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1． Introduction 

With continuous growth of economy, transportation industry is also developing at high speed 
and road mileage in the world is increasing. While total length of road is increasing, old roads are 
slowly becoming damaged over time and road maintenance departments in various areas are facing 
increasing maintenance demands. 

Finding damages of road surface is a necessary step before road maintenance department 
perform repair work on road surface. Traditionally, road damage detection is mainly through manual 
search, which is extremely time-consuming and labor-intensive. A scheme that can easily find road 
damage is urgently needed to be developed. In fact, there have some scholars [1] researched this 
problem previously. At present, automatic detection of road damage mainly through three methods of 
laser, radar and vision. 

In 2006, Hinton et al. proposed the concept of deep learning [2]. Since then, technology based 
on deep learning have begun to develop rapidly. Research and product development of computer 
vision based on deep neural network are rapidly emerging. Using image processing technology and 
deep neural network, a new round of exploration and practice has been carried out by scholars [3,4] 
on scheme of road damage detection. 

In this paper, an embedded system is designed based on SSD object detection method proposed 
by W. Liu et al. [5], MobileNet object classification method proposed by A. G. Howard et al. [6], 
road damage image dataset proposed by H. Maeda et al. [4]. Main processor of the embedded system 
is Rockchip RK3399Pro SoC which integrates a separate neural processing unit (abbr. NPU). It runs 
an object detection model that can detect road damages through common camera. When road damage 
is detected, the system can automatically acquire geographic location information through GPS 
module and save related data in memory including image and location information. The system has 
been tested to achieve a useful detection recall rate with low economic cost. 

In the following section 2, this paper will introduce some related work, including various 
schemes of road damage detection proposed by previous works and some current object detection 
methods based on deep convolutional neural network. In section 3, we will from top to bottom 
introduce overall architecture, detection process and core object detection method of our embedded 
system. In section 4, this paper will present performance test results of the system we designed and 
compare it with a previous work. 

2． Related works 

2.1. Road damage detection 

Maintenance departments of highways and other high-level roads usually have sufficient 
funds to use expensive specialty devices to detect road damages. These expensive specialty 
devices usually can achieve very good accuracy [1,7]. Scholars began trying to use various 
schemes to detect road damages many years ago. After a long period of development, some 
products for road damage detection have come out, such as JG-1 laser 3-D road condition 
intelligent detection system [7], ZOYON-RTM road detection vehicle system [1], road condition 
rapid detection system based on line sweep technology CiCS [1] and so on. These devices 
typically can achieve an accuracy of over 95% and are widely used in practice. 
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2.2.1. Faster R-CNN: Faster regions with CNN feature 

R-CNN is an object detection algorithm proposed by R. Girshick et al. [8] in 2013. This 
algorithm can be said to be the first pioneering work of object detection using deep learning. After 
development of R-CNN and Fast R-CNN, S. Ren et al. proposed Faster R-CNN [9] in NIPS2015. 
Faster R-CNN unifies four basic steps of object detection (proposal generation, feature extraction, 
region classification, region refinement) into one same deep neural network framework, to reduce 
repetitive computation and greatly improve running speed compared with previous generations. 
However, compared with other common networks, Faster R-CNN is still running more slowly and 
not suitable for running on mobile poor-performance embedded platforms. 

2.2.2. YOLO v3: You only look once v3 

YOLO is an object detection algorithm proposed by J. Redmon et al. [10] in CVPR2016. Core 
idea of YOLO is to transform object detection into a regression problem to solve and based on a 
single end-to-end network to complete the object location and category output from the original 
image input. YOLO v3 [11] is the third version of YOLO, which has a fast running speed but is less 
sensitive to small object detection such as road cracks. 

2.2.3. SSD: Single shot multiBox detector 

SSD is an object detection algorithm proposed by W. Liu et al. [5] in ECCV2016. It has obvious 
speed advantage compared with Faster R-CNN and obvious accuracy advantage compared with 
YOLO. 

Comprehensively evaluated strengths and weaknesses of each model, combined with the 
effectiveness of training and detection of road damage dataset, we select to use SSD as our object 
detection network. 

3． Proposed method 

3.1. System architecture 

L. Zhang et al. and H. Maeda et al. have tried to use a common Android phone for road damage 
detection [3,4]. After our tests, computing and imaging performance of smartphones are not so 
satisfying with road damage detection. Considering that more suitable computing chips and cameras 
can be selected, we decided to design a dedicated embedded system. The embedded system 
architecture we proposed is as follows. 

Main processor of this embedded system is Rockchip RK3399Pro SoC, which is connected to a 
High-Dynamic-Range (abbr. HDR) camera for capturing road images and a GPS module for 
acquiring geographical location. It is also connected to peripherals such as touch screen to facilitate 
user operation. 

We select RK3399Pro SoC as main processor cause the chip integrates a separate NPU which can 
accelerate computation of deep neural network. The NPU has computing performance of 2.4 TOPs. 
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The input is an image captured by camera (e.g., the image size captured by camera in our test 
system is 1920 × 1080), then the image is resized to 300 × 300 using OpenCV and it is fed into the 
SSD-MobileNet model running on NPU for inferencing. Decode the computing result from NPU and 
do threshold segmentation, a matrix is obtained, which contains the boundary boxes of road damages 
and their respective confidence levels, indicating which locations may have targets. However, the 
boundary boxes usually have a large number of repetitive results, so it is necessary to perform 
non-maximum suppression and the results with almost the same location but low confidence scores 
are removed, then the final inferencing results are obtained. 

4． Experimental evaluation 

4.1. Experiment on testset 

Generally, we can use benchmarks such as precision and recall [13] to evaluate performance of 
an object detection model. 

For such models, Confusion Matrix [13] between prediction results and ground truth can be 
represented as shown in Table 1.  

Table 1. Prediction results confusion matrix [13]. 

Prediction 
Truth Positive Negative 

True 
True Positive 

(TP) 
False Negative 

(FN) 

False 
False Positive 

(FP) 
True Negative 

(TN) 

Precision is defined as: 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
 

That is, in ௉ܰ images which the system thought contain road damages, about ௉ܰ ⋅  ݊݋݅ݏ݅ܿ݁ݎܲ
images of them contain true road damages. A high precision rate also means a low false positive rate. 

Recall is defined as: 

ܴ݈݈݁ܿܽ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
 

That is, when there are ்ܰ  damages on road, the system can detect about ்ܰ ⋅ ܴ݈݈݁ܿܽ 
damages of them. A high recall rate also means a low false negative rate. 

SSD-MobileNet object detection model densely samples the whole inputted image, then 
compute confidence score of objects to be detected in each boundary box. 

We can set a threshold manually, when score outputted by the model is higher than threshold, it 
is considered that there are road damages existing in image. 
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road detection to 1.5 times of their system. However, when we improve recall, we sacrifice a certain 
precision and there are more false positive images. After each detection, the saved images need to be 
manually reviewed to remove about two-thirds images with false positive.  

Several pictures of the system saved in the test are shown in Figure 10.  

5． Conclusions 

Referenced to the road damage detector [4] designed by H. Maeda et al. on Android smartphone, 
we retrained an object detection model, then made some improvement and designed a road damage 
detector running on the RK3399Pro embedded platform. Through analyzing P-R Curve, we adjusted 
the confidence score threshold and sacrificed a certain precision to achieve a higher recall. At the 
same time, we also transplanted the object detection model for road damage detection to an 
embedded platform which is nearly as cheap as Android smartphone but has a dedicated processing 
unit so it can compute neural network and process images faster. We also use HDR camera instead of 
common camera to make the system suitable for more lighting conditions. 

Table 2. Comparison of some schemes. 

Scheme 
Specialized High-Level Detectors 

(e.g. JG-1 [7]) 

Detectors Run on Android 

Smartphone [3,4] 
Our Method 

Price High (almost >$30000) ~$300 ~$300 

Precision >95% ~79% ~32.86% 

Recall >95% ~50% ~76.28% 

Time Consumption 

on One Frame 
– ~1.5 s ~352 ms 

However, due to limited size of dataset and limited algorithm performance, similar to the 
schemes using smartphones, our low-cost system has lower performance than specialized high-level 
detectors. Our system currently only detects about 76% of true road damages and manual reviewing 
to remove false positive results is needed after each detection task. Comparison of some schemes is 
shown in Table 2. 

Road damage detection is different from detection of common objects such as cats and dogs. 
Road damage detection is less popular and there is no large-size dataset like MS COCO [14], while 
one of the ways to improve performance of deep learning model is to improve size of dataset. 

In the future, low-cost road damage detectors using similar schemes will continue to be 
improved before they can be put into real applications. 
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