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Abstract: In this paper, an age-structured HIV-1 infection model with CTL immune response is
investigated. In the model, we consider the infection age (i.e. the time that has elapsed since an
HIV virion has penetrated the cell) of infected T cells. The asymptotic smoothness of the semi-
flow generated by the system is established. By calculation, the immune-inactivated reproduction rate
R0 and the immune-activated reproduction rate R1 are obtained. By analyzing the corresponding
characteristic equations, the local stability of an infection-free steady state and a CTL-inactivated
infection steady state of the model is established. By using the persistence theory for infinite
dimensional system, the uniform persistence of the system is established when R1 > 1. By means
of suitable Lyapunov functionals and LaSalle’s invariance principle, it is shown that if R0 < 1, the
infection-free steady state is globally asymptotically stable; if R1 < 1 < R0, sufficient conditions
are derived for the global stability of the CTL-inactivated infection steady state; if R1 > 1,
sufficient conditions are obtained for the global attractivity of the CTL-activated infection steady state.
Numerical simulations are carried out to illustrate the feasibility of the theoretical results.
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1. Introduction

Human immunodeficiency virus (HIV) is a pathogen that infects T-helper cells of the immune
system and can cause Acquired Immune Deficiency Syndrome (AIDS) [1]. These are white blood
cells that move around the body, detecting faults and anomalies in cells as well as infections. When
HIV targets and infiltrates these cells, it reduces the body’s ability to combat other diseases. This
increases the risk and impact of opportunistic infections and cancers. In past decades, many works
have been developed for HIV-1 infection using simple differential equation models (see, for
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example, [2–8]). Let x, y and v denote the concentrations of uninfected target cells (i.e. cells
susceptible to HIV-1 infection), productively infected cells, and free virions, respectively. A basic
mathematical model describing HIV-1 infection dynamics has been studied in [4, 8]:

ẋ(t) = Λ − dx(t) − βx(t)v(t),
ẏ(t) = βx(t)v(t) − ay(t),
v̇(t) = ky(t) − uv(t),

(1.1)

where uninfected cells are produced at a rate Λ and die at rate dx per target cell, and become infected
at rate βxv, where β is the rate constant describing the infection process; infected cells are produced at
rate βxv and die at rate ay; free virions are produced from infected cells at rate ky and are removed at
rate uv.

We note that in system (1.1), the death rate and virus production rate of infected cells are both
assumed to be constant. In reality, as argued by Nelson et al. [9], the production of new virus
particles(virions) by an infected cell does not occur at a constant rate, but rather ramps up as viral
proteins and unspliced viral RNA accumulate within the cytoplasm of an infected cell. In [9], in order
to describe this phenomenon, by considering the variations in the death rate of productively infected
T cells and the productions rate of viral particles as a function of the length of time a T cells has been
infected, Nelson et al. developed and analyzed the following age-structured within-host HIV-1
infection model:

Ṫ (t) = s − dT (t) − βT (t)V(t),
∂T ∗(a, t)

∂t
+
∂T ∗(a, t)
∂a

= −µ(a)T ∗(a, t),

V̇(t) =

∫ ∞

0
p(a)T ∗(a, t)da − uV(t),

(1.2)

with boundary condition T ∗(0, t) = βT (t)V(t). In system (1.2), T ∗(a, t) denotes the density of infected
T cells of infection age a (i.e. the time that has elapsed since an HIV virion has penetrated the cell)
at time t, µ(a) is the age-dependent per capita death rate of infected cells, p(a) is the viral production
rate of an infected cell with age a. In [9], Nelson et al. discussed the local stability of the nontrivial
equilibrium solution and provided a general stability condition for models with age structure. In [10],
by constructing suitable Lyapunov functions, Huang et al. established the global dynamical properties
for Nelson’s age-structured model without (or with) drug treatment. In [11], Rong et al. considered
two models with age-of-infection and combination therapies involving reverse transcriptase, protease,
and entry/fusion inhibitors. In [12], considering the infection rate of microparasitic infections is an
increasing function of the parasite dose, Xu et al. further investigated a within-host HIV-1 infection
model with saturation incidence and age-since-infection structure for infected cells. Recently, great
attention has been paid by many researchers to age-structured model of HIV infection due to their
greater flexibility in exploring fundamental issues of viral production and death, and allow coupling of
biological processes happening on different time scales (see, for example, [10–17]).

It is worth noting that the effect of immune response is ignored in the models above. However, in
most virus infections, cytotoxic T lymphocytes (CTLs) play a critical role in cell-mediated immunity
by regulating the functions of other immune cells (such as the B cells and macrophages) and attacking
diseased cells and tumors [18]. For HIV-1 infection, the main clinical indicators of that HIV-1
positive patient are in the follow up both the viral load and the CD4+T cells count in blood plasma,
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therapy is started, make a portion to the immune cells to be toxic thereby introducing toxicity in the
immune system of the individual [19]. In [20], Cao et al. have shown that CTL immune response is
often associated with better virus control and slower disease progression during the early stage of
HIV infection. In [4], in order to discuss the effect of the population dynamics of viral infection with
CTL immune response, Nowak et al. proposed the basic HIV-1 infection model with immune
response. At present, there are few works on global dynamics in the age-structured within-host HIV-1
infection model with CTL immune response [21, 22].

Motivated by the works of Nelson et al. [9], Nowak et al. [4] and Regoes et al. [23], in the present
paper, we are concerned with the effects of age-structured, CTL immune response and saturation
incidence on the dynamics of HIV-1 infection. To this end, we consider the following HIV-1 infection
model:

ẋ(t) = Λ − dx(t) −
βx(t)v(t)
1 + αv(t)

,

∂y(a, t)
∂t

+
∂y(a, t)
∂a

= −µ(a)y(a, t) − p(a)y(a, t)z(t), a > 0,

v̇(t) =

∫ ∞

0
k(a)y(a, t)da − uv(t),

ż(t) = z(t)
∫ ∞

0
c(a)y(a, t)da − bz(t),

(1.3)

with boundary condition

y(0, t) =
βx(t)v(t)
1 + αv(t)

, (1.4)

and initial condition

X0 := (x(0), y(·, 0), v(0), z(0)) =
(
x0, y0(·), v0, z0

)
∈X , (1.5)

where X = R+ × L1
+(0,∞) × R+ × R+, L1

+(0,∞) is the set of all integrable functions from (0,∞) into
R+ = [0,∞). In system (1.3), x(t) represents the concentration of uninfected target T cells at time t,
y(a, t) denotes the density of infected T cells of infection age a at time t, v(t) denotes the concentration
of infectious free virion at time t, and z(t) denotes the concentration of CTLs at time t. The definitions
of all parameters in system (1.3) are listed in Table 1.

In the sequel, we further make the following assumptions.

(H1) c, k, p, µ ∈ L∞+ (0,∞) with essential upper bounds c̄, k̄, p̄ and µ̄, respectively.
(H2) There are positive constants µ0, µ1, b̄ and satisfying µ0 ≤ d, b̄ = b − c̄ max

{
Λ
µ0
, ‖X0‖X

}
and µ1 =

min
{
µ0, u, b̄

}
. µ(a) is a bounded function on R+ satisfying µ(a) ≥ µ0 for a ≥ 0.

(H3) For any a > 0, there exist ak, ac > a such that k(a) is positive in a neighbourhood of ak and c(a) is
positive in a neighbourhood of ac.

Using the theory of age-structured dynamical systems introduced in [24, 25], one can show that
system (1.3) has a unique solution (x(t), y(·, t), v(t), z(t)) satisfying the boundary condition (1.4) and
the initial condition (1.5). Moreover, it is easy to show that all solutions of system (1.3) with the
boundary condition (1.4) and the initial condition (1.5) are defined on [0,+∞) and remain positive for
all t ≥ 0. Furthermore, X is positively invariant and system (1.3) exhibits a continuous semi-flow
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Φ : R+ ×X →X , namely,

Φt(X0) = Φ(t, X0) := (x(t), y(·, t), v(t), z(t)) , t ≥ 0, X0 ∈X . (1.6)

Given a point (x, ϕ, v, z) ∈X , we have the norm ‖(x, ϕ, v, z)‖X := x +
∫ ∞

0
ϕ(a)da + v + z.

Table 1. The definitions of the parameters in system (1.1).

Parameter Description
Λ The recruitment rate of healthy T cells
d The per capita death rate of uninfected cells
u Clearance rate of virions
α Saturation constant
β The rate at which an uninfected cell becomes infected by an infectious virus
a Age of infection, that is, the time since an HIV virion penetrated cell
b The death rate of CTL cells
µ(a) The age-dependent per capita death rate of infected cells with age a
k(a) The viral production rate of infected cells with age a
p(a) The killing rate of infected cells with age a
c(a) The proliferate rate of virus-specific CTL cells with age a

The organization of this paper is as follows. In the next section, we establish the asymptotic
smoothness of the semi-flow generated by system (1.3). In Section 3, we calculate the
immune-inactivated reproduction rate and the immune-activated reproduction rate and discuss the
existence of feasible steady states of system (1.3) with the boundary condition (1.4). In Section 4, by
analyzing the corresponding characteristic equations, we study the local asymptotic stability of an
infection-free steady state and a CTL-inactivated infection steady state of system (1.3), respectively.
In Section 5, we show that if the immune-activated reproduction rate is greater than unity, system
(1.3) is uniformly persistent. In Section 6, we are concerned with the global stability (attractivity) of
each of feasible steady states of system (1.3) by means of Lyapunov functionals and LaSalle’s
invariance principle. In Section 7, numerical examples are carried out to illustrate the feasibility of
theoretical results. A brief conclusion is given in Section 8 to end this work.

2. Boundedness and Asymptotic smoothness

In order to discuss the global dynamics of system (1.3) with the boundary condition (1.4), in this
section, we are concerned with the boundedness of solutions of system (1.3) and the asymptotic
smoothness of the semi-flow {Φ(t)}t≥0 generated by system (1.3).

2.1. Boundedness of solutions

In this subsection, we prove the boundedness of semi-flow {Φ(t)}t≥0. Denote

‖X0‖X = x0 +

∫ ∞

0
y0(a)da + v0 + z0
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and
N(t) = ‖Φ(t, X0)‖X = x(t) +

∫ ∞

0
y(a, t)da + v(t) + z(t).

Proposition 2.1. Let Φt be defined as in (1.6). Then the following statements hold.

(i) d
dt‖Φt(X0)‖X ≤ Λ + k̄ max

{
Λ

µ0
, ‖X0‖X

}
− µ1N(t) for all t ≥ 0;

(ii) ‖Φt(X0)‖X ≤ max
{

1
µ1

[
Λ + k̄ max

{
Λ

µ0
, ‖X0‖X

}]
, ‖X0‖X

}
for all t ≥ 0;

(iii) lim supt→+∞ ‖Φt(X0)‖X ≤
1
µ1

[
Λ + k̄ max

{
Λ

µ0
, ‖X0‖X

}]
;

(iv) Φt is point dissipative: there is a bounded set that attracts all points in X .

Proof. Let Φt(X0) = Φ(t, X0) := (x(t), y(·, t), v(t), z(t)) be any nonnegative solution of system (1.3)
with the boundary condition (1.4) and the initial condition (1.5). We derive from system (1.3) that

d
dt

(
x(t) +

∫ ∞

0
y(a, t)da

)
=Λ − dx(t) −

βx(t)v(t)
1 + αv(t)

− y(a, t)|∞0

−

∫ ∞

0
(µ(a) + p(a)z(t)y(a, t)da

≤Λ − µ0

(
x(t) +

∫ ∞

0
y(a, t)da

)
.

(2.1)

The variation of constants formula implies

x(t) +

∫ ∞

0
y(a, t)da ≤

Λ

µ0
− e−µ0t

(
Λ

µ0
− ‖X0‖X

)
,

which yields

x(t) +

∫ ∞

0
y(a, t)da ≤ max

{
Λ

µ0
, ‖X0‖X

}
(2.2)

for all t ≥ 0. We derive from Eq (2.2) and the third and fourth equations of system (1.3) that

dv(t)
dt
≤ k̄ max

{
Λ

µ0
, ‖X0‖X

}
− uv(t),

dz(t)
dt
≤ c̄ max

{
Λ

µ0
, ‖X0‖X

}
z(t) − bz(t).

(2.3)

It follows from Eqs (2.1) and (2.3) that

d
dt

N(t) ≤Λ − µ0

(
x(t) +

∫ ∞

0
y(a, t)da

)
+ k̄ max

{
Λ

µ0
, ‖X0‖X

}
− uv(t) − b̄z(t)

≤Λ + k̄ max
{

Λ

µ0
, ‖X0‖X

}
− µ1N(t).

(2.4)

Again, using variation of constants formula we have from Eq (2.4) that

N(t) ≤ max
{

1
µ1

[
Λ + k̄ max

{
Λ

µ0
, ‖X0‖X

}]
, ‖X0‖X

}
Mathematical Biosciences and Engineering Volume 16, Issue 6, 7850–7882.
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for all t ≥ 0. This completes the proof.
The following results are direct consequences of Proposition 2.1.

Proposition 2.2. If X0 ∈X and ‖X0‖X ≤ K for some K ≥
1
µ1

[
Λ + k̄ max

{
Λ

µ0
, ‖X0‖X

}]
, then

x(t) ≤ K,
∫ ∞

0
y(a, t)da ≤ K, v(t) ≤ K, z(t) ≤ K (2.5)

for all t ≥ 0.

Proposition 2.3. Let C ∈X be bounded. Then

(1) Φt(C) is bounded;
(2) Φt is eventually bounded on C.

2.2. Asymptotic smoothness

In this subsection, we show the asymptotic smoothness of the semi-flow {Φ(t)}t≥0.
Denote

π(a) = e−
∫ a

0 (µ(s)+p(s)z)ds, a ∈ R+. (2.6)

It follows from (H1) and (H2) that 0 < e−(µ̄+ p̄K)a ≤ π(a) ≤ e−µ0a for all a ≥ 0. Clearly, π(a) is a
deceasing function.

Let (x(t), y(·, t), v(t), z(t)) be a solution of system (1.3) with the boundary condition (1.4) and the
initial condition (1.5). Integrating the second equation of system (1.3) along the characteristic line
t − a =const., we have

y(a, t) =


L(t − a)π(a), 0 ≤ a < t,

y0(a − t)
π(a)

π(a − t)
, 0 ≤ t ≤ a,

(2.7)

where L(t) := y(0, t) =
βx(t)v(t)
1+αv(t) .

Using a similar argument as that in [12], it’s easy to verify the following result.

Proposition 2.4. The function L(t) is Lipschitz continuous on R+.

Before giving our main results, we need the following Lemmas.

Lemma 2.1. [26] The semi-flow Φ : R+ × X+ → X+ is asymptotically smooth if there are maps
Θ,Ψ : R+ ×X+ → X+ such that Φ(t, x) = Θ(t, x) + Ψ(t, x) and the following hold for any bounded
closed set C ⊂X+ that is forward invariant under Φ:

(1) limt→+∞ diamΘ(t,C) = 0;
(2) there exists tC ≥ 0 such that Ψ(t,C) has compact closure for each t ≥ tC.

Lemma 2.2. [26] Let C be a subset of L1(R+). Then C has compact closure if and only if the following
assumptions hold:

(i) sup f∈C

∫ ∞
0
| f (a)|da < ∞;

(ii) limr→∞

∫ ∞
r
| f (a)|da = 0 uniformly in f ∈ C;
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(iii) limh→0+

∫ ∞
0
| f (a + h) − f (a)|da = 0 uniformly in f ∈ C;

(iv) limh→0+

∫ h

0
| f (a)|da = 0 uniformly in f ∈ C.

By applying Lemmas 2.1 and 2.2, we now prove the asymptotic smoothness of the semiflow Φ

generated by system (1.3).

Theorem 2.1. The semi-flow Φ generated by system (1.3) is asymptotically smooth.

Proof. We first decompose the semi-flow Φ into two parts: for t ≥ 0, let
Ψ(t, X0) := (x(t), ỹ(·, t), v(t), z(t)) ,Θ(t, X0) :=

(
0, φ̃y(·, t), 0, 0

)
, where

ỹ(a, t) =

L(t − a)π(a), 0 ≤ a ≤ t,

0, 0 ≤ t < a,

φ̃y(a, t) =


0, 0 ≤ a ≤ t,

y0(a − t)
π(a)

π(a − t)
, 0 ≤ t < a.

(2.8)

Clearly, we have Φ = Θ + Ψ for t ≥ 0.

Let C be a bounded subset of X and K >
[
Λ+ k̄ max{ Λ

µ0
, ‖X0‖X }

]/
µ1 the bound for C. Let Φ(t, X0) =

(x(t), y(·, t), v(t), z(t)), where X0 = (x0, y0(·), v0, z0) ∈ C. Then

‖Θ(t, X0)‖ = ‖φ̃y(·, t)‖L1 =

∫ ∞

0
|φ̃y(a, t)|da

=

∫ ∞

t
y0(a − t)

π(a)
π(a − t)

da.
(2.9)

Letting a − t = σ, it follows from (2.9) that

‖φ̃y(·, t)‖L1 =

∫ ∞

0
y0(σ)e−

∫ σ+t
σ

(µ(s)+p(s)z)dsdσ

≤Ke−µ0t,

(2.10)

yielding limt→+∞ ‖Θ(t, X0)‖ = 0, hence, limt→+∞ diam Θ(t,C) = 0 and the assumption (1) in Lemma 2.1
holds.

In the following we show that Ψ(t,C) has compact closure for each t ≥ tC by verifying the
assumptions (i)–(iv) of Lemma 2.2. From Proposition 2.2 we see that x(t), v(t) and z(t) remain in the
compact set [0,K]. Next, we show that ỹ(a, t) remain in a pre-compact subset of L1

+ independent of
X0. It is easy to show that ỹ(a, t) ≤ L̄e−µ0a, where L̄ = βK2/(1 + αK). Therefore, the assumptions
(i),(ii) and (iv) of Lemma 2.2 follow directly. We need only to verify that (iii) of Lemma 2.2 holds.
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Since we are concerned with the limit as h→ 0, we assume that h ∈ (0, t). In this case, we have∫ ∞

0
|ỹ(a + h, t) − ỹ(a, t)|da =

∫ t−h

0
|L(t − a − h)π(a + h) − L(t − a)π(a)| da

+

∫ t

t−h
L(t − a)π(a)da

≤

∫ t−h

0
L(t − a − h) |π(a + h) − π(a)| da

+

∫ t−h

0
|L(a − t − h) − L(a − t)| π(a)da

+

∫ t

t−h
L(t − a)π(a)da.

(2.11)

By Proposition 2.2., there is positive constant ML such that

|L(a + h) − L(a)| ≤ MLh. (2.12)

It follows from (2.11) and (2.12) that∫ ∞

0
|ỹ(a + h, t) − ỹ(a, t)|da ≤L̄

∫ t−h

0
π(a)

∫ a+h

a
(µ(s) + p(s)z)dsda + MLh + L̄h

≤
[
(µ̄ + p̄K)L̄ + ML + L̄

]
h.

(2.13)

Hence, the condition (iii) of Lemma 2.2 holds. By Lemma 2.1, the asymptotic smoothness of the
semi-flow Φ generated by system (1.3) follows. This completes the proof.

The following result is immediate from Theorem 2.33 in [26] and Theorem 2.1.

Theorem 2.2. There exists a global attractorA of bounded sets in X .

3. Steady states and basic reproduction number

In this section, we are concerned with the local stability of each of feasible steady states of system
(1.3) with the boundary condition (1.4).

Clearly, system (1.3) always has an infection-free steady state E0(Λ/d, 0, 0, 0). If system (1.3) has a
CTL-inactivated infection steady state E1(x1, y1(a), v1, 0), then it must satisfy the following equations:

Λ − dx1 −
βx1v1

1 + αv1
= 0,

d
da

y1(a) = −µ(a)y1(a),∫ ∞

0
k(a)y1(a)da = uv1,

y1(0) =
βx1v1

1 + αv1
.

(3.1)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7850–7882.
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We derive from the first equation of (3.1) that

x1 =
Λ(1 + αv1)

d + (αd + β)v1
. (3.2)

It follows from the second equation of (3.1) that

y1(a) = y1(0)φ1(a), (3.3)

where φ1(a) = e−
∫ a

0 µ(s)ds. We obtain from the third equation of (3.1) and (3.3) that

v1 =
y1(0)

∫ ∞
0

k(a)φ1(a)da

u
. (3.4)

On substituting (3.2)–(3.4) into the fourth equation of (3.1), we have

y1(0) =
du

(αd + β)
∫ ∞

0
k(a)φ1(a)da

(R0 − 1), (3.5)

where

R0 =
Λβ

∫ ∞
0

k(a)φ1(a)da

du
. (3.6)

Here, R0 is called the immune-inactivated reproduction rate of system (1.3), which represents the
number of newly infected cells produced by one infected cell during its lifespan. Hence, if R0 > 1, in
addition to the infection-free steady state E0, system (1.3) admits a CTL-inactivated infection steady
state E1(x1, y1(a), v1, 0), where

x1 =
Λ(1 + αv1)

d + (αd + β)v1
, y1(a) =

duφ1(a)

(αd + β)
∫ ∞

0
k(a)φ1(a)da

(R0 − 1), v1 =
d

αd + β
(R0 − 1).

Further, if system (1.3) has a CTL-activated infection steady state E∗(x∗, y∗(a), v∗, z∗), then it must
satisfy the following equations:

Λ − dx∗ −
βx∗v∗

1 + αv∗
= 0,

d
da

y∗(a) = −µ(a)y∗(a) − p(a)y∗(a)z∗,∫ ∞

0
k(a)y∗(a)da = uv∗,

z∗
(∫ ∞

0
c(a)y∗(a)da − b

)
= 0,

y∗(0) =
βx∗v∗

1 + αv∗
.

(3.7)

It follows from the first equation of (3.7) that

x∗ =
Λ(1 + αv∗)

d + (αd + β)v∗
. (3.8)
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We obtain from the second equation of (3.7) that

y∗(a) = y∗(0)φ1(a)φ2(a, z∗), (3.9)

where φ2(a, z∗) = e−
∫ a

0 p(s)z∗ds. When z∗ , 0, it follows from (3.9) and the fourth equation of (3.7) that

y∗(0) =
b∫ ∞

0
c(a)φ1(a)φ2(a, z∗)da

. (3.10)

We derive from the third equation of (3.7) and (3.10) that

v∗ =
b
∫ ∞

0
k(a)φ1(a)φ2(a, z∗)da

u
∫ ∞

0
c(a)φ1(a)φ2(a, z∗)da

. (3.11)

On substituting (3.8), (3.10) and (3.11) into the first equation of (3.7), we have that

ΛβG1(z∗)G2(z∗) = duG2(z∗) + b(αd + β)G1(z∗), (3.12)

where
G1(z∗) =

∫ ∞

0
k(a)φ1(a)φ2(a, z∗)da, G2(z∗) =

∫ ∞

0
c(a)φ1(a)φ2(a, z∗)da. (3.13)

From (3.13), it is easy to show that

0 < Gi(z∗) ≤ Gi(0) and G′i(z
∗) ≤ 0, i = 1, 2. (3.14)

Denote
Φ(z) = ΛβG1(z)G2(z) − duG2(z) − b(αd + β)G1(z)

= [duG2(z) + b(αd + β)G1(z)]
(

ΛβG1(z)G2(z)
duG2(z) + b(αd + β)G1(z)

− 1
)
.

(3.15)

Clearly
Φ(0) = [duG2(0) + b(αd + β)G1(0)](R1 − 1), (3.16)

where

R1 =
Λβ

∫ ∞
0

k(a)φ1(a)da
∫ ∞

0
c(a)φ1(a)da

du
∫ ∞

0
c(a)φ1(a)da + b(αd + β)

∫ ∞
0

k(a)φ1(a)da
.

Here, R1 is called the immune-activated reproduction rate which expresses the CTL load during the
lifespan of a CTL cell. Clearly, if R1 > 1, it therefore follows from (3.14) and (3.16) that Φ(0) > 0.
Further, for z > 0 sufficiently large, we note that

ΛβG1(z)G2(z)
duG2(z) + b(αd + β)G1(z)

→ 0,

Then by (3.15), for z > 0 sufficiently large, there exists a z∗0 > 0 such that Φ(z∗0) < 0. Therefore, if
R1 > 1, there exists a z∗ ∈ (0, z∗0) such that Φ(z∗) = 0. Hence, if R1 > 1, in addition to the infection-free
steady state E0 and the CTL-inactivated infection steady state E1, system (1.3) exists a unique infection
steady state E∗(x∗, y∗(a), v∗, z∗).
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4. Local stability

In this section, we are concerned with the local stability of the infection-free steady state E0 and the
CTL-inactivated infection steady state E1 of system (1.3), respectively.

We first consider the local stability of the infection-free steady state E0(Λ/d, 0, 0, 0).
Let x(t) = x0(t) + Λ/d, y(a, t) = y0(a, t), v(t) = v0(t), z(t) = z0(t). Linearizing system (1.3) at the

steady state E0, it follows that

ẋ0(t) = −dx0(t) −
Λβ

d
v0(t),

∂y0(a, t)
∂t

+
∂y0(a, t)
∂a

= −µ(a)y0(a, t),

v̇0(t) =

∫ ∞

0
k(a)y0(a, t)da − uv0(t),

ż0(t) = −bz0(t),

y0(0, t) =
Λβ

d
v0(t).

(4.1)

Looking for solutions of system (4.1) of the form x0(t) = x01eλt, y0(a, t) = y01(a)eλt, v0(t) = v01eλt,

z0(t) = z01eλt, where x01, y01(a), v01 and z01 will be determined later, one obtains the characteristic
equation of system (1.3) at the steady state E0 of the form:

(λ + b)(1 − f1(λ)) = 0, (4.2)

where

f1(λ) =
Λβ

d(λ + u)

∫ ∞

0
k(a)e−(λ+µ(s))dsda.

Clearly, Eq (4.2) always has one negative real root λ = −b, other roots of (4.2) are determined by
equation

f1(λ) = 1. (4.3)

Clearly, we have f1(0) = R0. It is easy to show that f ′1(λ) < 0 and limλ→+∞ f1(λ) = 0. Hence, f1(λ) is a
decreasing function. Therefore, if R0 > 1, then f1(λ) = 1 has a unique positive root. Hence, if R0 > 1,
the steady state E0 is unstable.

Now, we claim that all roots of Eq (4.3) have negative real parts if R0 < 1. If not, there exists a root
λ1 = a1 + ib1 with a1 ≥ 0. In this case, substituting λ1 into (4.3), we obtain

| f1(λ1)| ≤
Λβ

∫ ∞
0

k(a)φ1(a)da

du
= R0 < 1,

a contradiction. Hence, if R0 < 1, all roots of equation (4.2) have negative real parts. Accordingly, the
steady state E0(Λ/d, 0, 0, 0) is locally asymptotically stable if R0 < 1.

Now, we consider the local stability of the CTL-inactivated infection steady state E1(x1, y1(a), v1, 0).
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Let x(t) = x1(t) + x1, y(a, t) = y1(a, t) + y1(a), v(t) = v1(t) + v1, z(t) = z1(t). Linearizing system (1.3)
at the steady state E1, we obtain that

ẋ1(t) = −

(
d +

βv1

1 + αv1

)
x1(t) −

βx1

(1 + αv1)2 v1(t),

∂y1(a, t)
∂t

+
∂y1(a, t)
∂a

= −µ(a)y1(a, t) − p(a)y1(a)z1(t),

v̇1(t) =

∫ ∞

0
k(a)y1(a, t)da − uv1(t),

ż1(t) =

(∫ ∞

0
c(a)y1(a)da − b

)
z1(t),

y1(0, t) =
βv1

1 + αv1
x1(t) +

βx1

(1 + αv1)2 v1(t).

(4.4)

Looking for solutions of system (4.4) of the form x1(t) = x11eλt, y1(a, t) = y11(a)eλt, v1(t) = v11eλt,

z1(t) = z11eλt, where x11, y11(a), v11 and z11 will be determined later, we obtain the following linear
eigenvalue problem: (

λ + d +
βv1

1 + αv1

)
x11 = −

βx1

(1 + αv1)2 v11,

y′11(a) = −(λ + µ(a))y11(a) − p(a)y1(a)z11,

(λ + u)v11 =

∫ ∞

0
k(a)y11(a)da,

λ =

∫ ∞

0
c(a)y1(a)da − b,

y11(0) =
βv1

1 + αv1
x11 +

βx1

(1 + αv1)2 v11.

(4.5)

We derive from the fourth equation of (4.5) that

λ =

 du
∫ ∞

0
c(a)φ1(a)da

(αd + β)
∫ ∞

0
k(a)φ1(a)da

+ b

 (R1 − 1). (4.6)

Clearly, If R1 > 1, λ > 0, in this case, E1 is unstable. If R1 < 1 < R0, it follows from the fourth
equation of (4.4) that z1 → 0, hence, in the following discussion, we only consider the simplified
system (

λ + d +
βv1

1 + αv1

)
x11 = −

βx1

(1 + αv1)2 v11,

y′11(a) = −(λ + µ(a))y11(a),

(λ + u)v11 =

∫ ∞

0
k(a)y11(a)da,

y11(0) =
βv1

1 + αv1
x11 +

βx1

(1 + αv1)2 v11.

(4.7)

It follows from the first and the second equations of system (4.7) that

x11 = −
βx1

(1 + αv1)[(λ + d)(1 + αv1) + βv1]
v11, (4.8)
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and
y11(a) = y11(0)e−

∫ a
0 (λ+µ(s))ds. (4.9)

We derive from the third equation of system (4.5) that

v11 =
y11(0)

∫ ∞
0

k(a)e−
∫ a

0 (λ+µ(s))dsda

λ + u
. (4.10)

On substituting (4.8)–(4.10) into the fifth equation of system (4.7), one obtains that

f2(λ) = 1, (4.11)

where

f2(λ) =
βx1

(1 + αv1)2

(λ + d)
∫ ∞

0
k(a)e−

∫ a
0 (λ+µ(s))dsda

(λ + u)
(
λ + d +

βv1

1 + αv1

) .

We claim that all roots of Eq (4.11) have negative real parts. Otherwise, Eq (4.11) has at least one root
λ2 = a2 + ib2 satisfying a2 ≥ 0. In this case, we have

| f2(λ2)| ≤
1

1 +
αd

(αd + β)
(R0 − 1)

u
|a2 + u + ib2|

.
(4.12)

Clearly, if R0 > 1, then 1+ αd
(αd+β) (R0−1) > 1, which mean that | f2(λ2)| < 1, a contradiction. Therefore,

if R1 < 1 < R0, the CTL-inactivated infection steady state E1 is locally asymptotically stable.
In conclusion, we have the following result.

Theorem 4.1. For system (1.3) with the boundary condition (1.4), if R0 < 1, the infection-free steady
state E0(Λ/d, 0, 0, 0) is locally asymptotically stable; if R1 < 1 < R0, E0 is unstable and the CTL-
inactivated infection steady state E1(x1, y1(a), v1, 0) exists and is locally asymptotically stable.

5. Uniform persistence

In this section, we investivate the uniform persistence of the semi-flow {Φ(t)}t≥0 generated by system
(1.3) when the immune-activated reproduction rate R1 > 1.

Define

ā1 = inf
{

a :
∫ ∞

a
k(u)du = 0

}
, ā2 = inf

{
a :

∫ ∞

a
c(u)du = 0

}
.

Noting that k(·), c(·) ∈ L∞+ (0,∞), we have ā1 > 0, ā2 > 0.
Denote

X =L1
+(0,+∞) × R+ × R+, ā = max{ā1.ā2}

Ỹ =

{
(y(·, t), v(t), z(t))> ∈ X :

∫ ā

0
y(a, t)da + v(t) + z(t) > 0

}
,

and
Y = R+ × Ỹ, ∂Y = X \ Y, ∂Ỹ = X \ Ỹ.

By [36] and using a similar argument as in the proof of Theorem 5.1 in [38], we have the following
result.
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Proposition 5.1. The subsets Y and ∂Y are both positively invariant under the semi-flow {Φ(t)}t≥0,
namely, Φ(t,Y) ⊂ Y and Φ(t, ∂Y) ⊂ ∂Y for t ≥ 0.

The following result is helpful to the proof of uniform persistence of the semi-flow {Φ(t)}t≥0

generated by system (1.3).

Theorem 5.1. The infection-free steady state E0(A/µ, 0, 0, 0) is globally asymptotically stable for the
semi-flow {Φ(t)}t≥0 restricted to ∂Y.

Proof. Let
(
x0, y0(·), v0, z0

)
∈ ∂Y. Then (y0(·), v0, z0) ∈ ∂Ỹ. We consider the following system

∂y(a, t)
∂t

+
∂y(a, t)
∂a

= −µ(a)y(a, t) − p(a)y(a, t)z(t),

v̇(t) =

∫ ∞

0
k(a)y(a, t)da − uv(t),

ż(t) = z(t)
∫ ∞

0
c(a)y(a, t)da − bz(t),

y(0, t) =
βx(t)v(t)
1 + αv(t)

,

y(a, 0) = y0(a), v(0) = 0, z(0) = 0.

(5.1)

Since lim supt→+∞ x(t) ≤ Λ/d, by comparison principle, we have

y(a, t) ≤ ŷ(a, t), v(t) ≤ v̂(t), z(t) ≤ ẑ(t), (5.2)

where ŷ(a, t), v̂(t) and ẑ(t) satisfy the following auxiliary system

∂ŷ(a, t)
∂t

+
∂ŷ(a, t)
∂a

= −µ(a)ŷ(a, t) − p(a)ŷ(a, t)z(t),

˙̂v(t) =

∫ ∞

0
k(a)ŷ(a, t)da − uv̂(t),

˙̂z(t) = ẑ(t)
∫ ∞

0
c(a)ŷ(a, t)da − bẑ(t),

ŷ(0, t) =
Λβ

d
v̂(t)

1 + αv̂(t)
,

ŷ(a, 0) = y0(a), v̂(0) = 0, ẑ(0) = 0.

(5.3)

Solving the first equation of system (5.3), we have

ŷ(a, t) =


L̂(t − a)π(a), 0 ≤ a < t,

y0(a − t)
π(a)

π(a − t)
, 0 ≤ t ≤ a,

(5.4)

where

L̂(t) := ŷ(0, t) =
Λβ

d
v̂(t)

1 + αv̂(t)
. (5.5)
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On substituting (5.5) into the second and the third equations of (5.3), it follows that

˙̂v(t) =

∫ t

0
k(a)L̂(t − a)π(a)da − uv̂(t) + L1(t),

˙̂z(t) = ẑ(t)
∫ t

0
c(a)L̂(t − a)π(a)da − bẑ(t) + ẑ(t)L2(t),

v̂(0) = 0, ẑ(0) = 0.

(5.6)

where
L1(t) =

∫ ∞

t
k(a)y0(a − t)

π(a)
π(a − t)

da,

L2(t) =

∫ ∞

t
c(a)y0(a − t)

π(a)
π(a − t)

da,

Since (y0(·), v0, z0) ∈ ∂Ỹ, we have Li(t) ≡ 0(i = 1, 2) for all t ≥ 0. It therefore follows from (5.6) that

˙̂v(t) =

∫ t

0
k(a)L̂(t − a)π(a)da − uv̂(t),

˙̂z(t) = ẑ(t)
∫ t

0
c(a)L̂(t − a)π(a)da − bẑ(t),

L̂(t) := ŷ(0, t) =
Λβ

d
v̂(t)

1 + αv̂(t)
,

v̂(0) = 0, ẑ(0) = 0.

(5.7)

It is easy to show that system (5.7) has a unique solution v̂(t) = 0, ẑ(t) = 0, L̂(t) = 0.
We obtain from (5.4) that ŷ(a, t) = 0 for 0 ≤ a < t. For a ≥ t, we have

‖ŷ(a, t)‖L1 =

∥∥∥∥∥y0(a − t)
π(a)

π(a − t)

∥∥∥∥∥
L1
≤ e−µ0t‖y0‖L1 ,

which yields limt→+∞ ŷ(a, t) = 0. By comparison principle, it follows that limt→+∞ y(a, t) = 0 and v(t) =

0, z(t) = 0 as t tends to infinity. We obtain from the first equation of system (1.3) that limt→+∞ x(t) =

Λ/d. This completes the proof.
Using a similar argument as that in the proof of Theorem 5.1, we have the following result.

Theorem 5.2. The CTL-inactivated infection steady state E1(x1, y1(a), v1, 0) is globally asymptotically
stable for the semi-flow {Φ(t)}t≥0 restricted to ∂Y.

Theorem 5.3. If R1 > 1, then the semi-flow {Φ(t)}t≥0 generated by system (1.3) is uniformly persistent
with respect to the pair (Y, ∂Y); that is, there exists an ε > 0 such that lim inft→+∞ ‖Φ(t, x)‖X ≥ ε for
x ∈ Y. Furthermore, there is a compact subsetA0 ⊂ Y which is a global attractor for {Φ(t)}t≥0 in Y.

Proof. By Theorems 5.1 and 5.2, we see that the infection-free steady state E0(A/µ, 0, 0, 0) and
the CTL-inactivated infection steady state E1(x1, y1(a), v1, 0) are globally asymptotically stable in ∂Y.
Hence, applying Theorem 4.2 in [35], in the following, we verify that

W s(Ei) ∩ Y = ∅(i = 0, 1),
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where
W s(E0) = {x ∈ Y : lim

t→+∞
Φ(t, x) = E0}, W s(E1) = {x ∈ Y : lim

t→+∞
Φ(t, x) = E1}.

Here, we only show W s(E1) ∩ Y = ∅ holds since the proof of W s(E0) ∩ Y = ∅ is simple. Assume
W s(E1) ∩ Y , ∅. Then there exists a solution w ∈ Y such that Φ(t,w) → E1 as t → ∞. In this case,
one can find a sequence {wn} ⊂ Y such that

‖Φ(t,wn) − w̄‖X <
1
n
, t ≥ 0,

where w̄ = (x1, y1(a), v1, 0).
Denote Φ(t,wn) = (xn(t), yn(·, t), vn(t), zn(t)) and wn = (xn(0), yn(·, 0), vn(0), zn(0)). Since R1 > 1, we

can choose n sufficiently large satisfying x1 −
1
n > 0 and du

∫ ∞
0

c(a)φ1(a)da

(αd + β)
∫ ∞

0
k(a)φ1(a)da

+ b

 (R1 − 1) >
1
n

∫ ∞

0
c(a)da (5.8)

For such an n > 0, there exists a T1 > 0 such that for t > T1,

x1 −
1
n
< xn(t) < x1 +

1
n
, y1(a) −

1
n
≤ yn(·, t) ≤ y1(a) +

1
n
,

v1 −
1
n
≤ vn(t) ≤ v1 +

1
n
, 0 ≤ zn(t) ≤

1
n
.

(5.9)

Consider the following auxiliary system

∂ỹ(a, t)
∂t

+
∂ỹ(a, t)
∂a

= −µ(a)ỹ(a, t) − p(a)ỹ(a, t)
1
n
,

˙̃v(t) =

∫ ∞

0
k(a)ỹ(a, t)da − uṽ(t),

˙̃z(t) = z̃(t)
(∫ ∞

0
c(a)

(
y1(a) −

1
n

)
da − b

)
,

ỹ(0, t) =
β
(
x1 −

1
n

)
ṽ(t)

1 + α
n

.

(5.10)

It is easy to show that if R1 > 1, system (5.10) has a unique steady state E0(0, 0, 0).
Looking for solutions of system (5.10) of the form ỹ(a, t) = ỹ1(a)eλt, ṽ(t) = ṽ1eλt, z̃(t) = z̃1eλt, where

the function ỹ1(a) and the constants ṽ1, z̃1 will be determined later, we obtain the following linear
eigenvalue problem:

ỹ′1(a) = −(λ + µ(a))ỹ1(a) − p(a)ỹ1(a)
1
n
,∫ ∞

0
k(a)ỹ1(a)da = (λ + µ)ṽ1,

λ =

∫ ∞

0
c(a)

(
y1(a) −

1
n

)
da − b,

ỹ1(0) =
β
(
x0 −

1
n

)
ṽ1

1 + α
n

.

(5.11)
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We derive from the third equation of (5.11) that

λ =

 du
∫ ∞

0
c(a)φ1(a)da

(αd + β)
∫ ∞

0
k(a)φ1(a)da

+ b

 (R1 − 1) −
1
n

∫ ∞

0
c(a)da. (5.12)

Clearly, if R1 > 1, Eq (5.11) has at least one positive root λ0, which yields the solution
(ỹ(·, t), ṽ(t), z̃(t)) of system (5.10) is unbounded. By comparison principle, the solution Φ(t, yn) of
system (1.3) is unbounded, which contradicts Proposition 5.1. Therefore, the semi-flow {Φ(t)}t≥0

generated by system (1.3) is uniformly persistent. Furthermore, there is a compact subset A0 ⊂ Y

which is a global attractor for {Φ(t)}t≥0 in Y. This completes the proof.

6. Global stability

In this section, we discuss the global stability of each of feasible steady states of system (1.3). The
strategy of proofs is to use suitable Lyapunov functionals and LaSalles invariance principle. Further,
we employ a Volterra type functional defined by G(x) = x − 1 − ln x in [37], which is positive and
attains minimum value 0 at x = 1.

We first give a result on the global stability of the infection-free steady state E0(Λ/d, 0, 0, 0) of
system (1.3).

Theorem 6.1. If R0 < 1, the infection-free steady state E0(Λ/d, 0, 0, 0) of system (1.3) is globally
asymptotically stable.

Proof. Let (x(t), y(a, t), v(t), z(t)) be any positive solution of system (1.3) with the boundary
condition (1.4). Denote x0 = Λ/d.

Define

V1(t) =x(t) − x0 − x0 ln
x(t)
x0

+

∫ ∞

0
F1(a)y(a, t)da + k1v(t), (6.1)

where the positive constant k1 and the nonnegative kernel function F1(a) will be determined later.

Calculating the derivative of V1(t) along positive solutions of system (1.3), it follows that

d
dt

V1(t) =

(
1 −

x0

x(t)

) [
Λ − dx(t) −

βx(t)v(t)
1 + αv(t)

]
+

∫ ∞

0
F1(a)

∂y(a, t)
∂t

da + k1

[∫ ∞

0
k(a)y(a, t)da − uv(t)

]
.

(6.2)
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On substituting Λ = dx0, ∂y(a,t)
∂t = −(µ(a) + p(a)z(t))y(a, t) − ∂y(a,t)

∂a into Eq (6.2), one obtains

d
dt

V1(t) =

(
1 −

x0

x(t)

)
[−d(x(t) − x0)]

−
βx(t)v(t)
1 + αv(t)

+
βx0v(t)

1 + αv(t)
−

∫ ∞

0
F1(a)

∂y(a, t)
∂a

da

−

∫ ∞

0
F1(a)µ(a)y(a, t)da + k1

∫ ∞

0
k(a)y(a, t)da − k1uv(t)

=

(
1 −

x0

x(t)

)
[−d(x(t) − x0)]

−
βx(t)v(t)
1 + αv(t)

+
βx0v(t)

1 + αv(t)
− F1(a)y(a, t)|∞0 +

∫ ∞

0
F′1(a)y(a, t)da

−

∫ ∞

0
F1(a)µ(a)y(a, t)da + k1

∫ ∞

0
k(a)y(a, t)da − k1uv(t).

(6.3)

Choose

k1 =
βx0

u
, F1(a) = k1

∫ ∞

a
k(u)e−

∫ u
a µ(s)dsdu,

Then, we have

F1(0) =
βx0

u

∫ ∞

0
k(a)e−

∫ a
0 µ(s)dsda = R0,

F′1(a) = −
βx0

u
k(a) + µ(a)F1(a), lim

a→+∞
f1(a) = 0.

(6.4)

We therefore obtain from (6.3)–(6.4) that

d
dt

V1(t) =

(
1 −

x0

x(t)

)
[−d(x(t) − x0)] + (R0 − 1)

βx(t)v(t)
1 + αv(t)

−
αβx0v(t)2

1 + αv(t)

− z(t)
∫ ∞

0
F1(a)p(a)y(a, t)da.

(6.5)

Clearly, if R0 < 1, we obtain from (6.5) that V ′1(t) ≤ 0 and V ′1(t) = 0 implies that x = x0, y(a, t) = 0 and
v = 0. Hence, the largest invariant subset of {V ′1(t) = 0} is the singleton (x0, 0, 0). Further, for ε > 0
sufficiently small satisfying

∫ ∞
0

c(a)εda − b < 0, there is a T > 0, such that if t > T , y(a, t) < ε. It
therefore follows from the fourth equation of system (1.3) that for t > T ,

ż(t) ≤
(∫ ∞

0
c(a)εda − b

)
z(t).

By comparison, we derive that
lim

t→+∞
z(t) = 0.

From Section 4, we see that if R0 < 1, E0 is locally asymptotically stable. Accordingly, the global
asymptotic stability of E0 of system (1.3) follows from LaSalle’s invariance principle. This completes
the proof.
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In the following, we establish the global asymptotic stability of the CTL-inactivated infection
steady state E1(x1, y1(a), v1, 0) and the global attractivity of the CTL-activated infection steady state
E∗(x∗, y∗(a), v∗, z∗) of system (1.3), respectively.

Denote

D0 =

{
(x0, y0, v0, z0) ∈X |

∫ ∞

0
k(a)y0(a)da > 0,

∫ ∞

0
c(a)y0(a)da > 0

}
.

In order to guarantee the Lyapunov functional in proving the global stability of E1 and E∗ is well-
defined in infinite dimension, we make the following assumption:

(H4) x0 > 0, v0 > 0, z0 > 0,
∫ ∞

0
| ln y0(a) | da < +∞.

We now define a positive function

F2(a) =
βx1

u(1 + αv1)

∫ ∞

a
k(u)e−

∫ u
a µ(s)dsdu. (6.6)

Then, we have

F2(0) =
βx1

u(1 + αv1)

∫ ∞

0
k(a)e−

∫ a
0 µ(s)dsda = 1, (6.7)

and

lim
a→∞

F2(a) = 0, F′2(a) = −
βx1

u(1 + αv1)
k(a) + µ(a)F2(a). (6.8)

Theorem 6.2. Assume there exists a positive constant k2 satisfying F2(a)p(a) = k2c(a). If (H4) holds,
then the CTL-inactivated infection steady state E1(x1, y1(a), v1, 0) of system (1.3) is globally
asymptotically stable if R1 < 1 < R0.

Proof. Let (x(t), y(a, t), v(t), z(t)) be any positive solution of system (1.3) with the boundary
condition (1.4).

Define

V2(t) =x1G
(

x(t)
x1

)
+

∫ ∞

0
F2(a)y1(a)G

(
y(a, t)
y1(a)

)
da +

βx1

u(1 + αv1)
v1G

(
v(t)
v1

)
+ k2z(t). (6.9)

Using a similar argument as that in the proof of Lemmas 7.1 and 7.2 in [27], one can show that all
integrals involved in V2(t) are finite.
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Calculating the derivative of V2(t) along positive solutions of system (1.3), it follows that

d
dt

V2(t) =

(
1 −

x1

x(t)

) [
Λ − dx(t) −

βx(t)v(t)
1 + αv(t)

]
+

∫ ∞

0
F2(a)y1(a)

∂

∂t
G

(
y(a, t)
y1(a)

)
da

+
βx1

u(1 + αv1)
v1

(
1 −

v1

v(t)

) [∫ ∞

0
k(a)y(a, t)da − uv(t)

]
+ k2

[∫ ∞

0
c(a)y(a, t)da − b

]
z(t)

=

(
1 −

x1

x(t)

) [
Λ − dx(t) −

βx(t)v(t)
1 + αv(t)

]
+

∫ ∞

0
F2(a)

(
1 −

y1(a)
y(a, t)

)
∂y(a, t)
∂t

da

+
βx1

u(1 + αv1)

(
1 −

v1

v(t)

) [∫ ∞

0
k(a)y(a, t)da − uv(t)

]
+ k2

[∫ ∞

0
c(a)y(a, t)da − b

]
z(t).

(6.10)

On substituting Λ = dx1 + βx1v1/(1 + αv1) and ∂y(a,t)
∂t = −(µ(a) + p(a)z(t))y(a, t) − ∂y(a,t)

∂a into Eq (6.10),
one obtains

d
dt

V2(t) =

(
1 −

x1

x(t)

) [
−d(x(t) − x1) +

βx1v1

1 + αv1

]
−
βx(t)v(t)
1 + αv(t)

+
βx1v(t)

1 + αv(t)

−

∫ ∞

0
F2(a)

(
1 −

y1(a)
y(a, t)

) [
∂y(a, t)
∂a

+ (µ(a) + p(a)z(t))y(a, t)
]

da

+
βx1

u(1 + αv1)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v1

v(t)

∫ ∞

0
k(a)y(a, t)da + uv1

]
+ k2

[∫ ∞

0
c(a)y(a, t)da − b

]
z(t).

(6.11)

A direct calculation shows that

y1(a)
∂

∂a
G

(
y(a, t)
y1(a)

)
=

(
1 −

y1(a)
y(a, t)

) (
∂y(a, t)
∂a

+ µ(a)y(a, t)
)
. (6.12)

On substituting Eq (6.12) into Eq (6.11), we have

d
dt

V2(t) =

(
1 −

x1

x(t)

) [
−d(x(t) − x1) +

βx1v1

1 + αv1

]
−
βx(t)v(t)
1 + αv(t)

+
βx1v(t)

1 + αv(t)

−

∫ ∞

0
F2(a)y1(a)

∂

∂a
G

(
y(a, t)
y1(a)

)
da −

∫ ∞

0
F2(a)

(
1 −

y1(a)
y(a, t)

)
p(a)y(a, t)z(t)da

+
βx1

u(1 + αv1)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v1

v(t)

∫ ∞

0
k(a)y(a, t)da + uv1

]
+ k2

[∫ ∞

0
c(a)y(a, t)da − b

]
z(t).

(6.13)
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Using integration by parts, it follows from Eq (6.13) that

d
dt

V2(t) =

(
1 −

x1

x(t)

) [
−d(x(t) − x1) +

βx1v1

1 + αv1

]
−
βx(t)v(t)
1 + αv(t)

+
βx1v(t)

1 + αv(t)

− F2(a)y1(a)G
(
y(a, t)
y1(a)

) ∣∣∣∣∞
0

+

∫ ∞

0
G

(
y(a, t)
y1(a)

)
[F′2(a)y1(a) + F2(a)y′1(a)]da

−

∫ ∞

0
F2(a)

(
1 −

y1(a)
y(a, t)

)
p(a)y(a, t)z(t)da

+
βx1

u(1 + αv1)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v1

v(t)

∫ ∞

0
k(a)y(a, t)da + uv1

]
+ k2z(t)

[∫ ∞

0
c(a)y(a, t)da − b

]
.

(6.14)

On substituting Eqs (6.7)–(6.8) into Eq (6.14), and noting that y′1(a) = −µ(a)y1(a), y1(0) = βx1v1/(1 +

αv1) and y(0, t) = βx(t)v(t)/(1 + αv(t)), we obtain from Eq (6.14) that

d
dt

V2(t) = − d
(x(t) − x1)2

x(t)
−

βx1v1

1 + αv1

(
x1

x(t)
− 1

)
+

βx1v(t)
1 + αv(t)

−
βx1v1

1 + αv1
−

βx1v1

1 + αv1
ln

x(t)v(t)(1 + αv1)
x1v1(1 + αv(t))

−
βx1

u(1 + αv1)

∫ ∞

0
k(a)y1(a)G

(
y(a, t)
y1(a)

)
da

+
βx1

u(1 + αv1)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v1

v(t)

∫ ∞

0
k(a)y(a, t)da + uv1

]
−

∫ ∞

0
F2(a)

(
1 −

y1(a)
y(a, t)

)
p(a)y(a, t)z(t)da + k2z(t)

[∫ ∞

0
c(a)y(a, t)da − b

]
.

(6.15)

Noting that βx1
u(1+αv1)

∫ ∞
0

k(a)y1(a)da =
βx1

u(1+αv1)uv1 =
βx1v1
1+αv1

, we have from Eq (6.15) that

d
dt

V2(t) = − d
(x(t) − x1)2

x(t)
−

αβx1(v(t) − v1)2

(1 + αv(t))(1 + αv1)2

−
βx1v1

1 + αv1
G

(
x1

x(t)

)
−

βx1v1

1 + αv1
G

(
1 + αv(t)
1 + αv1

)
−

βx1

u(1 + αv1)

∫ ∞

0
k(a)y1(a)G

(
v1y(a, t)
v(t)y1(a)

)
da

+ k2

 du
∫ ∞

0
c(a)φ1(a)da

(αd + β)
∫ ∞

0
k(a)φ1(a)da

+ b

 (R1 − 1)z(t).

(6.16)

Since the function G(x) = x − 1 − ln x ≥ 0 for all x > 0 and G(x) = 0 holds iff x = 1. Hence, V ′2(t) ≤ 0
holds if R1 < 1. It is readily seen from (6.16) that V ′2(t) = 0 if and only if

x(t) = x1,
y(a, t)v1

y1(a)v(t)
= 1,

1 + αv(t)
1 + αv1

= 1, (6.17)
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for all a ≥ 0. It is easy to verify that the largest invariant subset of {V ′2(t) = 0} is the singleton E1.
By Theorem 4.2, we see that if R1 < 1 < R0, E1 is locally asymptotically stable. Therefore, using
LaSalle’s invariance principle, we see that if R1 < 1 < R0 and (H4) hold, the global asymptotic
stability of E1 follows. This completes the proof.

In the following, we define a positive function

F3(a) =
βx∗

u(1 + αv∗)

∫ ∞

a
k(u)e−

∫ u
a (µ(s)+p(s)z∗)dsdu. (6.18)

It is easy to show that

F3(0) =
βx∗

u(1 + αv∗)

∫ ∞

0
k(a)e−

∫ a
0 (µ(s)+p(s)z∗)dsda = 1, (6.19)

and

lim
a→∞

F3(a) = 0, F′3(a) = −
βx∗

u(1 + αv∗)
k(a) + (µ(a) + p(a)z∗)F3(a). (6.20)

Theorem 6.3. Assume there exists a positive constant k3 satisfying F3(a)p(a) = k3c(a). If (H4) holds,
then the CTL-activated infection steady state E∗(x∗, y∗(a), v∗, z∗) of system (1.3) is globally attractive if
R1 > 1.

Proof. Let (x(t), y(a, t), v(t), z(t)) be any positive solution of system (1.3) with the boundary
condition (1.4).

Define

V3(t) =x∗G
(

x(t)
x∗

)
+

∫ ∞

0
F3(a)y∗(a)G

(
y(a, t)
y∗(a)

)
da

+
βx∗

u(1 + αv∗)
v∗G

(
v(t)
v∗

)
+ k3z∗G

(
z(t)
z∗

)
.

(6.21)

Using a similar argument as that in the proof of Lemmas 7.1 and 7.2 in [27], one can show that all
integrals involved in V3(t) are finite.

Calculating the derivative of V3(t) along positive solutions of system (1.3), it follows that

d
dt

V3(t) =

(
1 −

x∗

x(t)

) [
Λ − dx(t) −

βx(t)v(t)
1 + αv(t)

]
+

∫ ∞

0
F3(a)

(
1 −

y∗(a)
y(a, t)

)
∂y(a, t)
∂t

da

+
βx∗

u(1 + αv∗)

(
1 −

v∗

v(t)

) [∫ ∞

0
k(a)y(a, t)da − uv(t)

]
+ k3

(
1 −

z∗

z(t)

) [∫ ∞

0
c(a)y(a, t)da − b

]
z(t).

(6.22)

On substituting Λ = dx∗ + βx∗v∗/(1 + αv∗) and ∂y(a,t)
∂t = −(µ(a) + p(a)z(t))y(a, t) − ∂y(a,t)

∂a into Eq (6.22),
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one obtains

d
dt

V3(t) =

(
1 −

x∗

x(t)

) [
−d(x(t) − x∗) +

βx∗v∗

1 + αv∗

]
−
βx(t)v(t)
1 + αv(t)

+
βx∗v(t)

1 + αv(t)

−

∫ ∞

0
F3(a)

(
1 −

y∗(a)
y(a, t)

) [
∂y(a, t)
∂a

+ (µ(a) + p(a)z(t))y(a, t)
]

da

+
βx∗

u(1 + αv∗)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v∗

v(t)

∫ ∞

0
k(a)y(a, t)da + uv∗

]
+ k3

[
z(t)

∫ ∞

0
c(a)y(a, t)da − bz(t) − z∗

∫ ∞

0
c(a)y(a, t)da + bz∗

]
.

(6.23)

A direct calculation shows that

y∗(a)
∂

∂a
G

(
y(a, t)
y∗(a)

)
=

(
1 −

y∗(a)
y(a, t)

) (
∂y(a, t)
∂a

+ (µ(a) + p(a)z∗)y(a, t)
)
. (6.24)

On substituting Eq (6.24) into Eq (6.23), we get

d
dt

V3(t) =

(
1 −

x∗

x(t)

) [
−d(x(t) − x∗) +

βx∗v∗

1 + αv∗

]
−
βx(t)v(t)
1 + αv(t)

+
βx∗v(t)

1 + αv(t)

−

∫ ∞

0
F3(a)y∗(a)

∂

∂a
G

(
y(a, t)
y∗(a)

)
da

−

∫ ∞

0
F3(a)

(
1 −

y∗(a)
y(a, t)

)
p(a)y(a, t)(z(t) − z∗)da

+
βx∗

u(1 + αv∗)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v∗

v(t)

∫ ∞

0
k(a)y(a, t)da + uv∗

]
+ k3

[
z(t)

∫ ∞

0
c(a)y(a, t)da − bz(t) − z∗

∫ ∞

0
c(a)y(a, t)da + bz∗

]
.

(6.25)

Using integration by parts, it follows from Eq (6.25) that

d
dt

V3(t) = −
d

x(t)
(x(t) − x∗)2 −

βx∗v∗

1 + αv∗

(
x∗

x(t)
− 1 − ln

x∗

x(t)

)
−

βx∗v∗

1 + αv∗
ln

x∗

x(t)
−
βx(t)v(t)
1 + αv(t)

+
βx∗v(t)

1 + αv(t)

− F3(a)y∗(a)G
(
y(a, t)
y∗(a)

) ∣∣∣∣∞
0

+

∫ ∞

0
G

(
y(a, t)
y∗(a)

)
[F′3(a)y∗(a) + F3(a)y∗

′

(a)]da

−

∫ ∞

0
F3(a)

(
1 −

y∗(a)
y(a, t)

)
p(a)y(a, t)(z(t) − z∗)da

+
βx∗

u(1 + αv∗)

[∫ ∞

0
k(a)y(a, t)da − uv(t) −

v∗

v(t)

∫ ∞

0
k(a)y(a, t)da + uv∗

]
+ k3

[
z(t)

∫ ∞

0
c(a)y(a, t)da − bz(t) − z∗

∫ ∞

0
c(a)y(a, t)da + bz∗

]
.

(6.26)
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On substituting Eqs (6.19)–(6.20) into Eq (6.26), and noting that

y∗
′

(a) = −(µ(a) + p(a)z∗)y∗(a), y∗(0) = βx∗v∗/(1 + αv∗)

and
βx∗

u(1 + αv∗)

∫ ∞

0
k(a)y∗(a)da =

βx∗

u(1 + αv∗)
uv∗ =

βx∗v∗

1 + αv∗
,

we obtain from Eq (6.26) that

d
dt

V3(t) = − d
(x(t) − x∗)2

x(t)
−

αβx∗(v(t) − v∗)2

(1 + αv∗)2(1 + αv(t))

−
βx∗v∗

1 + αv∗
G

(
x∗

x(t)

)
−

βx∗v∗

1 + αv∗
G

(
1 + αv(t)
1 + αv∗

)
− k3

∫ ∞

0
k(a)y∗(a)G

(
y(a, t)v∗

y∗(a)v(t)

)
da.

(6.27)

Since the function G(x) = x − 1 − ln x ≥ 0 for all x > 0 and G(x) = 0 holds iff x = 1. Hence, V ′3(t) ≤ 0
holds if R1 > 1. It is readily seen from (6.27) that V ′3(t) = 0 if and only if

x(t) = x∗, v(t) = v∗,
y(a, t)v∗

y∗(a)v(t)
= 1,

1 + αv(t)
1 + αv∗

= 1, (6.28)

for all a ≥ 0. We now look for the invariant subset M within the set

M = {(x, y, v) : x(t) = x∗, y(a, t) = y∗(a), v(t) = v∗}.

Because x(t) = x∗, y(a, t) = y∗(a) and v(t) = v∗ on M and consequently, it follows from the second
equation of system (1.3) that

d
da

y∗(a) = −µ(a)y∗(a) − p(a)y∗(a)z(t),

which yields z(t) = z∗. It is easy to verify that the largest invariant subset of {V ′3(t) = 0} is the singleton
E∗. Therefore, using LaSalle’s invariance principle, we see that if R1 > 1 and (H4) hold, the global
attractivity of E∗ follows. This completes the proof.

7. Numerical simulations

In this section, we give some numerical examples for system (1.3) to illustrate the theoretical results
in Sections 3 and 4. Based on the works of [28–33], parameter values of system (1.3) are summarized
in Table 2. In the following, we will use the finite difference method [34] for all numerical simulations.
Further, to ensure the precision of numerical simulations, time- and age-steps are both set as 0.05.
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Table 2. Parameter values for the age-structured HIV-1 model (1.3).

Parameter Symbol Case 1 Case2 Case 3 Source

Recruitment rate of healthy T cells Λ (ml−1day−1) 0.8 × 106 0.98 × 106 1.8 × 106 Assumed

Death rate of uninfected cells d (day−1) 0.01 0.01 0.01 [29]

Infection rate β (ml day−1) 1.3 × 10−8 1.3 × 10−8 1.3 × 10−8 [28]

Saturation constant α 0.00015 0.00015 0.00015 [33]

Death rate of infected cells µm (day−1) 0.7 0.7 0.7 [30]

Clearance rate of virions u (day−1) 23 23 23 [31]

Death rate of CTL cells b (day−1) 0.5 0.5 0.5 [32]

Killing rate of infected cells pm (day−1) 0.00094 0.00094 0.00094 [32]

Viral production rate of infected cells km (day−1) 11.349 11.349 11.349 [32]

Proliferate rate of virus-specific CTL cells cm (day−1) 0.003 0.003 0.003 Assumed

As argued by Markowitz et al. [30], the faster rate of loss of virus-producing cells shows that
the generation time for HIV-1 in vivo is correspondingly shorter, ∼ 2.0 days, which is obtained by
summing up some factors, such as the eclipse time of ∼ 1.0 day. This value indicates that HIV-1
typically undergoes 180 generations per year in an infected person. Thus, the death rate of infected
cells µm in Table 2 is set as 0.7 day−1.

7.1. Dynamical behaviors of system (1.3)

When the viruses invade through cytomembrane, infected cells cannot die immediately, due to that
it takes some time for viruses to replicate, transcribe and translate. For this reason, we assume that
the death rate of infected cells increases from 0 to a peak value µm with the infection age. The age-
dependent per capita death rate is set as

µ(a) =

µm sin(0.1πa), a < a0,

µm, a ≥ a0,
(7.1)

where a0 denotes the mean value of the time for viruses to replicate, transcribe and translate (in this
section, a0 is set as 5 day). Further, the maturing rate of new T cells and the kill ratio by T cells are
selected as follows:

c(a) =

cm sin(0.1πa), a < a0,

cm, a ≥ a0,
p(a) =

pm sin(0.1πa), a < a0,

pm, a ≥ a0,
(7.2)

where cm and pm are the peak levels of c(a) and p(a), respectively. As for the viral production rate of
infected cells, it keeps at 0 for a short time a1, and then increases from 0 to a peak value km. Based on
the works of [9, 11], the specific function is set as follows

k(a) =

0, a < a1,

km(1 − e−θ(a−a1)), a ≥ a1,
(7.3)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7850–7882.



7875

where θ determines how quickly k(a) reaches the saturation level km. For simplicity, we assume that
θ = 1 and a1 = 0.5 day in the following numerical simulations.
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Figure 1. The temporal solution found by numerical integration of system (1.3) with the
boundary condition (1.4) and the initial condition x(0) = 1.5×108, y(0, 0) = 100, v(0) = 200,
z(0) = 200, where R0 = 0.9131 < 1.

We first choose parameter values as in Case 1 of Table 2. Then we have the basic reproduction
number R0 = 0.8227 < 1. By Theorem 4.1, we see that the infection-free steady state
E0(80003167.69, 0, 0, 0) is locally asymptotically stable. Numerical simulation illustrates this fact
(see Figure 1).

Next, we choose parameter values as in Case 2 of Table 2. By direct calculation, we get the basic
reproduction number R0 = 1.0079 > 1 and the immune response reproduction number R1 = 0.9939 <
1. By Theorem 4.1, we see that in addition to the infection-free steady state E0(80003167.69, 0, 0, 0),
system (1.3) has a CTL-inactivated infection steady state E1(97994001.72, 59.69φ1(a), 47.19, 0) which
is locally asymptotically stable. Numerical simulation illustrates this fact (see Figure 2).
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Figure 2. The temporal solutions found by numerical integration of system (1.3) with the
boundary condition (1.4) and the initial condition x(0) = 1.5×108, y(0, 0) = 100, v(0) = 200,
z(0) = 100, where R1 = 0.9939 < 1 < R0 = 1.0079.

Remark 7.1. For system (1.3), a direct calculation shows that the characteristic equation of system
(1.3) at the CTL-activated infection steady state E∗ is of the form

βx∗

(1 + αv∗)2

∫ ∞
0

k(a)φ1(a)φ2(a, z∗)e−λada

λ + u
= 1 +

βv∗

1 + αv∗
1

λ + d
+

βx∗

(1 + αv∗)2

1
λ + u

f (λ), (7.4)

where

f (λ)=
z∗
∫ ∞

0

∫ a

0
k(a)p(s)y∗(s)φ1(a − s)φ2(a − s, z∗)e−λ(a−s)dsda

∫ ∞
0

c(a)φ1(a)φ2(a, z∗)e−λada

λ + z∗
∫ ∞

0

∫ a

0
c(a)p(s)y∗(s)φ1(a − s)φ2(a − s, z∗)e−λ(a−s)dsda

.

We failed in studying the local asymptotic stability of E∗ due to the complexity of Eq (7.4). In
particular, we choose parameter values as in Case 3 of Table 2. By calculation, we have the
immune-activated reproduction rate R1 = 1.8256 > 1. As can be seen from the discussion in
Section 3, in addition to the infection-free steady state E0 and the CTL-inactivated infection steady
state E1, system (1.3) has a unique CTL-activated infection steady state
E∗(179981502.93, 216.65φ1(a) φ2(a, 638.84), 93.90, 638.84). Numerical simulation indicates that if
R1 > 1, the CTL-activated infection steady state E∗ is locally asymptotically stable in some special
cases (see Figure 3).
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Figure 3. The temporal solutions found by numerical integration of system (1.3) with the
boundary condition (1.4) and the initial condition x(0) = 2.5×108, y(0, 0) = 100, v(0) = 200,
z(0) = 800, where R1 = 1.8256 > 1.

7.2. The effects of CTL response

In order to investigate the effects of CTL immune response, we carry out the following numerical
simulations. For convenience, parameter values are chosen as in Table 2. From Figure 4, it is clear
that the concentrations of infected cells and free virions with CTL immune response is obviously lower
than those without CTL immune response, which indicates that CTL immune response indeed has an
important impact on infected cells and free virions and can help our body to eliminate the virions.
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Figure 4. The temporal solutions of infected cells and free virions with and without CTL
immune response found by numerical integration of system (1.3) with the boundary condition
(1.4) and the similar initial condition to Figure 3.
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From Figure 5, we further observe that when the proliferate rate of virus-specific CTL cells cm

increase from 0.002 to 0.004 (day−1), both infected cells and free virions decreases to lower levels.
This implies that CTL response can effectively reduce the quantity of infected cells and the serum viral
load.
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Figure 5. The temporal solutions of infected cells and free virions with different values of
cm found by numerical integration of system (1.3) with the boundary condition (1.4) and the
similar initial condition to Figure 3.
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Figure 6. Scatter plots of R1 with respect to β, η, φ, σ, ξ and γ (first three figures). Tornado
plot of partial rank correlation coefficients in respect to R1 (last figure).
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Remark 7.2. In our model, the death rate and the viral production rate of infected cells, the killing
rate of infected cells by CTL and the proliferate rate of virus-specific CTL cells are assumed to vary
according to the time a cell has been infected. Compared with the standard CTL response models
without age structure, age-structure has more realistic representations of the biology of HIV-1
infection.

We now carry out the sensitivity analysis of R1. Through analysis of the sample derived from Latin
hypercube sampling, we can obtain large efficient data in respect to different parameters of R1. The
first three figures in Figure 6 shows the scatter plots of R1 in respect to km, cm and b, respectively,
which implies that km and cm are both positive correlative variables with R1; b is negative correlative
variable with R1. It is worth mentioning that km contributes more to R1 compared to cm, namely,
km is a more important factor in R1. The last figure in Figure 6 shows a tornado plot of partial rank
correlation coefficients with respect to R1, indicating the importance of each parameter’s uncertainty
in contributing to R1 in the time to eradicate infection, which has the similar results to the first three
figures in Figure 6.

In the following, we carry out corresponding numerical simulations about the relation between the
immune-activated reproduction rate R1 and the proliferate rate of virus-specific CTL cells cm. As
shown in Figure 7, we find that as the proliferate rate cm decreases, the value of R1 changes from
greater than one to less than one.
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Figure 7. The curve of R1 with respect to the proliferate rate of virus-specific CTL cells cm.

8. Conclusion

In this work, we have investigated an age-structured HIV-1 infection model with CTL immune
response. The model allows the production rate of viral particles, the death rate of productively
infected cells, the removed rate of infected cells and the proliferate rate of virus-specific CTLs to vary
and depend on the infection age. By constructing suitable Lyapunov functionals and using LaSalle’s
invariance principle, we have investigated the global dynamics of each of feasible steady state of
system (1.3). By Theorem 6.1, we see that if the immune-inactivated reproduction rate R0 is less than
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unity, the infection-free steady state is globally asymptotically stable. In this case, the virus is finally
cleared up. By Theorem 6.2, we know that if the immune-activated reproduction rate R1 satisfies
R1 < 1 < R0, sufficient conditions are derived for the global stability of the CTL-inactivated infection
steady state. In this case, the infection becomes chronic but without CTL immune response. If
R1 > 1, by Theorem 6.3, sufficient conditions are obtained for the global attractivity of the
CTL-activated infection steady state. In this case, the infection turns to chronic with CTL immune
response. We would like to point out here that Theorems 6.2 and 6.3 have room for improvement, we
leave this for future work.
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