I(x) = lim
∆x→0

P{x ≤ xN ≤ x + ∆x|xN ≥ x}
∆x

=
hxN (x)

1 − 2λxN (x)

=
hxN (x)
sxN (x)

since sxN (x) = 1 − 2λxN (x)

= −
d
dx

[ln(sxN (x))]

Using λxN (x) from Section (4), we have hxN (x) =
4Kmx3

(Km + x4)2 and sxN (x) =
(Km + x4)
Km − x4 . Therefore,

I(x) =



4Kmx3

(Km − x4)(Km + x4)
> 0 if x < xth

D.N.E if x = xth

4Kmx3

(Km − x4)(Km + x4)
< 0 if x > xth

(6.2)

For the hypothyroid patient with k7 = 18.2, we plotted the incidence function for TSH value below
and above the threshold value (see Figure 18). When x < xth, the cancer incidence on the nodule
increases however when x > xth the cancer is initiated on the nodule. Next, the probability distribution
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function at xN can be expressed in terms of the incidence function of the cancer nodule,

hxN (x) = I(x)sxN (x)

= I(x)e−
∫ x

x0
I(u)du for x ≥ x0

(6.3)

Using the formulas (6.2) and (6.3) for given I(x), one can derive the pdf and the survival function.
Moreover, we can determine the average number of cancer nodules at xN over the interval x0 ≤ xN ≤ x.
That is,

E[xN] =

∫ x

x0

xNhxN (x)dxN (6.4)

Figure 18. For the hypothyroid patient (k7 = 18.2), the thyroid cancer incidence rises below
the threshold value of TSH (x < xth). However the TSH past the threshold value means the
cancer is already developed in the nodules.

7. Discussion and conclusion

In this article, we studied via modeling an impact of delaying treatment in patients with Hashimoto’s
thyroiditis until the clinical signs and symptoms appear and become evident. Serum TSH is increasing
in Hashimoto disease, which is the main clinical indicator and a substitution factor for the destruction
process initiated by the immune system. In general, the patients with this disease go through one of the
clinical progressions, from euthyroidism to euthyroidism, euthyroidism to subclinical hypothyroidism,
or euthyroidism to subclinical hypothyroidism and then overt hypothyroidism. Basically, these are
three clinical mechanisms typically seen in Hashimoto patients. A consequence of increasing serum
TSH encourages the birth and growth of thyroid nodules on these patients, which can then become
suspicious and malignant. So, we used serum TSH as a continuous input into the stochastic model to
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mimic the nodule birth and growth process when no treatment was administered to control the rise of
serum TSH.

We first simulated our deterministic model of Hashimoto’s thyroiditis and the output of the clinical
progression depending upon the patient-specific parameter k7 value. More precisely, we simulated the
model for 4 years with a time step-size of 1 week and obtained the output of TSH and the functional
size of the thyroid gland for specific k7 value progressing to euthyroidism, subclinical hypothyroidism
and overt hypothyroidism. Second, we used the weekly TSH output values to construct the input
distribution of the birth and growth rate for the stochastic model, which can then produce the
probability distribution for the thyroid nodules’ number, size (in terms of mL) and growth for a given
TSH value of a patient. The input distribution of thyroid nodule was determined through the Hill
dynamics with positive cooperativity. Third, we calculated the survival rate of a thyroid nodule for the
given TSH value of a patient. Finally, we obtained a patient-specific threshold or cutoff value (xth) of
TSH at the intersection of the birth and growth rate of thyroid nodules. The threshold on TSH values
can play an important role in the initiation of thyroid microcarcinoma.

In summary, two mathematical models have been used to understand the role of TSH in thyroid
oncogenesis and the increased risk of cancer. The models are patient-specific; it can help us study the
association of Hashimoto’s thyroiditis and papillary carcinoma through serum TSH and the functional
size of the thyroid gland. The results involving the rate of production of TPOAb (k7) and threshold on
TSH can help with the clinical decision such as ordering the fine-needle aspiration cytology to evaluate
the malignancy risk of a nodule. For example, when the production rate of TPOAb is above the critical
value (k7 > k∗7) and the serum TSH value is below the threshold (x < xth), the stochastic model can
predict the distribution of thyroid nodule size and its growth. On these nodules, the incidence of
thyroid carcinoma increases as serum TSH increases but there is no need for the fine-needle aspiration
examination. When k7 > k∗7 and x > xth, the nodules may already became cancerous and the results
recommend the fine-needle aspiration examination. Before the start of hormone replacement therapy,
the two models can be used for testing assumptions that exist between the thyroid carcinoma and
Hashimoto’s thyroiditis. The major contribution of this paper is setting up the foundation for the
patient-specific TSH cutoff value for monitoring the malignancy risk of papillary carcinoma.
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