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Abstract: Spontaneous or drug-induced loss of hepatitis B e antigen is considered a beneficial event
in the disease progression of chronic hepatitis B virus infections. Mathematical models of within-host
interactions are proposed; which provide insight into hepatitis B e antibody formation, its influence
on hepatitis B e antigen seroclearance, and reversion of anergic cytotoxic immune responses. They
predict that antibody expansion causes immune activation and hepatitis B e antigen seroclearance.
Quantification of the time between antibody expansion and hepatitis B e antigen seroclearance in the
presence and absence of treatment shows that potent short-term treatment speeds up the time between
antibody expansion and hepatitis B e antigen seroclearance. The monthly hepatocyte turnover during
this time can be increased or decreased by treatment depending on the amount of core promoter or
precore mutated virus produced. The results can inform human interventions.
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1. Introduction

Hepatitis B virus (HBV) infection is a major public health burden with high endemic areas in
South East Asia, China, and sub-Saharan Africa [1]; and approximately 240 million chronically
infected people worldwide [2]. HBV infects a subset of liver cells (i.e. hepatocytes) [3] and can lead
to either acute or chronic disease. About 90% of perinatally and 20-30% of childhood acquired HBV
infections become chronic [4], while healthy adults clear the infection in 95% of the cases [3]. Severe
complications, such as liver cirrhosis and hepatocellular carcinoma (HCC), follow chronic
infections [3].

Chronic HBV spans five distinct disease stages which are built around the dynamics of a
serological marker called hepatitis B e antigen (HBeAg), a secretory protein that is not required for
viral replication or hepatocyte infection [5] and has been described as a downregulator of the cellular
immune response, therefore acting as an immune tolerogen [6]. The stages are not clearly separated
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or sequential [2]. The first four are distinguished by the presence/absence of HBeAg and by disease
(hepatitis), as described below [2]. The first phase, called HBeAg-positive infection (formerly known
as the immune tolerant phase), lasts between 10–30 years [2, 4]. Viral DNA levels are high and
HBeAg is detectable, while alanine aminotransferase (ALT) (a marker of liver disease) is normal,
indicating lack of liver cell damage [4, 7]. The second stage, called HBeAg-positive hepatitis
(formerly known as immune clearance or immune active phase), is characterized by high and
fluctuating viral DNA levels, the presence of HBeAg, elevated ALT and moderate to severe liver
damage [2, 4]. The third phase, called HBeAg-negative infection phase (formerly the inactive carrier
phase), is marked by HBeAg seroconversion, i.e. hepatitis B e-antibody (HBeAb) production and
subsequent HBeAg loss, low viral DNA levels, normal ALT and no liver disease [2, 8]. The fourth
phase, called HBeAg-negative hepatitis, is characterized by undetectable HBeAg, detectable HBeAb,
moderate to high viral DNA levels, elevated ALT and liver disease [2]. The fifth phase, which is no
longer determined by HBeAg, is called hepatitis B surface antigen (HBsAg) negative phase. It is
marked by normal ALT levels and usually undetectable viral DNA levels [2]. Reaching this phase
before the onset of cirrhosis significantly reduces the risk of liver damage (either by cirrhosis or
HCC) [2].

For chronically infected HBV patients two main groups of HBV drugs are available: interferon-α
(IFNα) or its pegylated form PegIFNα, and five nucles(t)ide analogues (NAs): lamivudine, telbivudine,
adefovir, entecavir, and tenofovir [9]. IFNs have both immunoregulatory and antiviral effects [9].
NAs have only antiviral effects, such as inhibition of HBV replication [9, 10]. The goal of HBV
treatment is to reduce the risk of disease progression and HCC development [2]. The optimal treatment
endpoint is seroclearance of HBsAg, associated with a very low risk of viral relapse and progression
to HCC [2, 11].

The severe side effects associated with IFNα and PegIFNα limit the amount of time when they
can be administrated: usually 48 weeks, but in certain cases up to 96 weeks [2, 12]. Therefore, the
more widely used treatment options are NAs. Older NAs caused viral resistance, but this risk was
significantly reduced by the newest generation of NAs: entecavir and tenofovir, which allow for long-
term (indefinite) treatment [2,13–15]. In spite of these advances in NAs therapy, HBsAg seroclearance
is reached in only 1% of treated patients [13]. Hence HBeAg seroconversion, in addition to viral
remission to an undetectable viral DNA level, is often considered a more realistic treatment endpoint
[11, 16]. In particular, for HBeAg-positive patients that undergo HBeAg seroconversion and viral
remission during treatment, stopping therapy after some consolidation phase is recommended [2]. A
systematic review of NA treatment studies has reported that after initial seroconversion about 95 (92,
88)% of patients stay HBeAg-negative for 6 (12, 24) months post treatment cessation, and that about
73 (62, 53 51)% of initially HBeAg-positive patients remain in viral remission 6 (12, 24, 36) months
after the end of therapy. [13].

The role of HBeAg seroconversion has been investigated in several clinical studies. It has been
reported that patients that undergo HBeAg seroconversion have a better prognosis than those that are
consistently seropositive, such as slower disease progression and regression of the fibrosis [17, 18].
Other studies have shown that persistently HBeAg-positive patients have a higher risk of developing
HCC [19], and liver cirrhosis [20–22]. Additionally prolonged HBeAg-positive hepatitis or higher age
at HBeAg seroconversion was associated with a higher risk for liver cirrhosis [21, 23–25].

Drug therapy was correlated with faster HBeAg seroconversion. A meta-analysis reported increased
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HBeAg seroconversion rates after one year of NA treatment regardless of NAs efficacy [26]. Another
meta-analysis reported that the rates of HBeAg seroconversion after one year of treatment are greatest
for tenofovir [27] and telbivudine [28]. However, for longer treatment periods (of 3,4,5 years) the
rate of HBeAg seroconversion is reduced compared to spontaneous seroconversion obtained without
treatment [28, 29], indicating that a prolonged duration of treatment with, in particular the highly
efficient NAs entecavir and tenofovir, is deleterious in achieving HBeAg seroconversion. Given the
importance of HBeAg in HBV pathogenesis and the contradictory reports regarding spontaneous and
drug-induced HBeAg seroconversion, we propose a mathematical modeling approach for studying the
dynamics of HBeAg loss under various hypotheses. The developed models will investigate the role
of antibody formation, their role in the disease transition from HBeAg-positive to HBeAg-negative
infections, and the trade-off between virus loss during therapy and HBeAg seroclearance.

Over the past decades, mathematical models have been developed to study the dynamics of acute,
chronic, and occult HBV infections [30–32], drug therapy [33–41], cell-to-cell transmission [42],
intracellular interactions [42–44], cellular immune responses [31, 34, 45–47], antibody-mediated
immune responses [44, 48, 49], HBeAg [44, 50], and HBeAb [44]. We build on the previous modeling
work and consider the interaction between HBeAg, cellular immune responses, HBeAb levels and
drug efficacy. We hypothesize that B cells mature into HBeAb-producing plasma cells during the
HBeAg-positive stages of HBV infection, investigate various modulation mechanisms for HBeAb
dynamics, and use the models to predict the differences in seroconversion times under treatment and
in the absence of treatment.

This paper is structured as follows. In Section 2, we develop an in-host model of hepatitis B
infection in the absence of therapy which focuses on the function of HBeAg in disease progression. In
Section 3, we investigate the model analytically and numerically and predict the interplay between
cellular and antibody responses on HBeAg seroclearance. In Section 4, we investigate the role of NAs
treatment on HBeAg seroclearance. We conclude with a discussion.

2. Model development

We model the interactions between uninfected hepatocytes, T ; infected hepatocytes, I; hepatitis B
virus, V; effector cytotoxic T lymphocytes (CTLs), E; HBeAg, e; HBeAb, A; and HBeAg-HBeAb
immune complexes, X. To incorporate the ability of the liver to regenerate after cell loss [51], we
assume that uninfected hepatocytes follow a logistic growth with maximum proliferation rate r and
carrying capacity Tm. They become infected with HBV at rate β. Infected hepatocytes are killed by
effector cells at rate µ, and produce virus and HBeAg at rates p and π, respectively. Furthermore,
we assume that infected cells proliferate with maximum proliferation r [32, 37, 45]. Since there is
evidence, at least in acute HBV infections [32,45,52], that covalently closed circular DNA can be lost
during cell proliferation, we assume that an infected cell produces one uninfected and one infected
offspring. HBV is cleared at rate c. Effector cells are recruited at constant rate sE and, after interaction
with infected cells, expand at maximum rate α and carrying capacity Em [46]. It has been reported that
HBeAg suppresses the cellular immune responses [6, 53]. We model this by decreasing the effector
cell recruitment at rate σ. Effector cells die at rate dE. We only model the cytolytic effect of the
effector cells and ignore their non-cytolytic function [31]. HBeAgs decay at per capita rate δe and bind
HBeAb to form complexes at rate kp. Complexes dissociate at rate km and decay at per capita rate
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cX = δe + dX, where δe is the decay rate of HBeAg and dX is increased removal due to phagocytosis.
Previous papers [54] have presented detailed models of B lymphocyte proliferation and differentiation
into plasmablast, antibody producing plasma cells and memory cells after they encounter antigen. For
simplicity, we ignore the details of B-lymphocyte dynamics and differentiation into antibody producing
cells and assume that free HBeAb, A, is produced at rate s proportional to the HBeAg. Moreover
HBeAb is maintained after HBeAg clearance through antigen-independent homeostatic proliferation
of memory B cells and long-lived plasma cells, which we model through a logistic term with maximum
proliferation rate sA and carrying capacity Am [49]. The corresponding system of equations is given by
system (2.1) and a schematic representation is shown in Figure 1.

dT
dt

= r(T + I)
(
1 −

T + I
Tm

)
− βTV,

dI
dt

= βTV − µIE,

dV
dt

= pI − cV,

de
dt

= πI − δee − kpAe + kmX,

dE
dt

=
sEE + αIE

1 + σe

(
1 −

E
Em

)
− dEE,

dA
dt

= (sAA + seA)
(
1 −

A
Am

)
− kpAe + kmX,

dX
dt

= kpAe − kmX − (δe + dX)X.

(2.1)

All parameters in this model are positive. Moreover the initial conditions are

T (0) = T0, I(0) = I0,V(0) = V0, e(0) = e0, E(0) = E0, A(0) = A0, X(0) = X0.

Figure 1. Model schematic including interactions given in system (2.1). Solid lines describe
up-regulation or production and dashed lines describe inhibition.
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3. Results

3.1. Analytical results

System (2.1) has four virus clearance equilibria. Equilibrium S 2 = (Tm, 0, 0, 0, 0, 0, 0) where
clearance happens in the absence of immune responses, equilibrium S 4 =

(
Tm, 0, 0, 0,

Em(sE−dE)
sE

, 0, 0
)

where clearance is achieved due to CTL responses, and equilibrium S 8 = (Tm, 0, 0, 0, 0, Am, 0) where
HBeAb responses are maximal and CTL responses are absent are unstable. Lastly, equilibrium
S 10 =

(
Tm, 0, 0, 0,

Em(sE−dE)
sE

, Am, 0
)

where CTL responses are present and HBeAb responses are
maximal is locally asymptotically stable when (TmβpsE)/(Emµc(sE − dE)) < 1 and sE > dE. This
means that when virus and infected cells are cleared faster than produced, while CTLs are produced
faster than cleared, infection dies out.

Similarly, positive virus equilibria can be obtained in the absence of any immune responses (S 5), in
the presence of anergic CTL responses (S 6), under positive but inefficient antibody responses (S 11), and
in the presence of both anergic CTLs and inefficient antibody responses (S 12). The exact description
of these equilibria, other equilibria that are not mentioned here, and their stability can be found in the
supplementary material (Appendix 1).

3.2. Numerical results

3.2.1. Parameter values

The parameter values used in the simulations are given in Table 1. Liver makes up one fiftieth of a
persons weight [55]. Each gram of liver contains 14 × 107 hepatocytes [56]. Therefore, an average 70
kg person has about 2 × 1011 hepatocytes. As in [45], distributing this throughout 15L of extracellular
fluid results in a liver capacity of Tm = 13.6 × 106 hepatocytes/mL.

Liver cells have the potential to regenerate fast. We account for it by setting the hepatocyte
proliferation rate to r = 1/day, as in [31, 49]. The estimates for the infected hepatocytes’ half-lives
range between 10–100 days [30]. Given that we assume a maximum effector cells’ level of Em = 103

cells/mL, and an infected hepatocytes’ half-life of 11 days, the infected cells clearance rate becomes
µ = ln 2/(11 × Em) = 6 × 10−5 mL/(cells×day). The estimates for virus’ half-life is at most 4.4
hours [57]. We assume a half-life of 4 hours, corresponding to a decay rate of c = 4.2/day. The viral
infectivity rate during acute HBV infection was estimated to range between 10−10 − 1.8 × 10−9

mL/(virus×day) [49] and the virus production rate ranges between 200–1000/day [58]. Since virus
levels are lower during chronic disease, we consider a one-fold reduction in the infectivity rate
β = 4 × 10−11 mL/(virus×day) and keep the viral production levels as in acute cases, p = 400/day.
Similar results can be obtained for high (acute level) infectivity and reduced production rates (not
shown). As in [50], we assume that HBeAg is degraded at rate δe = 0.3/day. The half-life of effector
cells is short, therefore we assume a decay rate of dE = 0.5/day [47, 50, 59].

The dissociation rate of HBsAg-HBsAb immune complexes is km = 10/day [49]. We assume the
same is true for HBeAg-HBeAb dissociation rate. Furthermore, we assume that HBeAb is mostly IgG
and that the avidity for HBeAg-HBeAb binding is similar to that for HBsAg-HBsAb binding, which is
set at K = 107M−1 as in [60]. For an IgG molecular weight of 150kDa = 150 × 103g/mol [49], and a
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conversion of 1 IgG in mg/mL = 13.43 IgG in IU/mL [61], we obtain a binding rate

kp = km × K = 108 1
M × d

=
108L

mol × d
=

108L
mol × d

×
1000mL

L
×

mol
150 × 103g

=
108

150
×

mL
d × 103mg

=
105

150
×

1
d
×

mL
mg

=
105

150 × 13.43
×

mL
IU × d

≈ 50 ×
mL

IU × d
.

(3.1)

The remaining parameters are chosen as follows. We assume that infected cells produce HBeAg at
rate π = 10−4 IU/(cells×day), and activate effector cells at rate α = 2.1/(cells×day). Further, effector
cells are activated in an infected cell independent manner at rate sE = 0.1/day and their production is
inhibited by HBeAg at rate σ = 104 mL/IU. HBeAb is produced in an HBeAg-independent manner
at rate sA = 10−10/day and has a carrying capacity of Am = 10 IU/mL. HBeAg-dependent HBeAb
production rate s will be varied throughout our investigations. Lastly, the HBeAg-HBeAb immune
complex removal rate is cX = 1.2/day, four times higher than the clearance of free HBeAg [62].

3.2.2. Initial conditions

While free HBeAb is not detected by assays during most chronic HBeAg-positive HBV infections,
it is reasonable to believe that antibody specific for HBeAg are present in immune complexes before
the free antibody can be detected. This has been shown in HIV infections where immune complexes
have been detected three weeks prior to free antibody detection [63]. However, since the number of
immune complexes is small, we model this by assuming HBeAb is initially negligible, i.e. A = 0, and
X = 0. Under this assumption HBeAb does not influence the dynamics of the remaining variables and
system (2.1) reduces to

dT
dt

= r(T + I)
(
1 −

T + I
Tm

)
− βTV,

dI
dt

= βTV − µIE,

dV
dt

= pI − cV,

de
dt

= πI − δee,

dE
dt

=
sEE + αIE

1 + σe

(
1 −

E
Em

)
− dEE.

(3.2)

Furthermore, during HBeAg-positive infection, the CTL immune responses are suppressed. We
model this by assuming an immune tolerant equilibrium, in which the CTL responses are non-existent
or reduced. Asymptotic analysis of model (3.2) (see supplementary material, Appendix 1) shows that
there are at most five equilibria in which virus population is non-zero: a no CTL state in which the
entire liver is infected

S noA
5 =

(
0,Tm,

Tm p
c
,

Tmπ

δe
, 0

)
(3.3)
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and at most four CTL-inefficient infectious states

S noA
6 =

(
T̄ (Ī), Ī,

p
c

Ī,
π

δe
Ī, Ē(Ī)

)
, (3.4)

where

T̄ (Ī) =
((αδe − πσdE)Ī + δe(sE − dE))Emcµ

δeβp(αĪ + sE)
,

Ē(Ī) =
((αδe − πσdE)Ī + δe(sE − dE))Em

δe(αĪ + sE)
,

and Ī is a root of the fourth degree polynomial

C4 Ī4 + C3 Ī3 + C2 Ī2 + C1 Ī + C0. (3.5)

The coefficients C0,C1,C2,C3, and C4 are defined in Appendix 1.
Equilibrium S noA

5 represents completely absent CTL responses, while S noA
6 represents inefficient

(exhausted) CTL responses. Studies have shown that during chronic HBeAg-positive infections,
cellular immune responses are anergic rather than completely absent [64]. We therefore assume that
the equilibrium in the absence of HBeAb is given by S noA

6 , where the CTL responses are non-zero but
inefficient. Numerically we find that this is the only stable equilibrium of system (3.2) for the
parameter values given in Table 1. Our goal is to investigate how the emergence of antibodies affects
HBeAg dynamics and how much this event contributes to the reverting of T cell exhaustion. To
address this, we investigate the dynamics of system (2.1) under initial conditions given by the T cell
exhaustion state (3.4), together with a small initial free HBeAb concentration A0 = 10−6 IU/mL. This
means that at time t = 0 we perturb system (2.1) from its unstable equilibrium (S noAb

6 , 0, 0) by
introducing a small number of free HBeAb. These initial conditions are summarized in Table 2.

Table 1. Parameter values.

Parameter Description Value Unit References
r proliferation rate of hepatocytes 1 d−1 [31, 49]
Tm hepatocyte carrying capacity 13.6 × 106 cells/mL [45, 55, 56]
p virus production rate 400 mL/(virus×d) [58]
c virus clearance rate 4.2 d−1 [57]
δe HBeAg degradation rate 0.3 d−1 [50]
dE immune cell death rate 0.5 d−1 [47, 50, 59]
dX complex removal rate due to phagocytosis 3 × δe d−1

kp HBeAb binding rate 50 mL/(IU×d) see text
km HBeAb dissociation rate 10 d−1 see text
β viral infectivity rate 4 × 10−11 mL/(virus×d) [49], see text
µ effector induced infected cells clearance rate 6 × 10−5 mL/(cells×d) [30], see text
π e-antigen production rate 10−4 IU/(cells×d)
α infected cell dependent immune cell activation rate 2.1 1/(cells×d)
sE infected cell independent immune cell activation rate 0.1 d−1

σ strength of e-antigen inhibition 104 mL/IU
Em effector cells carrying capacity 103 cells/mL
s HBeAg dependent HBeAb production rate varied mL/(IU×d)
sA HBeAg independent HBeAb production rate 10−10 d−1

Am HBeAb carrying capacity 10 IU/mL
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Table 2. Initial conditions with T̄ , Ī, V̄ , ē, Ē as defined in (3.4).

Initial condition Description Value Unit
T0 target cells T̄ cells/mL
I0 infected cells Ī cells/mL
V0 virus V̄ virus/mL
e0 HBeAg ē IU/mL
E0 effector cells Ē cells/mL

A0 HBeAb

10−6, (HBeAb expansion)
0, (negligent HBeAb)

IU/mL

X0 HBeAg-HBeAb immune complexes 0 IU/mL

3.2.3. The dynamics of HBeAg and CTL populations

For the parameter values in Table 1, and HBeAg-dependent HBeAb production rate
s = 6 mL/(IU×d), the system’s dynamics are shown in Figure 2. The solid and dashed curves show
the dynamics in the presence and absence of HBeAbs. If the effects of the HBeAb are negligible, then
the HBeAg levels do not change and the CTL responses are not strong enough to cause viral
remission (see Figure 2, dashed curves). Contrarily, spontaneous HBeAb production leads to virus
suppression below the threshold level of HBeAg-negative infections, corresponding to
104 cp/mL [11], which for the remainder of our study will be called low level virus concentration.
The HBeAg population drops below 0.1 IU/mL, corresponding to the lower limit for HBeAg
quantification assays, which for the remainder of our study will be called HBeAg seroclearance level
(see Figure 2, solid curves).

We investigated which immune factors are responsible for HBeAg seroclearance, as well as for
the infected cells’ decay. Both HBeAg and infected cells decrease in biphasic manner (see Figure 3).
The first slope decay is steeper for HBeAg than for infected cells, while the second slope decays are
the same (see Figure 3, grey versus black lines). The additional removal of free HBeAg during the
first phase decay is due to antibody binding, and the formation and removal of immune-complexes by
phagocytes. Following the initial antibody responses, a decrease in HBeAg levels leads to a decrease
in their tolerogenic pressure on CTLs, which get activated and kill infected cells. As a result, infected
cells do get removed by potent cellular immune responses, but HBeAg production slows down as well.
During the second phase decay, CTL responses outweigh the antibody responses, hence, the slopes for
both HBeAg and infected cells’ decay are identical.

Together, this analysis leads to the prediction that a combination of antibody and cellular responses
is needed to drive the system into a state of low level virus concentration and undetectable HBeAg.
Antibody responses act first, by reducing the immune tolerant effects of HBeAg, while cellular
responses control the later stages of the infection.

As shown in Figure 2, under HBeAb responses which grow in an HBeAg-dependent manner at rate
s = 6 mL/(IU×d), HBeAg is cleared in 2.8 years. We quantified the time of HBeAg seroclearance,
τ(s), as a function of the HBeAb production rate s for 5.51 ≤ s ≤ 50 mL/(IU×d) (see Figure 4).
For s < 5.51 mL/(IU×d), HBeAg seroclearance is never reached. The time to HBeAg seroclearance
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(below 0.1 IU/mL) decreases from 41.9 years for small s = 5.51 mL/(IU×d) to 1.2 years for s >

50 mL/(IU×d) (see Figure 4). As expected, higher antibody expansion rates lead to shorter times to
HBeAg serocleareance. The time to HBeAg seroclearance is dependent on the initial HBeAb level,
with faster HBeAg clearance for high initial HBeAb levels (see Figure S1). In our simulations we
fixed A0 = 10−6 IU/mL to avoid any numerical problems.

0 1 2 3 4 5 6 7 8 9
10

6

10
7

10
8

T
 (

c
e

lls
/m

l)

0 1 2 3 4 5 6 7 8 9
10

0

10
5

10
10

I 
(c

e
lls

/m
l)

0 1 2 3 4 5 6 7 8 9
10

0

10
5

10
10

V
 (

v
ir
u

s
/m

l)

0 1 2 3 4 5 6 7 8 9

10
0

10
3

e
 (

IU
/m

l)

0 1 2 3 4 5 6 7 8 9

10
2.4

10
2.9

E
 (

c
e

lls
/m

l)

0 1 2 3 4 5 6 7 8 9
10

−20

10
0

A
 (

IU
/m

l)

0 1 2 3 4 5 6 7 8 9
10

−10

10
0

10
10

X
 (

IU
/m

l)

t (years)

 

 

A
0
=10

−6

A
0
=0

Figure 2. The dynamics of the system (2.1) when A0 = 10−6 IU/mL (solid lines) and A0 = 0
IU/mL (dashed lines). Here, s = 6 mL/(IU×d) and all other parameters are given in Table 1.
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and all other parameters are given in Table 1.
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Figure 4. HBeAg seroclearance time versus HBeAb production rate s when A0 = 10−6

IU/mL.

3.3. Core and precore mutations

Host-virus predictors for HBeAg seroconversion are limited, especially in chronic infections with
high virus loads [65]. Two positive events that lead to HBeAg loss are virus mutations in the core
promoter [66] and precore region [67], which prevent the coding of HBeAg and lead to loss of HBeAg-
positive virus. Clinical studies have found that at least one core/precore mutation can be found in 89%
of HBeAg-negative patients and 56% of HBeAg-positive patients [68]. Another study [69] has reported
even higher numbers of HBeAg-positive patients with core/precore mutations. We, therefore, assume
that core/precore mutations precede the HBeAg seroclearance. However, the quantitative relationship
between mutation rates and time to HBeAg seroconversion is not known. Core/precore mutations in
our investigations can be seen as a proxy for any event leading to an infected cell’s loss of HBeAg
production. Here, we investigate the role of mutations in HBeAg clearance as follows. We modify
system (2.1) to include both wildtype HBeAg-positive virus Vw, and mutant HBeAg-negative virus
Vm. Cells are either infected by wiltdtype or mutant viruses, Iw and Im. At time t1, a fraction Φ of
the viruses produced by Iw are HBeAg-negative and the rest 1 − Φ are HBeAg-positive. We ignore
back mutations based on the observation that HBeAg-negative virus is mostly inactive. By contrast,
all viruses produced by Im are HBeAg-negative. Wildtype and mutant viruses replicate at rates pw and
pm, and are cleared at rates cw and cm. Furthermore, hepatocytes get infected by wildtype and mutant
viruses at rates βw and βm and are killed by CTLs at rates µw and µm. We assume that during division an
infected hepatocyte of either wild or mutant-type (Iw or Im) produces one uninfected and one infected
offspring of the same hepatocyte type. The system describing these interactions is
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dT
dt

= r(T + Iw + Im)
(
1 −

T + Iw + Im

Tm

)
− βwTVw − βmTVm,

dIw

dt
= βwTVw − µwIwE,

dIm

dt
= βmTVm − µmImE,

dVw

dt
= pw(1 − Φ(t))Iw − cwVw,

dVm

dt
= pmIm + pwΦ(t)Iw − cmVm,

de
dt

= πIw − δee − kpAe + kmX,

dE
dt

=
sEE + α(Iw + Im)E

1 + σe

(
1 −

E
Em

)
− dEE,

dA
dt

= (sAA + seA)
(
1 −

A
Am

)
− kpAe + kmX,

dX
dt

= kpAe − kmX − cXX,

(3.6)

where Φ(t) =

 0, if t < t1

Φ, if t ≥ t1
.

All parameters in this model are positive. Moreover the initial conditions are
T (0) = T0, Iw(0) = I0, Im(0) = 0,Vw(0) = V0,Vm(0) = 0, e(0) = e0, E(0) = E0, A(0) = A0, X(0) = X0,

where T0, I0,V0, e0, E0, A0, X0 are defined as in the case of system (2.1).

3.3.1. Analytical results

We assume that the wildtype and mutant viruses are identical in everything but their ability to
produce HBeAg, i.e. βw = βm = β, µw = µm = µ, pw = pm = p, cw = cm = c, and analyze
the long-term behavior of the system. System (3.6) has the following non-infectious equilibria: viral
clearance in the absence of antibody responses, S mut

2 = (Tm, 0, 0, 0, 0, 0, 0, 0, 0), viral clearance due
to CTL responses, S mut

4 =
(
Tm, 0, 0, 0, 0, 0,

Em(sE−dE)
sE

, 0, 0
)
, virus clearance under maximal antibody

responses, S mut
6 = (Tm, 0, 0, 0, 0, 0, 0, Am, 0) which are all unstable; and viral clearance in the presence

of CTL and maximal antibody responses, S mut
8 =

(
Tm, 0, 0, 0, 0, 0,

Em(sE−dE)
sE

, Am, 0
)
, which is locally

asymptotically stable if and only if sE > dE and TmβpsE
Emµc(sE−dE) < 1.

The model has two equilibria in which only the mutant virus persists and the wildtype virus goes
extinct: mutant persistence in the presence of anergic CTL responses S mut

11 , which is unstable; and
mutant persistence due to a combination of CTL and maximal antibody responses, S mut

12 . Furthermore,
the system has two hyperplanes of equilibria, where HBeAg can take on any value, and in which
mutant and wildtype virus coexist: coexistence in the absence of any immune responses, S mut

9 , which
is biologically relevant if e < Tmπ/δe; and coexistence under antibody responses, S mut

10 . Coexistence of
wildtype and mutant virus results results in infection of the entire liver. For S mut

9 , S mut
10 , and S mut

12 we did
not perform stability analysis (see supplementary material, Appendix 2 for details).
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3.3.2. Numerical results

We are interested in the relationship between the time of HBeAg seroclearance and the time of
precore/core mutations. First, we want to see how the timing of HBeAg seroclearance under mutation
(with and without concomitant free HBeAb expansion) compares with the timing of HBeAg
seroclearance in the absence of mutations and presence of antibodies. We plot the dynamics of the
total virus in the presence of antibody as given by the system without mutations (2.1) for
s = 6 mL/(IU×d) and A0 = 10−6 IU/mL (see Figure 5, solid curves) and the dynamics of the wildtype
virus given by the system with mutations (3.6) for Φ = 0.12 and A0 = 0 IU/mL (see Figure 5, dashed
curves). In both scenarios, HBeAg clearance takes 2.8 years (see Figure 5, HBeAg (e) panel, solid
versus dashed curves). Furthermore, if A0 = 10−6 IU/mL at the time of core/precore mutations in
system (3.6), HBeAg clearance takes 1.4 years, twice as fast as in either of the single event scenarios
(see Figure 5, dotted curves). Additionally, model (3.6) predicts the asymptotic loss of wildtype virus,
cells infected with the wildtype virus, HBeAg, and HBeAg-HBeAb immune complexes. The total
virus population is reduced from V̄total = 863.5 cp/mL in model (2.1) to V̄total = V̄n = 161.6 cp/mL in
model (3.6). This is independent of antibody help (see Figure 6).

Clinical studies predicted that initial core/precore mutations are followed by the appearance of
antibodies against the HBeAg [70]. We test the effect that the two sequential events, mutations followed
by HBeAb expansion, have on HBeAg loss as follows. Let τ1(t0,Φ) and τ2(t0,Φ) be the times between
spontaneous HBeAb expansion and HBeAg seroclearance when mutations with frequency Φ occur
at t = 0 and t = t0 > 0. In both cases A0 = 10−6 IU/mL antibodies are introduced at time t = t0

(see Figure 7). In other words, τ1 measures the time between HBeAb expansion (at time t0) and
HBeAg seroclearance when core/precore mutations start t0 days before HBeAb expansion (i.e. at
time 0), while τ2 measures the time between HBeAb expansion (at time t0) and HBeAg seroclearance
when core/precore mutations and HBeAb expansion start concomitantly at time t0. Since the system
is at equilibrium in the absence of mutations (i.e. in the context of τ2 from time 0 to t0), τ2(0,Φ) =

τ2(t0,Φ) = τ1(0,Φ) for all t0. The difference between the two seroclearance times, τ1(t0,Φ)− τ2(t0,Φ),
are shown in Figure 8.

We only consider ranges of t0 and Φ where τ1(t0,Φ) is positive, based on the assumption that HBeAb
expansion happens before HBeAg seroclearance. For any fraction of mutations Φ, we have τ1(0,Φ) =

τ2(0,Φ), i.e. τ1(0,Φ) − τ2(0,Φ) = 0. The model predicts that for Φ > 0.1, as t0 increases, τ1(t0,Φ)
and consequently τ1(t0,Φ) − τ2(t0,Φ) decrease for small and large t0, and increase for intermediate t0

values (see Figure 8, right panel, for τ1(0, 0.5) − τ2(0, 0.5) = 0). Very large t0 values result in HBeAg
seroclearance that is exclusively driven by mutations (see Figure 8, white region). For fixed Φ < 0.1,
τ1(t0,Φ)−τ2(t0,Φ) decreases as t0 increases leading to τ1 ∼ τ2 for small Φ and all t0 within 0 ≤ t0 < 40
months.
Hepatocyte turnover. Changes in HBeAg are associated with the activation of adaptive immune
responses, fluctuations in HBV DNA and ALT levels, and minimal to high liver damage. Events such
as spontaneous HBeAg seroconversion and emergence of core/precore mutations, which are considered
positive events in the natural course of infection of 70–80% of chronically infected patients [71], can
precede or follow the HBV DNA and ALT dynamics. Spontaneous HBeAg seroclearance followed by
the recovery of HBV-specific T-cell functions, however, may result in hepatitis and liver disease [72],
through T lymphocyte cytotoxic function [73], cytokine production, such as IL-6, IL-12 and TNF-
α [74], and natural killer-induced INF-γ production [72].
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Figure 5. Dynamics of system (3.6) for A0 = 10−6 IU/mL and Φ = 0 (solid curves); A0 = 0
IU/mL and Φ = 0.12 (dashed curves); A0 = 10−6 IU/mL and Φ = 0.12 (dotted curves). Here,
s = 6 mL/(IU×d), and all other parameters are given in Table 1.
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Figure 6. Dynamics of the total infected cell and virus populations, Iw + Im and Vw + Vm for
A0 = 10−6 IU/mL and Φ = 0 (solid curves); A0 = 0 IU/mL and Φ = 0.12 (dashed curves);
A0 = 10−6 IU/mL and Φ = 0.12 (dotted curves). Here, s = 6 mL/(IU×d) , and all other
parameters are given in Table 1.
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Figure 7. Cartoon of HBeAg seroclearance times τ1(t0,Φ) (left) and τ2(t0,Φ) (right).
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Figure 8. (Left) Heat map of τ1(t0,Φ) − τ2(t0,Φ), the time between HBeAb formation and
HBeAg seroclearance when mutations emerge at t = 0 and antibody emerges at time t = t0,
and when mutations and antibody emerge at t = t0, versus time t0 and fraction of core/precore
mutations Φ. (Right) τ1(t0,Φ) − τ2(t0,Φ) for fixed Φ = 0.5. Parameters for wildtype and
mutant populations are assumed to be equal and given in Table 1, s = 6 mL/(IU×d).

Since the order of sequential events leading to HBeAg loss is unknown (and patient dependent),
we use model (3.6) to determine: (i) the amount of time it takes to reach HBeAg seroclearance
following HBeAb expansion; (ii) the amount of monthly liver turnover, which is defined as the
average liver loss due to immune response mediated killing each month [75] (here, the time period
from HBeAb expansion to HBeAg seroclearance), for various fractions of core/precore mutations.
For both questions core/precore mutations start at time t = 0 and HBeAb matures at time t = t0 ≥ 0.
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As defined in the previous section, τ1(t0,Φ) is the time between HBeAb expansion and HBeAg
seroclearance (see Figure 7, left panel). We only consider ranges of t0 and Φ where τ1(t0,Φ) is positive,
based on the assumption that HBeAb expansion happens before HBeAg seroclearance. Under these
assumptions, we set

HL(t0,Φ) =

(∫ t0+τ1(t0,Φ)

t0

(
µw

Iw(t)
Tm

E(t) + µm
Im(t)
Tm

E(t)
)

dt
)
/τ1(t0,Φ), (3.7)

to be the average monthly hepatocyte turnover over the (t0, t0 + τ1(t0,Φ)) time interval. Heat maps for
τ1(t0,Φ) and HL(t0,Φ) are presented in Figure 9.

For large core/precore mutations, Φ > 0.5, HBeAg seroclearance happens before antibody
formation for large t0 (see Figure 9, left panel, white region), and in the first 12 months post HBeAb
expansion (t0 + 12 months following the start of mutations) for small t0 (see Figure 9, left panel, blue
region). HBeAg loss is (almost) exclusively due to mutations. As Φ decreases, τ1(t0,Φ) becomes less
sensitive to the delay t0 between the start of mutations and antibody expansion, indicating that
antibodies gain more influence on the progression to HBeAg seroclearance. Finally, for small
core/precore mutations, Φ < 0.01, the time between HBeAb expansion and HBeAg seroclearance,
τ1(t0,Φ), is almost constant for a fixed Φ regardless of t0 (in the range 0 ≤ t0 ≤ 40 months). This
means that the initial HBeAg loss is almost exclusively antibody-driven and only the second phase
decay is influenced by mutations. Previously, monthly hepatocyte turnover was estimated during
acute HBV infections to range between 0.12 − 1 Tm/month [32]. Our model predicts a monthly
hepatocyte turnover of 0.4 Tm/month (see Figure 9, right panel, red region) for large Φ and small t0

and 0.1 Tm/month for Φ < 0.01, regardless of t0 (in the range 0 ≤ t0 ≤ 40 months).
We next investigate how these results are altered in the presence of antiviral therapy.

Figure 9. (Left) Heat map for τ1(t0,Φ), the time between HBeAb expansion and HBeAg
seroclearance, versus the time of HBeAb expansion t0 and the fraction of core/precore
mutations Φ. The corresponding parameters for wildtype and mutant populations are
assumed to be equal and given in Table 1, and s = 6 mL/(IU×d). (Right) Heat map of
HL(t0,Φ), the average monthly hepatocyte loss between HBeAb expansion and HBeAg
seroclearance due to CTLs killing, versus the time of HBeAb expansion t0 and the fraction
of core/precore mutations Φ. Mutations start at time 0.
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Figure 10. Dynamics of system (2.1) under treatment for A0 = 10−6 IU/mL, s = 6
mL/(IU×d), ε = 0 (solid line), and ε = 0.9 (dashed line). All other parameters are given
in Table 1.
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in Table 1 (solid).
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4. HBeAg dynamics during antiviral therapy

4.1. Treatment in the absence of mutations

We investigate how the dynamics presented in Figure 2 change when we consider the effects of
nucleos(t)ide analogous antiviral treatment. Unless noted otherwise, we assume that treatment and
HBeAb expansion occur concomitantly at time t = 0. NAs suppress viral replication [9,10]. We model
this effect by reducing the virus production rate p by the treatment efficacy 0.5 < ε < 1. Hence,
ptreat = (1 − ε)p.

Under high treatment efficacy ε = 0.9, virus undergoes a triphasic decay to a new equilibrium of
2 cp/mL: an instantaneous 0.94 log10 drop in the first day, followed by a slower 0.5 log10 decay over
the next 4 months and finally a 6.4 log10 decay over the next 9.6 months. The HBeAg does not decay
during the first day, and follows a triphasic decay that reaches the limit of detection within 7.9 months
following the start of therapy (see Figure 10, dashed curve). The HBeAg first phase decay is due to
treatment induced virus loss, while the second and third decay phases present qualitative dynamics that
are similar to the ones obtained in the absence of treatment: where HBeAb efficiently binds HBeAg,
leading to the removal of the tolerogenic effect on the CTLs, which eventually control the HBeAg
(infected cells) loss (see Figure 10, dashed vs. solid curves). During the third phase, the decay rates
of virus and HBeAg levels are steeper during treatment due to CTL-mediated removal of lower virus
(infected cell) populations. Treatment efficacies (in the range considered, 0.5 < ε < 1) influence the
time of HBeAg seroclearance, with fast HBeAg seroclearance for high ε (see Figure 11). In the absence
of treatment, HBeAg has a seroclearance time of 2.83 years. By contrast, HBeAg seroclearance time
decreases to 11.8 and 7.2 months for ε = 0.5 and ε = 0.99 (see Figure 11).

4.2. Treatment in the presence of mutations

We next examine how treatment with various drug efficacies ε influences: (i) the amount of time it
takes to reach HBeAg seroclearance after HBeAb expansion; and (ii) the monthly amount of liver
turnover between HBeAb expansion and HBeAg seroclearance HL, under various fractions of
core/precore mutations (see Figure 12). For both questions we assume that mutations start at time
t = 0, and treatment and HBeAb expansion occur concomitantly at time t = t0 ∈ [0, 40] months. As
before, we define τ1(t0,Φ) to be the time between HBeAb expansion and HBeAg seroclearance.

As in the absence of treatment, for large Φ > 0.5 and large t0, HBeAg seroclearance happens
before antibody formation for all ε (see Figure 12, for ε = 0.7). HBeAg loss is exclusively due
to mutations. As Φ decreases, τ1(t0,Φ) becomes less sensitive to the delay t0 between the start of
mutations and antibody expansion, indicating that antibodies gain more influence on the progression to
HBeAg seroclearance. Finally, for small core/precore mutations, Φ < 0.01, the time between HBeAb
expansion and HBeAg seroclearance, τ1(t0,Φ), is almost constant regardless of t0 (in the range 0 ≤
t0 ≤ 40 months). This means that the initial HBeAg loss is almost exclusively antibody-driven and
only the second phase decay is influenced by mutations. After HBeAb expansion, HBeAg is cleared
faster under treatment with ε = 0.7 than in the absence of treatment (compare Figures 12 and 9,
left panels). Furthermore, our model predicts that for ε = 0.7 the monthly hepatocyte turnover is
greatest for large Φ and small t0, up to 0.18 Tm/month (see 12, right panel, red region), lower than
the 0.4 Tm/month in the absence of treatment. As Φ decreases, and τ1(t0,Φ) increases, the monthly
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hepatocyte turnover decreases to 0.12 Tm/month for Φ < 0.01 regardless of t0 (in the range 0 ≤ t0 ≤ 40
months), higher than the 0.1 Tm/month observed in the absence of treatment. We find that low drug
efficacy yields an increase in monthly hepatocyte turnover for Φ < 0.01. For example, for ε = 0.5, the
monthly hepatocyte turnover is 0.16 Tm/month, while for ε = 0.99, the average monthly hepatocyte
turnover is 0.1 Tm/month, i.e. equal to the average monthly hepatocyte turnover in the absence of
treatment. However, since HBeAg seroclearance is faster under treatment, the total hepatocyte turnover
is significantly reduced.

Figure 12. (Left) Heat map for τ1(t0,Φ), the time between HBeAb expansion and HBeAg
seroclearance, versus the time of HBeAb expansion t0 and the fraction of core/precore
mutations Φ. The corresponding parameters for wildtype and mutant populations are
assumed to be equal and given in Table 1, and s = 6 mL/(IU×d). (Right) Heat map of
HL(t0,Φ), the average monthly hepatocyte loss between HBeAb expansion and HBeAg
seroclearance due to CTLs killing, versus the time of HBeAb expansion t0 and the fraction
of core/precore mutations Φ, for ε = 0.7. Mutations start at time 0.

5. Discussion and conclusion

We developed a mathematical model describing the host-pathogen interactions during
HBeAg-positive chronic hepatitis B virus infections, with a focus on the effects of HBeAb expansion
on disease progression and in particular HBeAg seroclearance. HBeAg, a secretory protein described
as an immune tolerogen which downregulates the cellular immune responses [6], is removed when
HBeAb is produced. The moment at which HBeAb production starts, its mechanistic interactions
with HBeAg and other immune responses, or the timing of HBeAg seroclearance are not well
understood. We employed a mathematical modeling approach to provide insight into antibody
formation and HBeAg seroclearance. Previous mathematical models have investigated the interplay
between hepatocytes, infected hepatocytes, HBV virus [30], CTL-mediated immune
responses [31, 34, 45–47], humoral-mediated immune responses [48, 49], a class of subviral
particles [49], and HBeAg [50]. To our knowledge, however, only one paper, in the context of occult
HBV infection, has incorporated the dynamics of HBeAb [44].
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We used the model to determine the interplay between HBeAb and CTL immune responses on
HBeAg seroclearance in the absence and presence of treatment. Our model predicted that, in the
absence of treatment, a combination of CTL and antibody responses are needed to achieve HBeAg
seroclearance and viral remission. We found that HBeAg seroclearance follows several key stages: (1)
newly matured HBeAb expand, bind HBeAg to form HBeAg-HBeAb immune complexes, which are
removed via phagocytosis; (2) HBeAg population decays to levels that no longer affect CTLs activity,
leading to CTLs activation and expansion; (3) infected cells are killed by CTLs; and, consequently,
(4) less HBeAgs are produced and eventually decay below 0.1 IU/mL (called seroclearance level). We
investigated the relationship between HBeAg seroclearance and the rate of HBeAb production and
found that bigger HBeAb production rates lead to shorter times to HBeAg seroclearance.

Host-virus predictors for HBeAg seroclearance are limited. Mutations of HBV in its core or
precore region result in loss of expression of HBeAg by hepatocytes infected with the mutated
virus [66, 67]. We assumed that these mutations are followed by antibody formation and eventual
HBeAg seroclearance, and investigated how core/precore mutations influence the time between
HBeAb expansion and HBeAg seroclearance and the hepatocyte turnover. We found that large
fractions of mutations result in fast HBeAg seroclearance without the help of HBeAbs and high
monthly hepatocyte turnover. Intermediate fractions of mutations result in longer seroclearance times
and lower monthly hepatocyte turnover. For small fractions of mutations HBeAg seroclearance is
driven almost exclusively by HBeAbs, the seroclearance times are longest and monthly hepatocyte
turnover is lowest. Furthermore, we found that mutations can clear HBeAg even in the absence of
antibodies.

Increased HBeAg seroconversion rates after one year of NA treatment, regardless of NAs efficacy,
have been observed in clinical studies [26]. We predicted that, regardless of the treatment efficacy, the
time from HBeAb expansion to HBeAg seroclearance is significantly shortened by treatment, ranging
between 7 month for high efficacy treatment and 11 months for low efficacy treatment, i.e. within one
year, compared to 2.8 years in the absence of treatment. Our model does not, however, inform why
a prolonged duration (several years) of high efficacy treatment is deleterious to the achievement of
HBeAg seroconversion [28].

Under treatment, as in the absence of treatment, mutations influence the length of time between
HBeAb expansion and HBeAg seroclearance as well as the amount of monthly hepatocyte turnover.
The qualitative results are the same as in the untreated case, with fastest HBeAg seroclearance and
highest monthly hepatocyte turnover for large fractions and slowest HBeAg seroclearance and lowest
monthly hepatocyte turnover for small fractions of mutations. While the time to HBeAg seroclearance
under treatment is always shorter than in the absence of treatment, the monthly hepatocyte turnover is
decreased only for large fractions. Small fractions of mutations yield an increased monthly hepatocyte
turnover under treatment.

When we modeled core/precore mutations, we assumed similar characteristics for the wildtype
and mutant virus strains and their corresponding infected cell classes. Studies have reported different
half-lives for the wildtype and mutant virus strains, although the exact values vary. Dandri et al.
reported average half-lives of 46 and 2.5 minutes [76]. Ribeiro et al. reported half-lives of 25.2
and 13.1 hours and shorter half-lives of cells infected by mutant compared to wildtype virus, 12.1 days
versus 16 days [77]. Lastly, it has been suggested that cells that express mutant virus can lose the ability
to express wildtype virus [78]. This can be modeled by assuming that a fraction z of cells infected with
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the wildtype virus transitions into the population of cells infected with the mutant virus. We have
investigated how differences in the two strains affect our results by considering a 10-fold increase in
the mutant clearance rate, combined with a 1.3-fold increase in the clearance rate of cells infected
with the mutant virus, and a z = 0.01 transitioning rate from wildtype to mutant infection. We found
changes in the timing of HBeAg seroclearance, with the longest time occurring when mutant clearance
rates are increased and the transition is zero, and the shortest time occurring when the mutant clearance
rates are kept at the wild-type levels and the transition is non-negative (see Appendix 3, heterogeneity
in infected and virus populations section, Figures S15 and S16).

Our model assumes that more than 75% of the liver is infected during chronic HBV infections.
While such large values have been reported in acute infections [31, 79], it is possible that fewer
hepatocytes get infected during chronic disease [80]. We performed a sensitivity analysis on the
infectivity parameter β which showed that our results are sensitive to changes in β, and, consequently,
to having a lower amount of the liver infection in the first 2 years (Appendix 3, sensitivity analysis
section, Figure S4). Further work is needed to determine how the results will change if we assume
lower level of liver infection. There are many other parameters for which we have limited quantitative
information. Most of these parameters were kept fixed in our model. The model’s sensitivities to a
number of these parameters are shown in Figures S2 – S11 (Appendix 3, sensitivity analysis section).
Another limitation of our model is that the production rate of virus is unaffected by the non-cytolytic
effects of the effector cell population. Effector cells produce cytokines such as IFN-γ that inhibit the
HBV replication and thus, the HBV virions production rate. Further work is needed to determine how
the results will change if we assume that effector cells inhibit the virus production.

In conclusion, we have built a mathematical model of HBeAg seroclearance and investigated how
HBeAb and CTL work together to secure the transition into an HBeAg-negative HBV infection and
how the efficacy of drug therapy affects the timing to HBeAg seroclearance. Such results are
important for understanding this milestone event in HBV natural history and can be used to inform
human interventions.
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Supplementary

Appendix 1. Stability analysis of the system without HBeAb. System (3.2) has the following non-
negative equilibria: no liver, no CTL responses

S noA
1 = (0, 0, 0, 0, 0) , (5.1)

infection free state
S noA

2 = (Tm, 0, 0, 0, 0) , (5.2)

no liver under CTL responses

S noA
3 =

(
0, 0, 0, 0,

Em(sE − dE)
sE

)
, (5.3)

clearance due to CTLs

S noA
4 =

(
Tm, 0, 0, 0,

Em(sE − dE)
sE

)
, (5.4)

infection in the absence of CTL responses

S noA
5 =

(
0,Tm,

Tm p
c
,

Tmπ

δe
, 0

)
(5.5)
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and infection under immune anergy. There are up to four solutions of this form

S noA
6 =

(
T̄ (Ī), Ī,

p
c

Ī,
π

δe
Ī, Ē(Ī)

)
, (5.6)

where

T̄ (Ī) =
((αδe − πσdE)Ī + δe(sE − dE))Emcµ

δeβp(αĪ + sE)
,

Ē(Ī) =
((αδe − πσdE)Ī + δe(sE − dE))Em

δe(αĪ + sE)
,

and Ī is a root of the fourth degree polynomial

C4 Ī4 + C3 Ī3 + C2 Ī2 + C1 Ī + C0,

with
C4 = α2δ2

eβ
2 p2r,

C3 = 2
((

(Tm(Emµ − r)α + 2rsE)βp
2

+ cEmαrµ
)
δe − πσEm

(
βTm p

2
+ cr

)
µdE

)
δe pαβ,

C2 =

(
c2E2

mα
2rµ2 − pµ

(
−2Tm

(
sE −

dE

2

)
βp + cr(Tmα + 2dE − 4sE)

)
αβEm − 2sE

(
Tmα −

sE

2

)
rp2β2

)
δ2

e

− 2πσEm

(
c2Emαrµ −

(−βTm psE + cr(Tmα − 2sE))pβ
2

)
µdEδe + E2

mc2d2
Eµ

2π2rσ2,

C1 = 2δ2

(
c2rµ2(sE − dE)(−dEπσ + αδe)E2

m

− pµ
(((
−s2

E + (TmαdE)sE −
αTmdE

2

)
cr −

βTm psE(sE − dE)
2

)
δe −

cσrTmπsEdE

2

)
kEm

−
δeβ

2rTm p2s2
E

2

)
,

C0 = (cµ(sE − dE)Em − βTm psE)rδ2
ec(sE − dE)µEm.

Equilibria S noA
1 and S noA

3 are solutions in which the total hepatocyte population is zero, corresponding
to the death of the patient.

Theorem 5.1. Equilibria S noA
1 and S noA

3 are unstable.

Proof. The Jacobian of system (3.2) evaluated at S noA
1 or S noA

3 has eigenvalue λ1 = r > 0. Hence S noA
1

and S noA
3 are unstable equilibria. �

Equilibria S noA
2 and S noA

4 are solutions in which the infection is cleared. In S noA
4 a population of

memory cells persists over time, while in S noA
2 CTLs go extinct.
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Theorem 5.2. Equilibrium S noA
2 is unstable.

Proof. Using Maple we find that the Jacobian of system (3.2) evaluated at S noA
2 has the eigenvalue

λ1 = −
c
2

+

√
4Tmβp + c2

2
,

which is always positive. Hence S noA
2 is an unstable equilibrium. �

Theorem 5.3. Equilibrium S noA
4 exists and is locally asymptotically stable iff sE > dE and

TmβpsE
Emcµ(sE−dE) < 1.

Proof. Using Maple we find that the Jacobian of system (3.2) evaluated at S noA
4 has two eigenvalues

λ1 = −r and λ2 = −δe which are always negative. A third eigenvalue λ3 = dE − sE is negative iff
sE > dE. The remaining two eigenvalues are

λ4,5 =
1

2sE

(
−(csE + Emµ(se − dE)) ±

√
(csE + Emµ(se − dE))2 + 4sE(TmβpsE − Emcµ(sE − dE))

)
.

If sE > dE, then (csE + Emµ(se − dE)) > 0 and hence Re(λ5) < 0. For λ4 we find

Re(λ4) < 0⇐⇒
TmβpsE + EmcdEµ

EmcµsE
< 1⇐⇒

TmβpsE

Emcµ(sE − dE)
< 1.

�

In equilibria S noA
5 and S noA

6 virus is not cleared. S noA
5 represents a state in which CTLs have vanished

and the entire liver is infected, while S noA
6 is a state in which CTLs are ineffective.

Theorem 5.4. Equilibrium S noA
5 is locally asymptotically stable iff δe(Tmα+sE)

dE(Tmπσ+δe) < 1.

Proof. Using Maple we find that the Jacobian of system (3.2) evaluated at S noA
5 has four eigenvalues

λ1 = −r, λ2 = −δe, λ3 = −c, and λ4 = −
Tmβp

c which are always negative. The fifth eigenvalue

λ5 =
δe(Tmα + sE) − dE(Tmπσ + δe)

Tmπσ + δe

is negative iff δe(Tmα+sE)
dE(Tmπσ+δe) < 1. �

We did not attempt to analytically study the asymptotic stability of S noA
6 .

Stability analysis of the system with HBeAb. System (2.1) has the following non-negative equilibria:
no liver, no CTLs

S 1 =
(
S noA

1 , 0, 0
)
, (5.7)
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infection free state
S 2 =

(
S noA

2 , 0, 0
)
, (5.8)

no liver under CTL responses
S 3 =

(
S noA

3 , 0, 0
)
, (5.9)

clearance due to CTL responses
S 4 =

(
S noA

4 , 0, 0
)
, (5.10)

infection in the absence of any immune responses

S 5 =
(
S noA

5 , 0, 0
)
, (5.11)

infection during anergic CTL responses. There are up to four solutions of this form

S 6 =
(
S noA

6 , 0, 0
)
. (5.12)

S 1 through S 6 are the equilibria of (3.2) with additional variables Ā = 0 and X̄ = 0.

Theorem 5.5. Equilibria S 1 through S 4 are unstable.

Proof. The Jacobian of system (2.1) evaluated at S 1 through S 4 has eigenvalue λ1 = sA > 0. Hence S 1

through S 4 are unstable equilibria. �

Theorem 5.6. Equilibrium S 5 is locally asymptotically stable iff δe(Tmα+sE)
dE(Tmπσ+δe) < 1 and

(cX+km)(Tm sπ+δe sA)
TmkpcXπ

< 1.

Proof. Using Maple we find that the Jacobian of system (3.2) evaluated at S noA
5 has four eigenvalues

λ1 = −r, λ2 = −δe, λ3 = −c, and λ4 = −
Tmβp

c which are always negative. The remaining three
eigenvalues are

λ5 =
δe(Tmα + sE) − dE(Tmπσ + δe)

Tmπσ + δe
,

which is negative iff δe(Tmα+sE)
dE(Tmπσ+δe) < 1, and

λ6,7 =
1

2δe

[
−

(
Tmπ + (cX + km)δe − (Tmsπ + δeα)

)
±

√(
Tmπ + (cX + km)δe − (Tmsπ + δeα)

)2
+ 4δe(sA(cX + km)δe + π((s − kp)cX + skm)Tm)

]
.

We find Re(λ6,7) < 0 iff
Tmsπ + δesA

Tmkpπ + δe(cX + km)
< 1, (5.13)

and
(cX + km)(Tmsπ + δesA)

Tmkpπ
< 1. (5.14)

We find that (5.14) implies (5.13), and hence all eigenvalues have negative real part and S 5 is locally
asymptotically stable iff δe(Tmα+sE)

dE(Tmπσ+δe) < 1 and (cX+km)(Tm sπ+δe sA)
TmkpcXπ

< 1. �
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Theorem 5.7. If S noA
6 is unstable in system (3.2), then S 6 is unstable in system (2.1).

Proof. For S 6 the equilibrium levels of A and X are zero. When plugging A = 0 and X = 0 into the
Jacobian, J, of system (2.1) yields

J =

(
JnoA (?)5×2

02×5 J̃

)
,

where JnoA is the Jacobian of system (3.2). Hence, if JnoA has an eigenvalue with positive real part, so
does J. �

The remaining equilibria have an antibody response component. They are: no liver and maximal
antibody responses

S 7 =
(
S noA

1 , Am, 0
)
, (5.15)

infection free due to maximal antibody responses

S 8 =
(
S noA

2 , Am, 0
)
, (5.16)

no liver under anergic CTLs and maximal antibody responses

S 9 =
(
S noA

3 , Am, 0
)
, (5.17)

infection free due to combined CTLs and antibody responses

S 10 =
(
S noA

4 , Am, 0
)
. (5.18)

Theorem 5.8. Equilibria S 7 and S 9 are unstable.

Proof. The Jacobian of system (2.1) evaluated at S 7 or S 9 has eigenvalue λ1 = r > 0. Hence S 7 and S 9

are unstable equilibria. �

Theorem 5.9. Equilibrium S 8 is unstable.

Proof. Using Maple we find that the Jacobian of system (2.1) evaluated at S 8 has eigenvalue

λ1 = −
c
2

+

√
4Tmβp + c2

2
,

which is always positive. Hence S 8 is an unstable equilibrium. �

Theorem 5.10. Equilibrium S 10 is locally asymptotically stable iff sE > dE and TmβpsE
Emµc(sE−dE) .
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Proof. Using Maple we find that the Jacobian of system (2.1) evaluated at S 10 has two eigenvalues
λ1 = −r and λ2 = −sA which are always negative. A third eigenvalue λ3 = dE − sE is negative iff
sE > dE. The remaining four eigenvalues are

λ4,5 =
1

2sE

(
−(csE + Emµ(se − dE)) ±

√
(csE + Emµ(se − dE))2 + 4sE(TmβpsE − Emcµ(sE − dE))

)
,

and

λ6,7 =
1
2

[
−(Amkp + cX + δe + km) ±

√
(Amkp + cX + δe + km)2 − 4((cx + km)δe + AmcXkp)

]
If sE > dE, then Re(λ5), Re(λ6), Re(λ7) < 0, and

Re(λ4) < 0⇐⇒
TmβpsE + EmcdEµ

EmcµsE
< 1⇐⇒

TmβpsE

Emcµ(sE − dE)
< 1.

�

Infection with no CTLs and positive antibody responses includes up to two states, given by

S 11 =

(
0,Tm,

Tm p
c
, ē, 0,

Am((s(cX + km) − kpcX)ē + sA(cX + km))
(sē + sA)(cX + km)

,
Tmπ − δeē

cX

)
, (5.19)

where ē satisfies the quadratic equation C2ē2 + C1ē + C0 = 0 with

C2 =
(
((−kpAm − δe)s + Amk2

p)c2
X − skm(kpAm + 2δe)cX − δek2

ms
)
/(cX + km)2 ,

C1 =
(
((−kpAm − δe)sA + sTmπ)cX + km(sTmπ − δesA)

)
/(cX + km) ,

C0 = TmπsA.

We did not attempt to analytically study the asymptotic stability of S 11

Lastly, infection during anergic CTLs and inefficient antibody responses is given by:

S 12 =
(
T̄ (ȳ), Ī(ȳ), V̄(ȳ), ē(ȳ), Ē(ȳ), Ā(ȳ), X̄(ȳ)

)
, (5.20)

where

T̄ (ȳ) =

[
Em(((((Amkp +δe)α−πdEσ)s−Amαk2

p)c2
X−2skm((−

Amkp

2
−δe)α+πdEσ)cX− sk2

m(πdEσ−αδe))ȳ2

+ ((π(sE − dE)s − sA((−Amkp + δe)α + pidEσ))cX − (−pi(sE − dE)s + sA(πdEσ − αδe))km)ȳ

+ πsA(sE − dE)cµ
]
×

[
((α(((Amkp + δe)s − Amk2

p)c2
X + skm(Amkp + 2δe)cX + δek2

ms)ȳ2

+ ((πsE s + sAα(Amkp + δE))cX + km(αδesA + πsE s))ȳ + sE sAπ)pβ
]−1

,

Ī(ȳ) =
[
((((Amkp + δe)s − Amk2

p)c2
X + skm(Amkp + 2δe)cX + δek2

ms)ȳ + ((Amkp + δe)cX + δekm)sA)ȳ
]

×
[
π((cX + km)sȳ + sA)

]−1
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V̄(ȳ) =
p
c

Ī(ȳ),

ē(ȳ) = (cx + km)ȳ,

Ē(ȳ) =
[
(((((Amkp + δe)α−πdEσ)s−Amαk2

p)c2
X + ((Amkp + 2δe)α− 2πdEσ)kmscX + kms(−πdEσ+αδe))ȳ2

+ ((π(sE − dE)s + sA((Amkp + δe)α − πdEσ))cX + km(π(sE − dE)s + sA(−πdEσ + αδe)))ȳ

+ πsA(sE − dE)Em

]
×

[
α(((Amkp + δe)s − Amk2

p)c2
X + skm(Amkp + 2δe)cX + δek2

ms)ȳ2

+ ((πsE s + sAα(Amkp + δe))cX + km(αδesA + πsE s))ȳ + sE sAπ
]−1

,

Ā(ȳ) =
Am((s(cX + km) − kpcX)ȳ + sA)

(cX + km)sȳ + sA
,

X̄(ȳ) =
Amkpȳ((s(cX + km) − kpcX)ȳ + sA)

(cX + km)sȳ + sA
,

and ȳ is the root of a degree seven polynomial whose expression is messy and will not be provided here
(Maple file available upon request). We did not attempt to analytically study the asymptotic stability
of S 12.
Appendix 2. Stability analysis of the system with mutations. We determine system (3.6)’s equilibria
and their stability under the assumption that βm = βw = β, µm = µw = µ, pm = pw = p, and cm = cw = c.
System (3.6) has the following non-negative equilibria.

S mut
1 = (0, 0, 0, 0, 0, 0, 0, 0, 0) , (5.21)

S mut
2 = (Tm, 0, 0, 0, 0, 0, 0, 0, 0) , (5.22)

S mut
3 =

(
0, 0, 0, 0, 0, 0,

Em(sE − dE)
sE

, 0, 0
)
, (5.23)

S mut
4 =

(
Tm, 0, 0, 0, 0, 0,

Em(sE − dE)
sE

, 0, 0
)
, (5.24)

S mut
5 = (0, 0, 0, 0, 0, 0, 0, Am, 0) , (5.25)

S mut
6 = (Tm, 0, 0, 0, 0, 0, 0, Am, 0) , (5.26)

S mut
7 =

(
0, 0, 0, 0, 0, 0,

Em(sE − dE)
sE

, Am, 0
)
, (5.27)

S mut
8 =

(
Tm, 0, 0, 0, 0, 0,

Em(sE − dE)
sE

, Am, 0
)
, (5.28)
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S mut
9 =

(
0,
δe

π
e,Tm −

δe

π
e,

p(1 − Φ)δe

cπ
e,

Tm p
c
−

p(1 − Φ)δe

cπ
e, e, 0, 0, 0

)
, (5.29)

where e can take on any value less than or equal to Tmπ
δe

(for biological relevance, i.e. non-negativity).

S mut
10 =

(
0, Īw(e),Tm − Īw(e),

p(1 − Φ)
c

Īw(e),
p
c

(Tm − (1 − Φ)Īw(e)), e, 0, Ā(e), X̄(e)
)
, (5.30)

where e can take on any value, and

Īw(e) = ((((sδe

= kpAm(s − kp))e + sA(kpAm + δe))c2
X + km(kpAm + 2δe)(es + sA)cX + k2

mδe(es + sA))e)
× (π(cX + km)2(es + sA))−1,

Ā(e) =
Am(((s − kp)e + sA)cX + km(es + sA))

(es + sA)(cX + km)
,

X̄(e) =
kpAm(((s − kp)cX + skm)e + sA(cX + km))e

(cX + km)2(es + sA)
.

S mut
11 =

(
Emµc(αĪn + sE − dE)

βp(αĪn + sE)
, 0, Īn, 0,

p
c

Īn, 0,
Em(αĪn + sE − dE)

αĪn + sE
, 0, 0

)
, (5.31)

where Īn is a root of the fourth degree polynomial

C4 Ī4 + C3 Ī3 + C2 Ī2 + C1 Ī + C0,

with
C4 = α2β2 p2r,

C3 = 2α((−
βTm(−Emµ + r)p

2
+ cµrEm)α + βrpsE)βp,

C2 = crµEm(cEmµ − pβTm)α2 + 2(−(−mu(sE −
dE

2
)Em + rsE)βTm p + crµEm(2sE − dE))βpα + β2 p2rs2

E,

C1 = 2c2αrµ2(sE−dE)E2
m−2µβp(−

βTmsE(sE − dE)p
2

+(−s2
E +(Tmα+dE)sE−

αTmdE

2
)cr)Em−Tmβ

2 p2rs2
E,

C0 = µEmc(cµ(sE − dE)Em − TmβpsE)r(sE − dE).

S mut
12 =

(
Emµc(αĪn + sE − dE)

βp(αĪn + sE)
, 0, Īn, 0,

p
c

Īn, 0,
Em(αĪn + sE − dE)

αĪn + sE
, Am, 0

)
, (5.32)

where Īn is defined as in S mut
11 .
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Theorem 5.11. Equilibria S mut
1 − S mut

7 , and S mut
11 are unstable.

Proof. The Jacobian of system (3.6) evaluated at S mut
1 , S mut

3 , S mut
5 , and S mut

7 has eigenvalue λ1 = r > 0.
The Jacobian of system (3.6) evaluated at S mut

2 , S mut
4 , and S mut

11 has eigenvalue λ1 = sA > 0. The Jacobian

of system (3.6) evaluated at S mut
6 has eigenvalue λ1 = − c

2 +

√
4Tmβp + c2

2 > 0. Thus, S mut
1 − S mut

7 , and
S mut

11 are unstable equilibria. �

Theorem 5.12. Equilibrium S mut
8 is locally asymptotically stable iff sE > dE and TmβpsE

Emµc(sE−dE) < 1.

Proof. Using Maple we find that the Jacobian of system (3.6) evaluated at S mut
8 has two eigenvalues

λ1 = −r and λ2 = −sA which are always negative. A third eigenvalue λ3 = dE − sE is negative iff
sE > dE. The remaining six eigenvalues are

λ4,5 =
1

2sE

(
−(csE + Emµ(se − dE)) ±

√
(csE + Emµ(se − dE))2 + 4sE(TmβpsE − Emcµ(sE − dE))

)
,

λ6,7 =
1

2sE
(−(csE + Emµ(se − dE))

±
√

(csE + Emµ(se − dE))2 + 4sE(Tmβp(1 − Φ)sE − Emcµ(sE − dE))
)
,

and

λ8,9 =
1
2

[
−(Amkp + cX + δe + km) ±

√
(Amkp + cX + δe + km)2 − 4((cx + km)δe + AmcXkp)

]
If λ3 < 0, i.e. sE > dE, then −(csE + Emµ(se − dE)) < 0 and hence Re(λ5),Re(λ7) < 0. Further
Re(λ8),Re(λ9) < 0, and

Re(λ4) < 0⇐⇒ λ4 < 0⇐⇒
TmβpsE

Emµc(sE − dE)
< 1,

Re(λ6) < 0⇐⇒ λ6 < 0⇐⇒
Tmβp(1 − Φ)sE

Emµc(sE − dE)
< 1.

Since Φ ≥ 0, if Re(λ4) < 0 then Re(λ6) < 0. Hence all eigenvalues have negative real part and S mut
8 is

locally asymptotically stable iff sE > dE and TmβpsE
Emµc(sE−dE) < 1. �

Proving stability for S mut
9 , S mut

10 , and S mut
12 is messy and will not be presented here.

Appendix 3. Sensitivity Analysis. We analyzed the time-dependent semi-relative sensitivity of
model (2.1)’s dynamics to small changes in various parameters. For times 0 to 2 years and parameters
P = {α, Am, β, kp, µ, π, s, sA, sE, σ} we look at the semi-relative sensitivity curves P∂Y

∂P , where Y =

{T, I,V, e, E, A, X}. The results are presented below. As expected, we find that {α, Am, µ, s, sA, sE} have
negative effects on {I,V, e} and positive effects on E (see Figures S2, S3, S6, S8, S9, S10), while
{β, kp, π, σ} have the opposite effects (see Figures S4, S5, S7, S11). Furthermore, we observe that
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virus, HBeAg, and effector cell populations are most sensitive to changes in kp and s (see Figures S12–
S14, left panel). While HBeAg and effector cells are most sensitive around day 125 regardless of
the parameter, the maximal sensitivity of the virus population to β, Am and µ occurs later (see Figures
S12–S14, right panel).
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production rates s.
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Figure S5. Semi-relative sensitivity curves for the immune complex binding rate kp.
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Figure S6. Semi-relative sensitivity curves for the immune mediated clearance rate of
infected cells µ.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7616–7658.



7652

0 2
−15

−10

−5

0
x 10

6

time (years)

π
·

∂
T

∂
π

0 2
0

1

2
x 10

7

time (years)

π
·

∂
I

∂
π

0 2
0

5

10

15
x 10

8

time (years)

π
·

∂
V

∂
π

0 2
−5000

0

5000

10000

time (years)

π
·

∂
e

∂
π

0 2
−4000

−2000

0

2000

time (years)

π
·

∂
E

∂
π

0 2
−40

−20

0

20

time (years)

π
·

∂
A

∂
π

0 2
−5000

0

5000

time (years)

π
·

∂
X

∂
π

Figure S7. Semi-relative sensitivity curves for the HBeAg production rate π.
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Figure S8. Semi-relative sensitivity curves for the HBeAg dependent HBeAb production
rate s.
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Figure S9. Semi-relative sensitivity curves for the HBeAg independent HBeAb production
rate sA.
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Figure S10. Semi-relative sensitivity curves for the infected cell independent immune cell
activation rate sE.
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Figure S11. Semi-relative sensitivity curves for the inhibitory strength of HBeAg on
CTLs σ.
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Figure S12. (Left and center) Maximal sensitivity of virus population on parameters during
the first two years. (Right) Time when sensitivity is maximal.
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Figure S13. (Left and center) Maximal sensitivity of HBeAg population on parameters
during the first two years. (Right) Time when sensitivity is maximal.
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Figure S14. (Left and center) Maximal sensitivity of effector cell population on parameters
during the first two years. (Right) Time when sensitivity is maximal.

Heterogeneity in infected and virus populations. Studies have reported different half-lives for
the wildtype and mutant virus strains, although the exact values vary. Dandri et al. reported average
half-lives of 46 and 2.5 minutes, corresponding to 20-fold higher clearance rate of mutant compared to
wildt-ype strains [76]. Ribeiro et al. reported half-lives of 25.2 and 13.1 hours, corresponding to 2-fold
increase in clearance of mutant compared to wildtype virus [77]. Moreover, Ribeiro et al., reported
shorter half-lives of cells infected by mutant compared to wildtype virus, 12.1 days versus 16 days (a
1.3-fold increase in the clearance rate of Im compared with Iw) [77]. In this study we assumed that both
viruses have half-lives of 4 hours, corresponding to the clearance rates cw = cm = 4.2/day and both
infected cell types are removed (by the effector cells) at rate µ. To address how differences in the two
strains half-lives affect our results, we change their clearance rates as follows: we keep cw = 4.2/day,
and assume a 10-fold increase in the mutant clearance, cm = 42/day, corresponding to 24 minutes half-
life. Moreover, we keep the killing rate of the cells infected with the wildtype virus at µw = µ = 6×10−5

and increase µm = 1.3 × µ = 8 × 10−5, corresponding to half-lives of 11.5 and 8.7 days under maximal
CTL response Em. Lastly, it has been suggested that cells that express mutant virus can lose the ability
to express wildtype virus [78]. This can be modeled by assuming that a fraction z of cells infected with
the wildtype virus transitions into the population of cells infected with the mutant virus. The system
of equations expressing these changes is
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dT
dt

= r(T + Iw + Im)
(
1 −

T + Iw + Im

Tm

)
− β(TVw − TVm),

dIw

dt
= βTVw − µwIwE − zIw,

dIm

dt
= βTVm − µmImE + zIw,

dVw

dt
= pw(1 − Φ(t))Iw − cwVw,

dVm

dt
= pmIm + pwΦ(t)Iw − cmVm,

de
dt

= πIw − δee − kpAe + kmX,

dE
dt

=
sEE + α(Iw + Im)E

1 + σe

(
1 −

E
Em

)
− dEE,

dA
dt

= (sAA + seA)
(
1 −

A
Am

)
− kpAe + kmX,

dX
dt

= kpAe − kmX − cXX.

(S1)

We solved the model for four parameter combinations: (i) Φ = 0.1, z = 0, cw = cm, µw = µm;
(ii) Φ = 0.1, z = 0, cw < cm, µw < µm; (iii) Φ = 0.1, z 6= 0, cw = cm, µw = µm; (iv) Φ = 0.1,
z 6= 0, cw < cm, µw < µm. We predict the longest time to HBeAg seroclearance in case (ii), when cells
infected by the wildtype keep their ability to produce wildtype virus (z = 0), and the mutant families
Vm and Im have faster clearance rates (10 and 1.3-fold increase, respectively) (see Figure S15, solid
lines). When a fraction z = 0.01 of cells infected with the wildtype transition into cells producing only
mutant virus (cases iii and iv), we obtain faster HBeAg seroclearance times (see Figure S15, dashed
and dotted lines). As before, however, increasing the mutant virus and cells infected with mutant
virus clearance rates (case iv), decreases the overall HBeAg seroclearance time (see Figure S15, dotted
lines). Interestingly, the dynamics of the model now allow for long-term coexistence between the
mutant and wildtype virus strains.

We next investigate how these results change if we vary Φ and z. We let τsame(z,Φ) be the time to
HBeAg seroclearance assuming equal clearance rates for wildtype and mutant populations, τdi f f (z,Φ)
be the time to HBeAg seroclearance assuming a 10 and 1.3 fold increased clearance rate of mutant
virus and cells infected with the mutant virus, and

HL(z,Φ) =

(∫ τ(z,Φ)

0

(
µw

Iw(t)
Tm

E(t) + µm
Im(t)
Tm

E(t)
)

dt
)
/τ(z,Φ),

be the average monthly hepatocyte turnover. Here τ is either τsame or τdi f f . Note, that we assume that
mutations, transitions, and HBeAb formation all start concomitantly at time t = 0. We find that for all
10−4 < z < 10−1 and 10−2 < Φ < 1, the 10 and 1.3-fold increases in clearance rates of mutant virus
and cells infected with mutant virus result in slower HBeAg clearance (τsame(z,Φ) − τdi f f (z,Φ) < 0 in
Figure S16, left panel), but decreased monthly hepatocyte turnover (HLsame(z,Φ)−HLdi f f (z,Φ) > 0, in
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Figure S16, right panel). Furthermore, the negative impact that increased mutant clearance rates have
on the time to HBeAg seroclearance is most prevalent for intermediate fractions of mutations Φ and
intermediate transition rates z (see Figure S15, left panel, blue region).
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Figure S15. Dynamics of system (S1) when a fraction Φ = 0.1 of produced virions has
core/precore mutations in the absence of transition from Iw to Im for equal clearance rates
of wildtype and mutant virus and wildtye and mutant infected cell (dash-dotted curves), and
for increased clearance of mutant virus and mutant infected cells (solid curves); and in the
presence of transition from Iw to Im at rate z = 0.01 with equal clearance rates (dashed)
curves, and different clearance rates (dotted curves).
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Figure S16. (Left) Heatmap for the difference in times to HBeAg seroclearance if clearance
rates for wildtype and mutant populations are the same or if clearance rates for mutant
populations are increased (10 fold for virus and 1.3 fold for infected cells), versus the fraction
z of infected cells transitioning from Iw into Im and the fraction Φ of virions produced
by wildtype infected cells that are mutant. (Right) Heatmap for the difference in monthly
hepatocyte turnover under equal clearance rates or increased mutant clearance rates.
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