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Abstract: In recent years, the application of impulsive semi-dynamic system in state-dependent feed-
back control has attracted extensive attention, but most models only discuss their special cases without
delving into their complex dynamics. Therefore, we establish the wild and sterile mosquito system with
integrated mosquito control, and use the Poincaré map method to conduct a comprehensive analysis
of the model dynamics. First, the main properties of Poincaré map such as monotonicity, continuous
differentiability, extremum and fixed point are discussed. Second, we prove the existence and stability
of boundary periodic solution and study the influence of its parameters on the system. Then the ex-
istence and global stability of the order-1 periodic solution and the existence condition of the order-k
(k > 1) periodic solution are analyzed. Finally, our conclusion is verified by numerical analysis. The
results show that the population density of wild mosquitoes can be controlled below the threshold by
integrated mosquito control.

Keywords: impulsive semi-dynamic system; integrated mosquito control; Poincaré map; periodic
solution

1. Introduction

Pulsed semi-dynamic systems are widely used in the study of biological systems with thresholds,
such as biological resource management [1–5] and control of epidemics [6–11], etc. These systems
include interactions of continuous and discrete dynamics, where the portion that exhibits discontinuity
is called a pulse set, thus producing pulse dynamics. In recent years, the qualitative theory of pulsed
semi-dynamic systems has been extensively developed [1, 12–15], using a variety of analytical meth-
ods, such as successor functions, Bendixson theorem, etc [16–19]. However, due to the complexity of
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state-dependent feedback control, the global dynamics of the state-dependent feedback control model
is far from being solved. In order to better study the qualitative theory and dynamic complexity of the
state-dependent feedback control model, we use the Poincaré map method to analyze and discuss the
model.

The most classic and commonly used method for pest control is chemical control, which involves
spraying insecticides to control pests. Due to the widespread use of this method, many pests have
developed resistance to insecticides [20–23]. Especially in the summer, when mosquito population get
rampant, repeated use of insecticides reduces their effectiveness and control. It takes a long time to use
only biological control methods, and factors such as temperature and weather may affect biological
control [24–27]. When the number of mosquitoes suddenly increases, it is impossible to control the
mosquito population in a timely and effective manner. Therefore, in order to solve these problems,
we adopted integrated mosquito control [28–31], that is, the use of both chemical control methods and
biological control methods for wild mosquitoes.

The biological control method used in this paper is the sterile insect technique (SIT). In this way,
mosquitoes are disturbed by the natural reproduction process, so that the wild mosquitoes is reduced
[32–35]. Insect sterility technology uses some physical methods to make male mosquitoes sterile and
unable to produce offspring. And these sterile mosquitoes are released into the environment to mate
with wild females but not to reproduce. This repeated release of sterile mosquitoes or the release of
large numbers of sterile mosquitoes may control wild mosquito population [32, 36–38].

In terms of release methods, many articles used proportional release or continuous release [39–42],
and these two release methods have some advantages only when the wild mosquitoes population is
small. In the actual environment, the mosquito population may be very large. In order to control wild
mosquito population more effectively, we adopt a new release method in which the release of sterile
mosquitoes is in proportional to the number of wild mosquitoes when the number of wild mosquitoes is
small, and while the release of sterile mosquitoes saturates and approaches a constant when the number
of wild mosquitoes increases.

The structure of this paper is as follows: In Section 2, we briefly introduce the model and make
qualitative analysis. In Section 3, the definition domain and main properties of Poincaré map are
introduced and proved. In Section 4, the existence and stability of periodic solutions are analyzed and
proved. In Section 5, we simulate the model to verify our conclusion. Finally, the article is analyzed
and summarized.

2. Model formulation

2.1. Wild and sterile mosquitoes release model

In article [43], the release model of wild and sterile mosquitoes using only biological control is
proposed as follows:
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dw(t)
dt

= w(t)
[

rw(t)
w(t) + g(t)

− ϕ1 − a1(w(t) + g(t))
]
,

dg(t)
dt

= −g(t)
[
ϕ2 + a2(w(t) + g(t))

]
,

 w < ET,

w(t+) = w(t),
g(t+) = g(t) + b,

 w = ET,

(2.1)

where w(t) and g(t) indicate the population densities of wild and sterile mosquitoes at time t respec-
tively. r represents the wild mosquito population birth rate and b represents the sterile mosquitoes
release rate. Wild and sterile mosquito populations follow logistic growth without interaction then ai

and ϕi, i=1,2, denote the density-dependent and density-independent death rates respectively.
The model (2.1) using only biological control, is more susceptible to external influences, and cannot

control sudden growth or a large number of wild mosquito population in a timely and effective man-
ner. Therefore, we propose the following wild and sterile mosquitoes release model using integrated
mosquito control:

dw(t)
dt

= w(t)
[

rw(t)
w(t) + g(t)

− ϕ1 − a1(w(t) + g(t))
]
,

dg(t)
dt

= −g(t)
[
ϕ2 + a2(w(t) + g(t))

]
,

 w < ET,

w(t+) = Z1(D)w(t),

g(t+) = Z2(D)g(t) +
bw

1 + w
,

 w = ET,

(2.2)

where Z1(D),Z2(D) represent the survival part of wild and sterile mosquitoes when D dose of in-
secticide is administered respectively, and 0 ≤ Z1(D) ≤ 1, 0 ≤ Z2(D) ≤ 1. While killing wild
mosquitoes with insecticides, we inevitably kill a certain number of sterile mosquitoes. Therefore
we use the response curves of the two populations for insecticides to be expressed in Z1(D) = e−k1D and
Z2(D) = e−k2D respectively [44], where 0 ≤ ki ≤ 1 represents the pharmacokinetics of insecticides. We
release sterile mosquitoes in a ratio-dependent manner, when the density of wild mosquitoes reaches
the threshold, sterile mosquitoes are released at a rate of bw

1+w . Define w(0+) and g(0+) as the initial
density of wild mosquitoes and sterile mosquitoes, and assumed the initial density of wild mosquitoes
is less than the threshold value of ET . We can set ET < r−ϕ1

a1
.

2.2. The qualitative analysis

In the absence of a pulse, system (2.2) becomes the following:
dw(t)

dt
= w(t)

[
rw(t)

w(t) + g(t)
− ϕ1 − a1 (w(t) + g(t))

]
,

dg(t)
dt

= −g(t)
[
ϕ2 + a2(w(t) + g(t))

]
.

(2.3)

By caculation, we can easily get system (2.3) with only one equilibria point E(w0, 0), where
w0 =

r−ϕ1
a1

. Define the isocline of model (2.3) as follows:
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L1 =
−(ϕ1 + 2a1w) +

√
ϕ2

1 + 4ra1w

2a1
.

Figure 1. Phase diagram of system (2.3) with r = 2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 =

0.05.

For model (2.3), the following theorem is satisfied:

Theorem 2.1. When r−ϕ1−2a1w < 0, axial equilibrium point E(w0, 0) is locally asymptotically stable
(Fig.1).

Proof. Let

F(w, g) = w
[

rw
w + g

− ϕ1 − a1(w + g)
]
, G(w, g) = −g

[
ϕ2 + a2(w + g)

]
.

By calculation, we can obtain

∂F
∂w

=
rwg

(w + g)2 +
rw

w + g
− 2a1w − a1g − ϕ1,

∂G
∂w

= −a2g

∂F
∂g

= w
[
−rw

(w + g)2 − a1

]
,
∂G
∂g

= −ϕ2 − a2w − 2a2g.

So the jacobian matrix at E(w0, 0) point is

J(E1) =

(
r − ϕ1 − 2a1w −r − wa1

0 −ϕ2 − a2w

)
.
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From the above results, we obtain that when r − ϕ1 − 2a1w < 0,

det [J(E1)] = (r − ϕ1 − 2a1w)(−ϕ2 − a2w) > 0,

Tr [J(E1)] = r − ϕ1 − 2a1 − ϕ2 − a2w < 0,

then E(w0, 0) is the point of locally asymptotically stable. This completes the proof. �

The following article is discussed under the condition of r − ϕ1 − 2a1w < 0 and b > 0.

3. The definition and properties of the Poincaré map

First we give the definition of Poincaré map, which is used to study the dynamics of model (2.2).
Define the following two lines

L2 : w = e−k1DET, L3 : w = ET.

By bringing the w = ET into a straight line L1, get the intersection of L1 and L3, defined as
M1(ET, gM), where

gM =
−(ϕ1 + 2a1ET ) +

√
ϕ2

1 + 4ra1ET

2a1
,

similarly, the intersection of L1 and L2 is defined as N1(e−k1DET, gN), where

gN =
−(ϕ1 + 2a1e−k1DET ) +

√
ϕ2

1 + 4ra1e−k1DET

2a1
.

The set is defined in R2
+ as follows

Ω = {(w, g)|0 < w < ET, g > 0} ⊂ R2
+.

Now we define M as the impulse set for model (2.2) M = {(w, g) ∈ Ω|x = ET, 0 < g < gM} and M is a
closed subset of R2

+.
While the continuous function is as follows

I : (ET, g) ∈ M → (w+, g+) = (e−k1DET, e−k1Dg +
bET

1 + ET
) ∈ Ω.

Then define the phase set as

N = I(M) = {(w+, g+) ∈ Ω|w+ = e−k1DET,
bET

1 + ET
< g+ ≤ e−k1DgM +

bET
1 + ET

}.
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Without losing generality, we suppose that the initial point (w+
0 , g

+
0 ) belongs to the phase set.

Define the following two sections:

W1 = {(w, g)|w = ET, g ≥ 0},

W2 = {(w, g)|w = e−k1DET, g ≥ 0}.

Choose W2 as the Poincaré section. Then the trajectory starts at point S +
k (e−k1DET, g+

k ) ∈ L2 and
intersects with L3 at the unique point S k+1(ET, gk+1). We get gk+1 determined by g+

k and gk+1 = σ(g+
k )

from the Cauchy-Lipschitz theorem. Point S k+1 goes through one pulse and then it reaches L2 at point
S +

k+1(e−k1DET, g+
k+1) with g+

k+1 = e−k2Dgk+1 + bET
1+ET . So we define the Poincaré section as follows

g+
k+1 = e−k2Dσ(g+

k ) +
bET

1 + ET
= P(g+

k ). (3.1)

In order to better study the dynamic behavior of system (2.2), we can propose a Poincaré map
determined by the pulse point in the phase set according to the definition of the phase diagram.
Therefore, we define

F(w(t), g(t)) = w(t)
[

rw(t)
w(t) + g(t)

− ϕ1 − a1(w(t) + g(t))
]
,

G(w(t), g(t)) = −g
[
ϕ2 + a2(w + g)

]
.

It satisfies a scalar differential equation in a phase space
dg
dw

=
−g

[
ϕ2 + a2(w + g)

]
w

[
rw

w+g − ϕ1 − a1(w + g)
] = h(w, g),

g(e−k1DET ) = g+
0 .

(3.2)

For model (3.2), we only focus on the regions

Ω1 =

(w, g)|w > 0, g > 0, g <
−(ϕ1 + 2a1w) +

√
ϕ2

1 + 4ra1w

2a1

 , (3.3)

where h(w, g) is continuous and differentiable. And then we define w+
0 = e−k1DET, g+

0 = X, X ∈ N.
Define

g(w) = g(w; e−k1DET, X) = g(w, X), e−k1DET ≤ w ≤ ET,

and from model (3.2), we have

g(w, X) = X +

∫ w

e−k1DET
h(x, g(x, X)dx. (3.4)
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Thus, the Poincaré map P(X) can be represented by the following expression

P(X) = e−k2Dg(e−k1DET, X) +
bET

1 + ET
. (3.5)

Figure 2. Image of Poincaré map P and the parameters fixed as r = 2.5, ϕ1 = 0.2, a1 =

0.3, ϕ2 = 0.01, a2 = 0.05, ET = 2.5.(a)b = 0.7; (b)b = 0.98 .

Next, we prove the main properties of the Poincaré map.

Theorem 3.1. Poincaré map P has the following properties (Fig.2)
(I) The domain of P is [0,+∞). And the Poincaré map P is increasing on [0, gN] , decreasing on
[gN ,+∞).
(II) Poincaré map P is continuously differentiable.
(III)Poincaré map P has a unique fixed point g.
(IV) When g+

k → +∞, the Poincaré map P is bounded and there exists horizontal asymptote g = bET
1+ET .

(V)Poincaré map P takes the maximum value at g = gN and the maximum value is e−k2Dg(e−k1DET, gN)+
bET

1+ET ; the minimum value is taken at g = 0, and the minimum value is bET
1+ET .

Proof. (I) Through qualitative analysis of model (2.3), we get that all trajectories tend to point E0.
After having a pulse, all the trajectories from the phase set eventually reach the pulse set. Therefore,
the domain of P is [0,+∞).

For any point P+
1 (e−k1DET, g+

p1
), P+

2 (e−k1DET, g+
p2

) with g+
p1
, g+

p2
∈ [0, gN], we assume that g+

p1
< g+

p2

and gp+1 = σ(gp). From the Cauchy-Lipschitz Theorem, gp1+1 < gp2+1 can be obtained. Therefore after
one pulse, we get

P(g+
p1

) = e−k2Dgp1+1 +
bET

1 + ET
< e−k2Dgp2+1 +

bET
1 + ET

= P(g+
p2

).

Thus P is increasing on [0, gN].
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Similarly, we arbitrarily select two points Q+
1 (e−k1DET, g+

q1
), Q+

2 (e−k1DET, g+
q2

) with g+
q1
, g+

q2
∈

[gN ,+∞) and assume that g+
q1
< g+

q2
. The trajectory starts from point Q+

1 , Q+
2 across the L2 and then hits

the L3 at points (ET, gq1+1) and (ET, gq2+1) , where gq1+1 > gq2+1. After the pulse, we get

P(g+
q1

) = e−k2Dgq1+1 +
bET

1 + ET
> e−k2Dgq2+1 +

bET
1 + ET

= P(g+
q2

).

Thus P is decreasing on the [gN ,+∞).
(II) From model (2.3), we get that F(w, g),G(w, g) are continuous and differentiable in the first

quadrant. The continuity and differentiability theorems of solutions of ordinary differential equations
with respect to their initial conditions are used to determine the differentiability of P. That is, P is
continuously differentiable in Ω according to the Cauchy-Lipschitz theorem with parameters.

(III) Since P decreases on [gN ,+∞), therefore their exists a g
′

∈ [gN ,+∞) such that P(g
′

) < g
′

. We
can easily obtain P(0) = bET

1+ET > 0, then there exists g ∈ (0, g
′

) such that P(g) = g. Therefore P has
fixed point on [0,+∞).

Next we prove the uniqueness of the fixed point. When P(gN) < gN , the intersection of the phase
set and the w axis is defined as n0(e−k1DET, 0), then point n0 reaches point (e−k1DET, g+

n0+1) after one
pulse. And the intersection point N1(e−k1DET, gN) of L1 and L2 reaches the point (e−k1DET, g+

N+1) af-
ter one pulse. We assume that P has two fixed points G1(e−k1DET, g1),G2(e−k1DET, g2) and g1, g2 ∈

(g+
n0+1, g

+
N+1) such that P(g1) = g1, P(g2) = g2. Since P(0) = bET

1+ET > 0, then by the definition of the
Poincaré map, we get P(g) > g for g ∈ (g+

n0+1, g1). From P(g1) = g1, we get for any g
′

1 ∈ (g1, g2),
P(g

′

1) < g
′

1 holds. And P(g
′

2) < g
′

2 for g
′

2 ∈ (g2, g
+
N+1) due to P(gN) < gN and P(g2) = g2. Therefore we

obtain g ∈ (g1, g
+
N+1) such that P(g) < g, which is a contradiction. So P has a unique fixed point g and

g ∈ (0, gN).
Similarly, when P(gN) > gN , we get that P has unique fixed point g and g ∈ (gN ,+∞).
(IV) Defining the closure of Ω1 as

Ω1 =

(w, g)|w > 0, g > 0, g ≤
−(ϕ1 + 2a1w) +

√
ϕ2

1 + 4ra1w

2a1

 .
Ω1 is the invariant set on system (2.2).
Let

L = g −
−(ϕ1 + 2a1w) +

√
ϕ2

1 + 4ra1w

2a1
,

if
[F(w, g),G(w, g) · (1 − r(ϕ2

1 + 4ra1w)−
1
2 , 1)]L=0 ≤ 0,

where · is the product of two scalar vectors, the vector field will enter in Ω1 at the end, that Ω1 is the
invariant set. By calculating

V̇(x)|L=0 = −g(ϕ2 + a2(w + g))g + w(
rw

w + g
− ϕ1 − a1(w + g)) = g2(ϕ2 + a2(w + g)) < 0.
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For all (w, g) ∈ Ω1, dw(t)
dt > 0, dg(t)

dt < 0 holds. So we get σ(+∞) = 0 with (ek1DET, 0) ∈ N and
P(+∞) = bET

1+ET . We assume that there exists a positive g∗ that makes σ(+∞) = g∗ and P∗ = (ET, g∗) ∈
M. Take another point P1 = (ET, g1) and 0 < g1 < g∗. By the invariance of set Ω1 and uniqueness of
solution, we get that the orbit initiating P1 will arrive at point P+

0 = (e−k1DET, g+
0 ) ∈ N and g+

0 > +∞,
which is a contradiction. Therefore, we obtain σ(+∞) = 0 and P(+∞) = bET

1+ET , so P has a horizontal
asymptote P = bET

1+ET .
(V) From the proof (I), we get that P is increasing on [0, gN] and decreasing on [gN ,+∞). And for

∀n ∈ (0,+∞), P(n) ≤ P(gN) satisifty. Therefore P takes the maximal value at gN , which is also the
maximum value. And the maximum P(gN) = e−k2Dg(e−k1DET, gN) + bET

1+ET .
By proof (II), we can easily get that P takes the minimum value at g = 0, and the minimum value is

bET
1+ET . This completes the proof. �

4. Periodic solution of system (2.2)

4.1. Boundary periodic solution

For system (2.2), if sterile mosquitoes are no longer released, the system has boundary periodic
solution. At this point, we get the following system:

dw(t)
dt

= w(t)
[
rw(t)
w(t)

− ϕ1 − a1(w(t))
]

= −a1w(t)2 + (r − ϕ1)w(t), w(t) < ET,

w(t+) = Z1(D)w(t), w(t) = ET.
(4.1)

The initial condition is w(0+) = e−k1DET , and solving the above equation we get

wT (t) =
exp(tr)ET (r − ϕ1)

(r − ϕ1)exp(tϕ1 + k1D) + a1ET [exp(tr) − exp(tϕ1)]
.

Suppose w(t) reaches L3 at time T, let w(t) = ET , we obtain:

ET =
exp(rT )ET (r − ϕ1)

(r − ϕ1)exp(Tϕ1 + k1D) + a1ET [exp(rT ) − exp(Tϕ1)]
.

Further solve the above equation on T , where T represents the boundary periodic solution, we have

T =
1

r − ϕ1
ln

a1ET − ek1Dr + ek1Dϕ1

a1ET − r + ϕ1
,D =

1
k1

ln
a1ET − (a1ET − r + ϕ1)e(r−ϕ1)T

r − ϕ1
.

Therefore, the boundary periodic solution of model (2.2) with period T iswT (t) =
exp[r(t − (k − 1)T )]ET (r − ϕ1)

(r − ϕ1)exp[ϕ1(t − (k − 1)T ) + k1D] + a1ET
,

gT (t) = 0.
(4.2)
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Theorem 4.1. If the condition |χ1| < 1 holds, then the boundary periodic solution of system (2.2) is
orbitally asymptotically stable, where

χ1 = ∆1exp(I1 − I2). (4.3)

where ∆1 =
e−k2De−k1D(r−ϕ1−a1e−k1D)

r−ϕ1−a1ET , I1 =
r−ϕ1−ϕ2

r−ϕ1
ln a1ET−ek1Dr+ek1Dϕ1

a1ET−r+ϕ1
, I2 = ( 2a1+a2

a1
)ln

[
1 +

r−ϕ1−ek1Dr+ek1Dϕ1

(a1ET−r+ϕ1)(r−ϕ1)e−k1D

]
.

Proof. Let F(w, g) = w( rw
w+g − ϕ1 − a1(w + g)), G(w, g) = −g(ϕ2 + a2(w + g)), α(w, g) = w(e−k1D −

1), β(w, g) = g(e−k1D − 1) + bET
1+ET , Φ(w, g) = w − ET, (wT (T ), gT (T )) = (ET, 0), (wT (T +), gT (T +)) =

(e−k1DET, 0).
Then

∂F
∂w

=
rwg

(w + g)2 +
rw

w + g
− 2a1w − a1g − ϕ1,

∂G
∂g

= −ϕ2 − a2w − 2a2g,
∂α

∂w
= e−k1D − 1,

∂β

∂g
= e−k2D − 1,

∂Φ

∂w
= 1,

∂α

∂g
=
∂β

∂w
=
∂Φ

∂g
= 0.

∆1 =
F+(∂β

∂g
∂Φ
∂w −

∂β

∂w
∂Φ
∂g + ∂Φ

∂w ) + G+( ∂α
∂w

∂Φ
∂g −

∂α
∂g

∂Φ
∂w + ∂Φ

∂g )

F ∂Φ
∂w + G ∂Φ

∂g

=
F+(wT (T +), gT (T +))(1 +

∂β

∂g )

F(wT (T ), gT (T ))

=
e−k2De−k1D(r − ϕ1 − a1e−k1DET )

r − ϕ1 − a1ET
and

exp
(∫ T

0

[
∂F
∂w

(wT (T ), gT (T )) +
∂G
∂g

(wT (T ), gT (T ))
]

dt
)

= exp
(∫ T

0

[
r − ϕ1 − ϕ2 − (2a1 + a2)wT (t)

]
dt

)
= exp(I1 − I2),

where

I1 = (r − ϕ1 − ϕ2)T =
r − ϕ1 − ϕ2

r − ϕ1
ln

a1ET − ek1Dr + ek1Dϕ1

a1ET − r + ϕ1

I2 = (
2a1 + a2

a1
)ln

[
1 +

r − ϕ1 − ek1Dr + ek1Dϕ1

(a1ET − r + ϕ1)(r − ϕ1)e−k1D

]
.

Furthermore,

χ1 = ∆1 exp
(∫ T

0

[
∂F
∂w

(wT (T ), gT (T )) +
∂G
∂g

(wT (T ), gT (T ))
]

dt
)

= ∆1exp(I1 − I2).

From article [45, Lemma 1], we know that if the condition |χ1| < 1 holds, the order-1 periodic solution
of system (2.2) is orbitally asymptotically stable. This completes the proof. �
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4.2. The existence and stability of periodic solution

From the Theorem 3.1, we get that system (2.2) must exist a fixed point of the Poincaré map, which
represents system (2.2) exists an order-1 periodic solution. So we first talk about the stability of order-
1 periodic solution (ξ(t), η(t)). Without loss of generality, we assume that the period of the order-1
periodic solution is T .

Theorem 4.2. The order-1 period solution (ξ(t), η(t)) is orbitally asymptotically stable if

∣∣∣∣∣e−k2De−k1D( re−k1DET
e−k1DET+e−k2Dη0+ bET

1+ET
− ϕ1 − a1(e−k1DET + e−k1Dη0 + bET

1+ET ))
rET

ET+η0
− ϕ1 − a1(ET + η0)

exp(
∫ T

0
Q(t)dt)

∣∣∣∣∣ < 1, (4.4)

where Q(t) =
rwg

(w+g)2 + rw
w+g − 2a1w − a1g − ϕ1 − ϕ2 − a2w − 2a2g.

Proof. We define the starting and the ending point of the order-1 periodic solutions as (ξ(T ), η(T )) =

(ET, 0) and (ξ(T +), η(T +)) = (e−k1DET, e−k2Dη0 + bET
1+ET ) respectively.

Thus,

∆1 =
F+(e−k1DET, e−k2Dη0 + bET

1+ET )e−k2D

F(ET, η0)

=

e−k2De−k1D
(

re−k1DET
e−k1DET+e−k2Dη0+ bET

1+ET
− ϕ1 − a1(e−k1DET + e−k1Dη0 + bET

1+ET )
)

rET
ET+η0

− ϕ1 − a1(ET + η0)
,

and∫ T

0

(
∂F
∂w

+
∂G
∂g

)
dt =

∫ T

0

(
rwg

(w + g)2 +
rw

w + g
− 2a1w − a1g − ϕ1 − ϕ2 − a2w − 2a2g

)
dt =

∫ T

0
Q(t)dt.

The multiplier χ2 is obtained

χ2 = ∆1exp
(∫ T

0
Q(t)dt

)
.

From the (4.4), then |χ2| < 1 holds. By article [45, Lemma 1], we get that the order-1 periodic solution
is orbitally asymptotically stable. This completes the proof. �

Theorem 4.3. If P(gN) < gN , then system (2.2) has an globally asymptotically stable order-1 periodic
solution.

Proof. If P(gN) < gN , by Theorem 3.1 available Poincaré map P has a unique fixed point on g, and
0 < g ≤ gn. This means that system (2.2) has a unique order-1 periodic solution that is orbitally
asymptotically stable.

For any trajectory that starts at point (e−k1DET, g+
0 ), if g+

0 ∈ [0, gN], then g+
0 < P(g+

0 ) < g
from the Theorem 3.1. After n times pulses, we get monotonically bounded sequence Pn(g+

0 ), then
lim

n→+∞
Pn(g+

0 ) = g.

For any g+
0 > gN , we have two situations as follows: (a) for all n, if Pn(g+

0 ) > g, then with the
increases of n, Pn(g+

0 ) monotonically decreases and lim
n→+∞

Pn(g+
0 ) = g from the Theorem 3.1. (b) If
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Pn(g+
0 ) > g is not necessarily holds with all n, we make n1 is the smallest positive integer and Pn1(g+

0 ) <
g. From the case (a), we get there must have a positive integer n2(n2 > n1), which makes Pn2(g+

0 )
monotonically increases with the increase of n2, therefore lim

n2→+∞
Pn2(g+

0 ) = g. Thus, the unique order-1

periodic solution is globally asymptotically stable. This completes the proof.
�

Theorem 4.4. When P(gN) > gN , P2(gN) ≥ gN , the system (2.2) has a stable order-1 periodic solution
or a stable order-2 periodic solution.

Proof. According to the Theorem 3.1, we get that P increases on [0, gN]. So when P(gN) > gN , P has
no fixed point on [0, gN]. Then there is a positive integer j which satisfies g+

j−1 < gN , g+
j ≥ gN , by the

definition of Poincaré map we obtain g+
j = P(g+

j−1) ≤ P(gN) and g+
j ∈ [gN , P(gN)].

For g+
0 ∈ (gN ,+∞), P is monotonically decreasing on [gN ,+∞), so g+

1 = P(g+
0 ) ≤ P(gN). Then to

any integer j such that g+
j ∈ [gN , P(gN)]. Therefore we get g+

j ∈ [gN , P(gN)] always hold.
From P is monotonically decreasing on [gN , P(gN)], P2 is increasing on [gN , P(gN)], thus

P([gN , P(gN)]) = [P2(gN), P(gN)] ⊂ [gN , P(gN)].

Based on the above conclusions, for any g+
0 ∈ [gN , P(gN)], we assume that the

g+
1 = P(g+

0 ) , g+
0 , g

+
2 = P2(g+

0 ) , g+
0 , g

+
n = Pn(g+

0 ). This means the solution of model (2.2)
starts from (e−k1DET, g+

0 ), which is not the order-1 and the order-2 periodic solution. In other words,
if g+

1 = P(g+
0 ) = g+

0 , g
+
2 = P2(g+

0 ) = g+
0 , then P takes the fixed point at g+

0 , system (2.2) has both
order-1 periodic solution and order-2 periodic solution. So we should discuss the parameters of
gN , P(gN), g+

0 , g
+
1 and g+

2 . Thus, we discuss the following four cases:

(I) P(gN) ≥ g+
1 > g+

0 > g+
2 ≥ gN . In this case (Fig.3a), g+

3 = P(g+
2 ) > P(g+

0 ) = g+
1 , g

+
2 = P(g+

1 ) <
P(g+

3 ) = g+
4 . So g+

3 > g+
1 > g+

0 > g+
2 > g+

4 . By summing up the above relations, we obtain

P(gN) ≥ ... > g+
2n+1 > g+

2n−1 > ... > g+
1 > g+

0

> g+
2 > ... > g+

2n > g+
2n+2 > ... ≥ gN .

(II) P(gN) ≥ g+
1 > g+

2 > g+
0 ≥ gN . In this case (Fig.3b), we have g+

1 = P(g+
0 ) > P(g+

2 ) = g+
3 > g+

2 =

P(g+
1 ) and P(g+

2 ) = g+
3 > g+

4 = P(g+
3 ) > P(g+

1 ) = g+
2 , therefore g+

1 > g+
3 > g+

4 > g+
2 > g+

0 . By induction,
one obtains

P(gN) ≥ g+
1 > ... > g+

2n−1 > g+
2n+1 > ...

> g+
2n+2 > g+

2n > ... > g+
2 > g+

0 ≥ gN .

(III) P(gN) ≥ g+
0 > g+

2 > g+
1 ≥ gN . Like case (2), we obtain

P(gN) ≥ g+
0 > g+

2 ... > g+
2n > g+

2n+2 > ...

> g+
2n+1 > g+

2n−1 > ... > g+
1 ≥ gN .

(IV)P(gN) ≥ g+
2 > g+

0 > g+
1 ≥ gN . By using the similar process as case (1), we get

P(gN) ≥ ... > g+
2n+2 > g+

2n > ... > g+
2 > g+

0
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Figure 3. Path curve of system (2.2) (a)P(gN) ≥ g+
1 > g+

0 > g+
2 ≥ gN (b)P(gN) ≥ g+

1 > g+
2 >

g+
0 ≥ gN

> g+
1 > ... > g+

2n−1 > g+
2n+1 > ... ≥ gN .

For case (II) and (III), we know that P2n(g+
0 ) = g2n is monotonically increasing and P2n+1(g+

0 ) = g+
2n+1

is monotonically decreasing. So there exists a unique g that makes

lim
n→+∞

g+
2n+1 = lim

n→+∞
g+

2n = g, g ∈ [gN , P(gN)].

Or there exists two fixed values g1, g2 ∈ [gN , P(gN)] and g1 , g2 such that

lim
n→+∞

g+
2n+1 = g1, lim

n→+∞
g+

2n = g2.

For case (I) and (IV), only the second case is satisfied.
Thus, system (2.2) has an order-1 or order-2 periodic solution for case (II) and case (III), has an

order-2 periodic solution for case (I) and case (IV). This completes the proof. �

Theorem 4.5. When P(gN) > gN , P2(gN) < g+
min, where g+

min = min{g+, P(g+) = gN}. Then model (2.2)
has a nontrivial order-3 periodic solution. And system (2.2) exist order-k (k ≥ 3) periodic solution.

Proof. When P(gN) > gN , the Poincaré map have a unique fixed point g and g ∈ (gN , P(gN)). In
order to study the existence of order-3 periodic solution, we need to get a fixed point g̃ ∈ [0,+∞)
such that P3(̃g) = g̃ and P(̃g) , g̃. By the Theorem 3.1 P3(g) is continuous on [0,+∞), therefore
P3(0) = P2( bET

1+ET ) > 0 and P3(g+
min) = P2(gN) < g+

min.
Further, it follows from the intermediate value theorem and the continuity of P3, system (2.2) must

have a positive point g̃ ∈ (0, g+
min) where P3(̃g) = g̃ and g+

min < gN . We can easily get that g̃ , gN .
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Therefore, system (2.2) has an order-3 periodic solution. From Sarkovskii [46] theorem and [45,
Definition 2] that the order-k periodic solution exists on system (2.2). This complete the proof. �

5. Numerical simulations

In the section 4, we obtain the boundary periodic solution of system (2.2) and the expressions of
T and D. Therefore, we can analyze the key factors T and ET that affect the dose D of insecticides.
Let r = 2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 = 0.05, we get when the threshold ET increases, the
insecticides dose D decreases, and the downward trend becomes more and more obvious (Fig.4a).
Further, when the period T increases, the insecticides dose D also increases (Fig.4b). Therefore, the
effects of ET and T should be taken into account in the actual dose of insecticide sprayed.

We use the boundary periodic solution stability condition (4.3) to determine whether the wild
mosquito population can be controlled by chemical control alone, that is, χ1 < 1 means that the wild
mosquito population can be controlled below ET under the conditions of only chemical control. There-
fore, we use numerical simulation to study the effect of threshold ET on stability condition χ1(Fig.5),
where the parameter values are r = 2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 = 0.05, k1 = 1.6,D = 1.6.
From the Fig.5, we get χ1 < 1 when ET is relatively small, and χ1 > 1 when ET increases to a cer-
tain value. This indicates that when the value of a is fixed, a smaller ET value is more conducive to
controlling the wild mosquito population. And the early use of chemical control makes the control
of wild mosquitoes. But when the ET get large, repeated chemical controls can make wild mosquito
populations resistant and cannot be effectively controlled. So the use of integrated mosquito control is
a reasonable and effective method.

Figure 4. The influence of key factors ET , T on insecticide dose D: (a)r = 2.5, ϕ1 = 0.2, a1 =

0.3, ϕ2 = 0.01, a2 = 0.05, k1 = 1.6,T = 8.6956;(b)r = 2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 =

0.05, k1 = 1.6, ET = 2.5.
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Figure 5. The influence of key factors ET on the stability condition χ1 :r = 2.5, ϕ1 =

0.2, a1 = 0.3, ϕ2 = 0.01, a2 = 0.05, k1 = 1.6,D = 1.6.

Let parameters r = 2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 = 0.05, ET = 2.5, we get that system (2.2)
has order-1 periodic solution and it is globally asymptotically stable (Fig.6a). Figure (6b) and (6c)
are time series diagram of w, g. The results show that the wild mosquito population can be controlled
below the threshold ET when using integrated mosquito control.

Figure 6. Periodic solution and time series of system (2.2) under state pulses. We let r =

2.5, ϕ1 = 0.2, a1 = 0.3, ϕ2 = 0.01, a2 = 0.05.

6. Conclusion

In this paper, we present the wild and sterile mosquito system with state-dependent feedback control
and study its global dynamics. According to the introduction and main results of the article, system
(2.2) using state-dependent feedback control is not only practical, but also rich in dynamic behavior.

In the article we define the Poincaré map P and study its main properties such as monotonicity,
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continuity, extremum, and fixed point. We obtain an expression for the boundary period solution with
the period T and the pesticide dose D, which proves that it is stable under certain conditions. Based on
the properties of Poincaré map, we prove the existence and stability of the order-1 periodic solution of
system(2.2), and solve the dynamic complexity of the system, such as the proof of the existence of the
order-3 periodic solution.

We use numerical simulations to verify the impact of key parameters and validate our conclusions.
By analyzing the key influencing factors of pesticide D, we get that when the threshold ET increases,
D decreases continuously, and when the period T increases, D increases continuously. Therefore, the
dose of pesticide should consider the effects of ET and T at the same time. By studying the influence
of threshold ET on the stability condition χ1 of the boundary period, we get that the population of wild
mosquitoes cannot be effectively controlled when ET is large. This verifies the necessity of adopting
an integrated mosquito control. Through numerical simulation, we verify the existence and stability
of the order-1 periodic solution. That is, through integrated mosquito control, wild mosquitoes can be
controlled below the threshold.

Compared with the previous state-dependent feedback control model, we summarize some of the
highlights of this paper: (1) We study the global dynamics of the model through the properties of
the Poincaré map, and the existence of periodic solution is proved by studying the fixed point of
Poincaré map. (2) The biological control method used in this paper is sterile insect technique. And
wild mosquito populations can be more effectively controlled by using a new proportional release
method when releasing sterile mosquitoes. (3) We study the effects of insecticide dose on integrated
mosquito control and the influence of key parameters is analyzed by numerical simulation. In future
research work, we will add optimization problems to reduce control costs.
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