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Abstract: We estimate the spreading speeds in diffusive epidemic models with nonlocal delays,
nonlinear incidence rate and constant recruitment rate. The purpose is to model the process that the
infective invades the habitat of the susceptible, and they coexist eventually. In order to focus on our
idea, a system with a nonlinear incidence rate is firstly studied, which implies a saturation level of the
infective individuals and monotone incidence rate. When the initial value of the infective has nonempty
compact support, we prove the rough spreading speed that equals the minimal wave speed of traveling
wave solutions in the known results. Then for a general (nonmonotone) incidence rate, we obtain the
spreading speeds by constructing auxiliary systems admitting a monotone incidence rate, and prove the
convergence of solutions on any compact spatial interval. Furthermore, some numerical examples are
given to estimate the invasion speed and show the nontrivial effect of time delay and spatial nonlocality,
which implies that the stronger spatial nonlocality leads to larger spreading speeds.
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1. Introduction

The spreading of communicable diseases is affected by many factors including infectious agents,
modes of contact, and latent periods. Since different diseases may have distinctive features of
infection, it is necessary to model the evolutionary of various diseases by different mathematical
models. Following the pioneer work of Kermack and McKendrick [1], the total population is often
classified into the susceptible (S), the infective (I), and the recovered (R), and the corresponding
models are called SIR models. The contact pattern between the susceptible and the infective is often
described by the incidence function. Nonlinear incidence functions have been utilized in many
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epidemic systems including the following SIR model [2]
Ṡ (t) = µ − h(S (t))g(I(t)) − µS (t),
İ(t) = h(S (t))g(I(t)) − (δ + µ)I(t),
Ṙ(t) = δI(t) − µR(t),

(1.1)

in which all the parameters are positive and h, g : R+ → R+ describe the contact pattern, µ represents
the constant death ratio and death rate and the constant recruitment rate. Here, the nonlinear incidence
is partly due to the effect of media, government behavior. For some typical examples of h, g and their
biological backgrounds, we may refer to [2]. Clearly, some properties of this system can be obtained
by only investigating S , I.

In epidemic models, time delay may reflect that a susceptible individual was attacked by the
pathogen (by contacting an infective) at an earlier time but becomes infective after several days,
which may be reflected by delayed effect of the infective. Since an ostensible susceptible may be
infected one that may transmit the pathogen to other true susceptible, the delayed effect must be
involved in some cases. When the delayed effect on latent periods is concerned in (1.1), Huang et
al. [3] studied the following model

Ṡ (t) = µ − h(S (t))g(I(t − τ)) − µS (t),
İ(t) = h(S (t))g(I(t − τ)) − (σ + µ)I(t),
Ṙ(t) = σI(t) − µR(t),

in which all the parameters are positive, τ reflects the latent period. By comparing [2, 3], time delay
may be harmless to the stability of the system but decrease the basic reproduction ratio, which indicates
the nontrivial role of time delay. Moreover, the latent periods may be different, and distributed delays
may be useful, see a model of hematopoiesis by Adimy et al. [4]. In particular, by assuming that each
individual of the susceptible class has the same probability being infected, h(u) is in proportion to u in
many models in the above works.

Over a period of time there has been a growing awareness of the importance that includes a spatial
aspect in constructing realistic models of biological systems, with a consequent development of both
approximate and mathematically rigorous methods of analysis [5]. It is important to characterize the
speed of spatial expansion of diseases [6–8], and the expansion speed may be a
constant [9, Chapter 13]. In literature, many reaction-diffusion systems have been established to
reflect the process [5]. Due to the deficiency of monotone semiflows in many epidemic models, the
long time behavior of the initial value problems of epidemic models can not be studied by the theory
of monotone semiflows [10], we may refer to Ducrot [11, 12].

When both the spatial factor and delayed effect are involved in mathematical epidemiology, one
important factor is the effect of nonlocal delays [13, 14]. Here the nonlocal delay may reflect the
history movement ability of the infective, which includes the cases of discrete delays and distributed
delays [15, 16]. De Mottoni et al. [17] studied the following model with spatial nonlocality∂S

∂t = ∆S + µ − σS (x, t) − S (x, t)
∫

Ω
I(y, t)K(x, y)dy

∂I
∂t = d∆I + S (x, t)

∫
Ω

I(y, t)K(x, y)dy − γI(x, t),
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in which all the parameters are positive, Ω is the spatial domain, K is a nonnegative function. For more
epidemic models with nonlocal delays, we refer to Ruan [16]. The purpose of this paper is to study
diffusive epidemic models with nonlocal delays, nonlinear incidence rate and constant recruitment rate,
during which the effect of time delay and spatial nonlocality will be also presented.

For simplicity, we firstly consider the initial value problem after scaling
∂S (x,t)
∂t = d ∂2S (x,t)

∂x2 + σ − σS (x, t) − βS (x,t)(J∗I)(x,t)
1+α(J∗I)(x,t) ,

∂I(x,t)
∂t =

∂2I(x,t)
∂x2 +

βS (x,t)(J∗I)(x,t)
1+α(J∗I)(x,t) − (µ + γ)I(x, t),

S (x, 0) = 1, I(x, s) = φ(x, s)

(1.2)

with

(J ∗ I)(x, t) =

∫ ∞

0

∫
R

J(y, s)I(x − y, t − s)dyds,

where x ∈ R, t > 0, s ∈ (−∞, 0]. In model (1.2), S (x, t), I(x, t) denote the densities of susceptible and
infective individuals at time t and location x, respectively, d > 0 is a constant describing the spatial
diffusive motility of the susceptible, σ > 0 represents the entering flux as well as the death rate of the
individuals, µ is the death rates of infective, β > 0 reflects the infection rate, γ > 0 is the recovery
rate of the infective individuals, and the positive constant α measures the saturation level, φ(x, s) ≥ 0
is a continuous bounded function. The nonlocal delayed term βS (x,t)(J∗I)(x,t)

1+α(J∗I)(x,t) describes the interaction
between the infected individuals at an earlier time t − s at location y and susceptible individuals at
location x at time t, which implies that only the susceptible individuals at location x at the present
time t affect the change rate of the susceptible class although the contact leading to infection maybe
occurred at location y at an earlier time t − s.

Clearly, model (1.2) is a subsystem of the following SIR model
∂S (x,t)
∂t = d ∂2S (x,t)

∂x2 + σ − σS (x, t) − βS (x,t)(J∗I)(x,t)
1+α(J∗I)(x,t) ,

∂I(x,t)
∂t =

∂2I(x,t)
∂x2 +

βS (x,t)(J∗I)(x,t)
1+α(J∗I)(x,t) − (µ + γ)I(x, t),

∂R(x,t)
∂t = d3

∂2R(x,t)
∂x2 + γI(x, t) − µ1R(x, t),

where R denotes the removed individuals, d3 > 0, µ1 > 0 are constants on spatial diffusion ratio and
death rate of the removed, respectively. Clearly, after investigating (1.2), some properties of the class
R can be obtained (see. e.g., Li et al. [18, Section 5]) since

R(x, t) =
e−µ1t

√
4πd3t

∫
R

e
−(x−y)2

4d3t R(y, 0)dy

+

∫ t

0

e−µ1(t−s)

√
4πd3(t − s)

ds
∫
R

e
−(x−y)2
4d3(t−s) I(y, s)dy

for any t > 0, x ∈ R, and we only study system (1.2) in this paper. These systems may model the
evolutionary of the epidemic with nonlinear incidence rate and constant recruitment rate. For the
dynamics in the corresponding functional differential equations with discrete or distribute delay, we
may refer to Enatsu et al. [19], Huang et al. [3], in which the persistence and the extinction of I were
studied. In particular, by [3], we may find that the so-called basic reproduction ratio is β

µ+γ
.
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Recently, traveling wave solutions of different versions for (1.2) have been studied [18, 20, 21], in
which these solutions take the form

S (x, t) = S (ξ), I(x, t) = I(ξ), ξ = x + ct ∈ R

for some c > 0 and S , I satisfy

lim
ξ→−∞

(S (ξ), I(ξ)) = (1, 0), lim inf
ξ→∞

S (ξ) > 0, lim inf
ξ→∞

I(ξ) > 0.

By letting ξ = x + ct, such a solution indicates that at any fixed location x ∈ R, there was no infective
long time ago (ξ → −∞ iff t → −∞) while the infective and susceptible will coexist eventually
(ξ → ∞ iff t → ∞). However, from the viewpoint of initial value problems, these traveling wave
solutions formulate that the infective individuals live in a habitat of infinite size at any fixed time. This
contradicts to the outbreak of many diseases, during which the initial habitat of the infective individuals
is finite, see a similar process in biological invasion by [22–24]. Motivated by this, we will study the
corresponding initial value problem of (1.2) by the following index [25].

Definition 1.1. Assume that u(x, t) is a nonnegative function for x ∈ R, t > 0. Then c′ is called the
spreading speed of u(x, t) if

a) limt→∞ sup|x|>(c′+ε)t u(x, t) = 0 for any given ε > 0;

b) lim inft→∞ inf |x|<(c′−ε)t u(x, t) > 0 for any given ε ∈ (0, c′).

The spreading speeds of unknown functions governed by reaction-diffusion equations and other
parabolic type systems have been widely studied since [25], and there are some important results
for monotone semiflows [10, 26–29] and nonmonotone scalar equations [30–32]. For noncooperative
systems, Ducrot [11] estimated the asymptotic spreading in a predator-prey system of Holling-Tanner
type, Ducrot [12] considered the spatial propagation of an epidemic model with recruitment rate and
bilinear incidence rate, Lin et al. [33, 34] studied the spreading speeds of two competitive invaders in
competitive systems, Lin and Wang [35] and Pan [36] investigated the invasion speed of predators in a
predator-prey system of Lotka-Volterra type. For coupled systems in [11, 12, 33–36], the comparison
principle plays the crucial role.

In this paper, to focus on our main idea, we first study (1.2) by estimating the limit behavior of I(x, t)
motivated by [35, 36]. With the uniform boundedness of S , I, we try to estimate S , by which we may
obtain an auxiliary equation on I(x, t). However, this equation involves the nonlocal delay [14–16, 37]
and does not generate monotone semiflows. Further by the smoothness of I(x, t),we obtain an auxiliary
equation with quasimonotonicity, of which the spreading speed has been established. Then we obtain
the spreading speed of I(x, t). Here, the spreading speed is coincident with the minimal wave speed of
traveling wave solutions in some well studied cases. For example, when it just involves discrete delays,
the spreading speed in this paper equals the minimal wave speed of traveling wave solutions in Li et
al. [18].

Subsequently, we study the general model
∂S (x,t)
∂t = d ∂2S (x,t)

∂x2 + σ − σS (x, t) − S (x, t) f ((J ∗ I)(x, t)),
∂I(x,t)
∂t =

∂2I(x,t)
∂x2 + S (x, t) f ((J ∗ I)(x, t)) − (µ + γ)I(x, t),

S (x, 0) = 1, I(x, s) = φ(x, s),

(1.3)
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where x ∈ R, t > 0, s ∈ (−∞, 0], f : [0,+∞) → [0,+∞) is Lipscitz continuous. We also obtain
the spreading speed of I(x, t) even if f is not monotone, and the convergence of (S , I) is established
from the viewpoint of asymptotic spreading. Furthermore, to show the effect of time delay and spatial
nonlocality and estimate the spreading speeds, we present some numerical examples.

The rest of this paper is organized as follows. In Section 2, we show some necessary preliminaries
on reaction-diffusion systems with nonlocal delays. Section 3 is concerned with the spreading speed of
I(x, t) in (1.2). We then consider the spreading speed in the general model (1.3) in Section 4, and show
the convergence result of I(x, t). To further illustrate our analysis results, we present some numerical
results in Section 5. Finally, we provide a discussion on the epidemic backgrounds and mathematical
conclusions.

2. Preliminaries

In this section, we introduce some concepts and review some relevant results. Firstly, when a partial
order in R2 is concerned, it is the standard partial order in R2. That is, if

u = (u1, u2), v = (v1, v2) ∈ R2,

then u ≤ v iff u1 ≤ v1, u2 ≤ v2. For the kernel function J that is integrable, we make the following
assumptions.

(J1) J(y, s) = J(−y, s) ≥ 0,
∫ ∞

0

∫
R

J(y, s)dyds = 1, y ∈ R, s ≥ 0;

(J2) for each fixed c > 0, there exists λc ∈ (0,∞] such that∫ ∞

0

∫
R

J(y, s)eλ(y−cs)dyds < ∞ for all λ ∈ (0, λc).

For f , we make the following assumptions.

(f) There exists I′ > 0 such that f (I) < (µ+ γ)I, I > I′. f : [0,∞)→ R+ is C1. f ′(0) > µ+ γ, and there
exist positive constants L, α such that

f ′(0)I − LI1+α ≤ f (I) ≤ f ′(0)I, I ∈ [0, I′].

Besides by taking

f (I) =
βI

1 + αI
as in (1.2), there are also many other functions satisfying (f), e.g., the following function

f (I) =
βI

1 + αIγ
,

where γ > 0. By taking different parameters, it may be nonmonotone, the corresponding kinetic model
was proposed and analyzed by Liu et al. [38], Xiao and Ruan [39]. By the above assumptions, we
define

Λ(λ, c) = λ2 − cλ + f ′(0)
∫ ∞

0

∫
R

J(y, s)eλ(y−cs)dyds − (µ + γ)

for each fixed c > 0 with λ ∈ [0, λc). From (J1)-(J2) and (f), Λ(λ, c) satisfies the following property.
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Lemma 2.1. There exists a constant c∗ > 0 such that

(R1) Λ(λ, c) = 0 has no real roots if c < c∗,

(R2) if c ≥ c∗, then Λ(λ, c) = 0 has positive real roots.

Evidently, we see that time delay and spatial nonlocality may affect the threshold c∗, a similar
conclusion was reported by Li et al. [40] (we may refer to a recent paper by Li and Pan [41] and
references cited therein for the traveling wave solutions of delayed models). To further
quantificationally illustrate the role, we first consider the case of discrete delay such that

(J ∗ I)(x, t) = I(x, t − τ),

and
Λ(λ, c) = λ2 − cλ + f ′(0)e−λcτ − (µ + γ),

in which τ > 0. Let c∗(τ) be the threshold depending on τ, then we have

c∗(τ1) < c∗(τ2) iff τ1 > τ2 > 0

and
lim
τ→∞

c∗(τ) = 0.

That is, the time delay may decrease the threshold, we also refer to Zou [42]. On the other hand, to
quantificationally show the effect of spatial nonlocality, we consider a simple nonlocal case with

(J ∗ I)(x, t) =
I(x + l, t) + I(x − l, t)

2
, l ≥ 0,

and so
Λ(λ, c) = λ2 − cλ + f ′(0)[eλl + e−λl]/2 − (µ + γ).

Let c∗(l) be the threshold depending on l > 0, then

c∗(l1) < c∗(l2) iff l2 > l1 ≥ 0

and
lim
l→∞

c∗(l) = ∞.

For this type of kernels, we say the nonlocality is stronger if l > 0 is larger, so the spatial nonlocality
may increase the threshold, which will be further illustrated by numerical simulations.

Let

(T1(t)v(·, r))(x) =
1
√

4πdt

∫
R

e
−y2
4dt v(x − y, r)dy,

(T2(t)v(·, r))(x) =
1
√

4πt

∫
R

e
−y2
4t v(x − y, r)dy

for any bounded and continuous function v(x, t), x ∈ R, t > 0. Then by the theory of abstract
functional differential equations with application to delayed reaction-diffusion systems [43–46], we
have the following existence and uniqueness of mild solutions.
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Lemma 2.2. (1.3) admits a mild solution (S (x, t), I(x, t)), x ∈ R, t > 0 such that

S (x, t) > 0, I(x, t) > 0, x ∈ R, t > 0,

and (S (x, t), I(x, t)) takes the form

S (x, t) = (T1(t − r)S (·, r))(x)

+

∫ t

r

[
T1(t − s)

[
σ − σS (·, s) − S (·, s) f ((J ∗ I)(·, s))

]]
ds(x),

I(x, t) = (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
S (·, s) f ((J ∗ I)(·, s)) − (µ + γ)I(·, s)

]]
ds(x)

for x ∈ R and any given r ∈ [0, t). If t > 1, then S (x, t), I(x, t) are uniformly continuous in x ∈ R, t > 1.
In particular, if φ(x, 0) admits nonempty compact support in (1.2), then

0 < S (x, t) < 1, 0 < I(x, t) < max
{

sup
x∈R,s≤0

φ(x, s),
β − (µ + γ)
α(µ + γ)

}
:= I, x ∈ R, t > 0.

Moreover, if τ > 0 such that ∫ τ

0

∫
R

J(y, s)dyds = 1,

then t > τ implies that (S , I) is the classical solution of (1.3) in the sense of partial derivatives.

The local existence of mild solutions is ensured by the theory of analytic semigroups as well as
abstract functional differential equations [43, 47], and the global existence is guaranteed due to the
existence of positive invariant regions because of the existence of I′.

In addition, the proof depends on the comparison principle and asymptotic spreading of the
following equation with nonlocal delays∂u(x,t)

∂t =
∂2u(x,t)
∂x2 + f ((J ∗ u)(x, t)) − εu2(x, t) − (µ + γ)u(x, t),

u(x, s) = ϕ(x, s),
(2.1)

where ε ≥ 0, all the other parameters are the same as those in (f) and ϕ(x, s) is a positive continuous
function satisfying

ϕ(x, s) = 0, |x| > L, s ≤ 0

for some L > 0. By results in Martin and Smith [47], Ruan and Wu [43], (2.1) satisfies the following
comparison principle.

Lemma 2.3. Let T ≤ ∞ hold and f be nondecreasing. Assume that a continuous function u(x, t) :
R × (−∞,T )→ R+ satisfies

u(x, s) ≥ ϕ(x, s), x ∈ R, s ≤ 0,

and

u(x, t) ≥ (T2(t − r)u(·, r))(x)
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+

∫ t

r

[
T2(t − s)

[
f ((J ∗ u)(·, s)) − εu2(·, s) − (µ + γ)u(·, s)

]]
ds(x)

for x ∈ R and any given r ∈ [0, t). Then

u(x, t) ≥ u(x, t), x ∈ R, t ∈ (0,T ).

Furthermore, results by Liang and Zhao [10], Yi et al. [48] imply the following spreading property
even if f (u) is not monotone for all u > 0.

Lemma 2.4. Let u(x, t) be the unique mild solution of (2.1) with ϕ(x, 0) > 0 for some x ∈ R. Then for
any given c > c∗, u(x, t) satisfies limt→∞,|x|>ct u(x, t) = 0, and for any given c ∈ (0, c∗), u(x, t) satisfies
lim inft→∞ inf |x|<ct u(x, t) > 0.

3. Spreading speed of (1.2)

In this section, we establish the main results of (1.2). In particular, we take f ′(0) = β in this section,
φ(x, 0) admits nonempty compact support and

φ(x, s) = 0, |x| > L, s ≤ 0 (3.1)

with some L > 0. The following is the main result of this section.

Theorem 3.1. Assume that I(x, t) is defined by (1.2). Then for any given c > c∗, I(x, t) satisfies

lim
t→∞,|x|>ct

I(x, t) = 0, (3.2)

and for any given c ∈ (0, c∗), I(x, t) satisfies

lim inf
t→∞

inf
|x|<ct

I(x, t) > 0. (3.3)

Proof. By Lemma 2.2, we have
S (x, t) ≤ 1, x ∈ R, t > 0,

which implies that

I(x, t) ≤ (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
β(J ∗ I)(·, s)

1 + α(J ∗ I)(·, s)
− (µ + γ)I(·, s)

]]
ds(x) (3.4)

for all x ∈ R, r ∈ [0, t). Further by Lemmas 2.3 and 2.4, we obtain (3.2).
We now prove (3.3) for any fixed c ∈ (0, c∗). Since it involves long time behavior, we assume that

t > 1 is large and (S (x, t), I(x, t)) is uniformly continuous in x ∈ R, t > 1. Define S(x, t) = 1 − S (x, t),
then Lemma 2.2 indicates that

S(x, 0) = 0, 0 < S(x, t) < 1, x ∈ R, t > 0.
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Therefore, if S is smooth enough, then it satisfies

∂S(x, t)
∂t

= d
∂2S(x, t)
∂x2 − σS(x, t) +

β(1 − S(x, t))(J ∗ I)(x, t)
1 + α(J ∗ I)(x, t)

≤ d
∂2S(x, t)
∂x2 − σS(x, t) +

β(J ∗ I)(x, t)
1 + α(J ∗ I)(x, t)

≤ d
∂2S(x, t)
∂x2 − σS(x, t) + β(J ∗ I)(x, t)

and similarly, we can verify that

S(x, t) ≤ (T (t)S(·, 0))(x) + β

∫ t

0
[T (t − r)(J ∗ I)(·, r)] dr(x)

= β

∫ t

0
[T (t − r)(J ∗ I)(·, r)] dr(x),

where

(T (t)v(·, r))(x) =
e−σt

√
4πdt

∫
R

e
−y2
4dt v(x − y, r)dy, t > 0

for any bounded and continuous function v(x, r), x ∈ R, r > 0.
Returning to the equation of I(x, t), we have

I(x, t) = (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
βS (·, s)(J ∗ I)(·, s)
1 + α(J ∗ I)(·, s)

− (µ + γ)I(·, s)
]]

ds(x)

= (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
β(1 − S(·, s))(J ∗ I)(·, s)

1 + α(J ∗ I)(·, s)
− (µ + γ)I(·, s)

]]
ds(x)

= (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
β(J ∗ I)(·, s)

1 + α(J ∗ I)(·, s)
− (µ + γ)I(·, s)

]]
ds(x)

−β

∫ t

r

[
T2(t − s)

[
S(·, s)(J ∗ I)(·, s)
1 + α(J ∗ I)(·, s)

]]
ds(x)

≥ (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
β(J ∗ I)(·, s)

1 + α(J ∗ I)(·, s)
− (µ + γ)I(·, s)

]]
ds(x)

−β

∫ t

r
[T2(t − s) [S(·, s)(J ∗ I)(·, s)]] ds(x)

≥ (T2(t − r)I(·, r))(x)

+

∫ t

r

[
T2(t − s)

[
β(J ∗ I)(·, s)

1 + α(J ∗ I)(·, s)
− (µ + γ)I(·, s)

]]
ds(x)

−β2
∫ t

r
[T2(t − s) [(J ∗ I)(·, s)v(·, s)]] ds(x)
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with
v(x, s) =

∫ s

0
[T (t − r)(J ∗ I)(·, r)] dr(x).

In what follows, we prove the following claim.

(C) For any ε ∈ (0, β), there exists M(ε) > 0 such that

I(x, t) ≥ (T2(t − r)I(·, r))(x) +∫ t

r

[
T2(t − s)

[
(β − ε)(J ∗ I)(·, s)
1 + α(J ∗ I)(·, s)

− M2I(·, s) − (µ + γ)I(·, s)
]]

ds(x) (3.5)

if t > 1 is large.

From Lemmas 2.3 and 2.4, (C) implies that

lim inf
t→∞

inf
|x|<ct

I(x, t) > 0.

by selecting and fixing ε > 0 small enough, which implies what we wanted.
Subsequently, we verify (3.5) for any fixed ε > 0. If

β2
∫ t

0
[T (t − r)I(·, r)] dr(x) ≤ ε,

then (3.5) is true. Otherwise, let x ∈ R and t > 1 be large enough such that

β2
∫ t

0
[T (t − r)I(·, r)] dr(x) > ε. (3.6)

Firstly, we fix T > 1 such that

β2
∫ t−T

0

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

≤ β2I
∫ t−T

0

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) dydr

= β2I
∫ t−T

0
e−σ(t−r)dr

<
ε

6
for any t > T.

For such a fixed T > 1, we further select N > 0 such that

β2
∫ t

t−T

e−σ(t−r)

√
4πd(t − r)

[∫ −N

−∞

+

∫ ∞

N

]
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

≤ β2I
∫ t

t−T

e−σ(t−r)

√
4πd(t − r)

[∫ −N

−∞

+

∫ ∞

N

]
e
−y2

4d(t−r) dydr

≤ β2I
∫ t

t−T

e−σ(t−r)

√
4πd(t − r)

[∫ −N

−∞

+

∫ ∞

N

]
e
−y2
4dT dydr
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<
ε

6
for any t > T,

which is admissible since ∫ ∞

0

e−σt

√
4πdt

dt < ∞, lim
N→∞

[∫ −N

−∞

+

∫ ∞

N

]
e
−y2
4dT dy = 0.

Further choose sufficiently small δ > 0 such that

β2
∫ t

t−δ

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

≤ β2I
∫ t

t−δ

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) dydr

= β2I
∫ t

t−δ
e−σ(t−r)dr

< β2Iδ

≤
ε

6
.

So we obtain

β2
∫ t

0
[T (t − r)(J ∗ I)(·, r)] dr(x)

= β2
∫ t

0

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

= β2
∫ t

t−T

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

+β2
∫ t−T

0

e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

= β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

[∫ N

−N
+

∫ −N

−∞

+

∫ ∞

N

]
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

+β2
[∫ t−T

0
+

∫ t

t−δ

]
e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

= β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

+β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

[∫ −N

−∞

+

∫ ∞

N

]
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

+β2
[∫ t−T

0
+

∫ t

t−δ

]
e−σ(t−r)

√
4πd(t − r)

∫
R

e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

≤ β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr + ε/2

for any t > T + δ + 1, and (3.6) implies

β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr > ε/2. (3.7)
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The left side of (3.7) is

β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r) (J ∗ I)(x − y, r)dydr

= β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ τ

0

∫
R

J(z, s)I(x − y − z, t − s)dzds
]

dydr

+β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ ∞

τ

∫
R

J(z, s)I(x − y − z, t − s)dzds
]

dydr

= β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ τ

0

∫ K

−K
J(z, s)I(x − y − z, t − s)dzds

]
dydr

+β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ τ

0

∫
|z|≥K

J(z, s)I(x − y − z, t − s)dzds
]

dydr

+β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ ∞

τ

∫
R

J(z, s)I(x − y − z, t − s)dzds
]

dydr

for any τ > 0,K > 0. By the convergence in (J1) and (J2), if τ > 0,K > 0 (independent on x, t) are
large enough, then

β2
∫ t−δ

t−T

e−σ(t−r)

√
4πd(t − r)

∫ N

−N
e
−y2

4d(t−r)

[∫ τ

0

∫ K

−K
J(z, s)I(x − y − z, r − s)dzds

]
dydr >

ε

4
, (3.8)

and we now fix constants τ,K.
Note that e−σ(t−r)

√
4πd(t−r)

, e
−y2

4d(t−r) are uniformly continuous and uniformly bounded for r ∈ [t − T, t − δ], y ∈
[−N,N], then (3.8) implies that we can choose constants

λ′ > 0, x0 − y0 ∈ [x − N, x + N], r0 ∈ [t − T, t − δ]

such that ∫ τ

0

∫ K

−K
J(z, s)I(x0 − y0 − z, r0 − s)dzds > λ′,

here λ′ depends on ε and is independent of x ∈ R, t ≥ T + 1 + τ. Again by the uniform continuity of
I(x, t) and convergence of J, we fix λ, ι depending on λ′ such that

I(z0, s0) > λ

for some
z0 ∈ [x − N − K, x + N + K], s0 ∈ [t − T − τ, t − δ],

and the uniform continuity further implies that

I(x, s0) ≥ λ, x ∈ [z0 − ι, z0 + ι].

From the equation of I(x, t), we see that

I(x, t) ≥ (T2(t − r)I(·, r))(x) − (µ + γ)
∫ t

r
[T2(t − s)I(·, s)] ds(x)
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for any 0 ≤ r < t. By the property of semigroup, we also have

I(x, t) ≥
e−(µ+γ)(t−s)

√
4π(t − s)

∫
R

e
−y2

4(t−s) I(y, s)dy

for any s ∈ [0, t). So for any given s0 ≥ 0, if

|x − z0| < N + K + ι, t ∈ [s0 + δ, s0 + T + τ],

then we have

I(x, t) ≥
e−(µ+γ)(t−s0)

√
4π(t − s0)

∫
R

e
−y2

4(t−s) I(y, s0)dy

≥
e−(µ+γ)(T+τ)

√
4π(T + τ)

∫
R

e
−y2
4δ I(y, s0)dy

≥
e−(µ+γ)(T+τ)

√
4π(T + τ)

∫ N+K+ι

−N−K−ι
e
−y2
4δ I(y, s0)dy

≥
e−(µ+γ)(T+τ)

√
4π(T + τ)

e
−(N+K+ι)2

4δ

∫ N+K+ι

−N−K−ι
I(y, s0)dy

≥ 2λι
e−(µ+γ)(T+τ)

√
4π(T + τ)

e
−(N+K+ι)2

4δ .

By what we have done, x, t satisfying (3.6) lead to

I(x, t) ≥ 2λι
e−(µ+γ)(T+τ)

√
4π(T + τ)

e
−(N+K+ι)2

4δ =: I,

where I is uniform for any x ∈ R, t ≥ T +τ+1 such that (3.6) holds. Again by the uniform boundedness
of I(x, t) and

β2(J ∗ I)(x, t)
1 + α(J ∗ I)(x, t)

∫ t

0
[T (t − r)(J ∗ I)(·, r)] dr(x),

we obtain the existence of M, which is also independent on x, t once (3.7) is true and t ≥ T + τ + 1.
The proof is complete. �

Remark 3.2. From (3.4) and Lemma 2.4, we see that

f ′(0) ≤ µ + γ

implies
lim
t→∞

sup
x∈R

I(x, t) = 0.

That is, the sign of f ′(0)− (µ+γ) determines the persistence and extinction of I, which is similar to the
case in the corresponding functional differential systems. Therefore, the basic reproduction ratio of the
corresponding functional differential systems may determine the failure or propagation of the disease,
and also may affect the spreading speed if the ratio is larger than 1.
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4. Asymptotic spreading of (1.3)

In this section, we first study the spreading speed and then estimate the convergence of (S , I) in
(1.3), in which f satisfies (f). The first result on spreading speed is formulated as follows.

Theorem 4.1. c∗ is the spreading speed of I(x, t) if I(x, s) satisfies (3.1).

Proof. Due to the proof of Theorem 3.1, we just give a sketch. Firstly, we define

f (u) = sup
v∈[0,u]

f (v), u ∈ [0, I′],

then there exists v1 > 0 such that
f (u) = f (u), u ∈ [0, v1],

and f (u) is nondecreasing such that

f (u) ≤ f ′(0)u, u ∈ [0, I′].

Therefore, I(x, t) satisfies

I(x, t) ≤ (T2(t − r)I(·, r))(x) +

∫ t

r

[
T2(t − s)

[
f ((J ∗ I)(·, s)) − (µ + γ)I(·, s)

]]
ds(x)

for any r ∈ [0, t). So for any given c > c∗, I(x, t) satisfies

lim
t→∞,|x|>ct

I(x, t) = 0.

Further define
f (u) = inf

v∈[u,I′]
f (v), u ∈ [0, I′],

then there exists v2 > 0 such that
f (u) = f (u), u ∈ [0, v2],

and
f (u) ≤ f ′(0)u, u ∈ [0, I′].

So I(x, t) satisfies

I(x, t) ≥ (T2(t − r)I(·, r))(x) +

∫ t

r

[
T2(t − s)

[
S (·, s) f ((J ∗ I)(·, s)) − (µ + γ)I(·, s)

]]
ds(x)

for any r ∈ [0, t). Similar to that in Section 3, we obtain

lim inf
t→∞,|x|<ct

I(x, t) > 0

for any given c ∈ (0, c∗). The proof is complete. �
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Theorems 3.1 and 4.1 imply that the infective individuals successfully invade the habitat of the
susceptible. We now estimate the limit behavior of S (x, t), I(x, t). Firstly, we consider (1.3) when
S (x, 0), I(x, s) satisfies

inf
x∈R

S (x, 0) > 0, inf
x∈R

I(x, 0) > 0, (4.1)

and make the following assumption.

(C) Assume that (4.1) holds. Then

lim
t→∞

sup
x∈R

(|S (x, t) − S ∗| + |I(x, t) − I∗|) = 0,

where (S ∗, I∗) is the unique positive spatially homogeneous steady state of (1.3).

Remark 4.2. In some cases, (C) is true. For example, if f is monotone such that f ′(0) > µ + γ and
(1.3) with (4.1) is persistent, further define

lim sup
t→∞

sup
x∈R

S (x, t) = S , lim inf
t→∞

inf
x∈R

S (x, t) = S ,

lim sup
t→∞

sup
x∈R

I(x, t) = I, lim inf
t→∞

inf
x∈R

I(x, t) = I,

then the persistence implies that
S ≥ S > 0, I ≥ I > 0.

By dominated convergence theorem, we have

σ − σS − S f (I) ≥ 0, S f (I) − (µ + γ)I ≥ 0,
σ − σS − S f (I) ≤ 0, S f (I) − (µ + γ)I ≤ 0.

If these inequalities imply S = S , I = I, then (C) is true by applying the dominated convergence
theorem in the corresponding integral equations [18].

Now, we formulate the limit behavior of S (x, t), I(x, t) defined by (1.3) if I(x, 0) satisfies (3.1).

Theorem 4.3. Assume that there exist τ ≥ 0,K > 0 such that∫ τ

0

∫ K

−K
J(z, s)dzds = 1

and if τ > 0, then ∫ τ′

0

∫ K

−K
J(z, s)dzds < 1

for any τ′ ∈ (0, τ). If (C) holds, then

lim sup
t→∞

sup
|x|<ct

(|S (x, t) − S ∗| + |I(x, t) − I∗|) = 0,

which holds for any given c ∈ (0, c∗).
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Proof. We prove that for any given c ∈ (0, c∗), ε > 0, there exists T > 0 such that

sup
|x|<ct

(|S (x, t) − S ∗| + |I(x, t) − I∗|) < ε, t > T (4.2)

by the idea in [49]. Firstly, by Theorem 4.1, there exist δ > 0,T1 > 0 such that

inf
|x|<(c+2c∗)t/3

S (x, t) > δ, inf
|x|<(c+2c∗)t/3

I(x, t) > δ, t > T1.

Then (4.2) is true if we can prove that for any T2 > T1 large enough, there exists T3 > 0 independent
on T2 such that

sup
|x|<(2c+c∗)(t+T3+1)/3

(|S (x, t) − S ∗| + |I(x, t) − I∗|) < ε, t ∈ [T2 + T3,T2 + T3 + 1] (4.3)

since
ct < (2c + c∗)(t + T3 + 1)/3 < (c + 2c∗)t/3

when t(> T2) is large enough.
Let S, I be the solution of (1.3) with initial value satisfying

inf
x∈R

S (x, 0) > δ, inf
x∈R

I(x, 0) > δ.

Then (C) implies that there exists T3 > 0 such that

sup
x∈R

(|S(x, t) − S ∗| + |I(x, t) − I∗|) < ε/4, t > T3.

Let
s(x, t) = S(x, t) − S (x, t), i(x, t) = I(x, t) − I(x, t),

then the boundedness indicates that there exists L > 0 satisfying

|s(x, t)| ≤ (T1(t − r) |s(·, r)|)(x) +

L
∫ t

r
T1(t − s) [|s(·, z)| + |i(·, z)| + |(J ∗ i)(·, z)|] dz(x),

|i(x, t)| ≤ (T2(t − r) |i(·, r)|)(x) +

L
∫ t

r
T2(t − s) [|s(·, z)| + |i(·, z)| + |(J ∗ i)(·, z)|] dz(x)

for any r ∈ [0, t). Then s(x, t), i(x, t) satisfy

|s(x, t)| ≤ X(x, t), |i(x, t)| ≤ Y(x, t), x ∈ R, t > 0,

where (X(x, t),Y(x, t)) is defined by

X(x, t) = (T1(t − r)X(·, r))(x) +

L
∫ t

r
T1(t − s) [X(·, s) + Y(·, s) + (J ∗ Y)(·, s)] ds(x),

Y(x, t) = (T2(t − r)Y(·, r))(x) +
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L
∫ t

r
T2(t − s) [X(·, s) + Y(·, s) + (J ∗ Y)(·, s)] ds(x)

with
X(x, 0) = |s(x, 0)|,Y(x, s) = |i(x, s)|, s ∈ [−τ, 0].

Let N > 0 be a fixed constant (clarified later) such that

X(x, 0) = Y(x, s) = 0, |x| ≤ N, x ∈ R, s ∈ [−τ, 0],

and
sup
x∈R

X(x, 0) + sup
x∈R,s∈[−τ,0]

Y(x, s) < I′ + 1.

Let C > 0 be large and λ > 0 be small such that

(d + 1)λ2 −Cλ + L
[
2 +

∫ τ

0

∫ K

−K
J(z, s)eλ(z−Cs)dzds

]
≤ 0,

of which the admissibility is clear by the existence of τ,K. Define a continuous function

Φ(x, t) = min
{
(I′ + 1)

[
eλ(x−N+Ct) + eλ(−x−N+Ct)

]
, (I′ + 1)e3L(t+τ)

}
for t ≥ −τ, x ∈ R, which implies that

Φ(x, 0) ≥ X(x, 0),Φ(x, s) ≥ Y(x, s), x ∈ R, s ∈ [−τ, 0].

Then we have

Φ(x, t) ≥ (T1(t − r)Φ(·, r))(x) +

L
∫ t

r
T1(t − s) [2Φ(·, s) + (J ∗ Φ)(·, s)] ds(x),

Φ(x, t) ≥ (T2(t − r)Φ(·, r))(x) +

L
∫ t

r
T2(t − s) [2Φ(·, s) + (J ∗ Φ)(·, s)] ds(x)

for any 0 ≤ r < t < ∞, x ∈ R, and so

Φ(x, t) ≥ X(x, t),Φ(x, t) ≥ Y(x, t), x ∈ R, t ≥ 0.

Then we fix N = N(T3) > 0 such that

X(0,T3) ≤
ε

4
,Y(0,T3) ≤

ε

4
,

and for any T2 > 0 such that

(2c + c∗)(T2 + T3 + 1)/3 + N < (c + 2c∗)T2/3,

we have (4.3), so for (4.2). The proof is complete. �
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5. Numerical simulations

In this section, we shall illustrate the analytic conclusion by some numerical examples. Due to
Theorem 3.1, we simulate the dynamics in a large spatial interval [−N,N] and take the following
boundary conditions

I(x, t) = 0, S (x, t) = 1, t ≥ −τ, |x| = N.

Moreover, I(x, 0) is defined by

I(x, 0) =

sin x, x ∈ [0, π],
0, x < [0, π].

Firstly, we consider (1.2) without nonlocal delay and taking

∂S (x,t)
∂t =

∂2S (x,t)
∂x2 + 1 − S (x, t) − 2S (x,t)I(x,t)

1+I(x,t) ,
∂I(x,t)
∂t =

∂2I(x,t)
∂x2 +

2S (x,t)I(x,t)
1+I(x,t) − I(x, t).

(5.1)

With these parameters, we see that

Λ(λ, c) = λ2 − cλ + 1

and c∗ = 2. We now show the numerical results as follows.

Figure 1. S (x, t) defined by (5.1). Figure 2. I(x, t) defined by (5.1).

From Figures 1 and 2, we see that I almost invades and S almost decreases at a constant speed. To
further show the invasion speed of I, we present the following Figure 3 on the distribution at t = 100,
by which we see that the invasion speed is close to c∗ = 2.
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Figure 3. S (x, 100), I(x, 100) defined by (5.1).

We now consider the effect of time delay in the following model
∂S (x,t)
∂t =

∂2S (x,t)
∂x2 + 1 − S (x, t) − 2S (x,t)I(x,t−τ)

1+I(x,t−τ) ,
∂I(x,t)
∂t =

∂2I(x,t)
∂x2 +

2S (x,t)I(x,t−τ)
1+I(x,t−τ) − I(x, t),

S (x, 0) = 1, I(x, s) = I(x, 0), s ∈ [−τ, 0],

(5.2)

such that
Λ(λ, c) = λ2 − cλ + 2e−λcτ − 1.

When τ = 1, we show the graphs of Λ(λ, c) by the following Figures 4 and 5, from which we see
that c∗ is close to 1.

Figure 4. c : [0, 0.8], λ : [0, 1]. Figure 5. c : [0, 1], λ : [0, 1]

The evolution of S , I with τ = 1 is presented by Figures 6 and 7.
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Figure 6. S (x, t) defined by (5.2) with
τ = 1.

Figure 7. I(x, t) defined by (5.2) with
τ = 1.

To estimate the invasion speed with different τ, we give the distribution of t = 100 by Figures 8 and
9, by which we see the role of time delay.
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Figure 8. (5.2) with τ = 1.
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Figure 9. (5.2) with τ = 4.

To show the effect of nonlocality, we consider

∂S (x,t)
∂t =

∂2S (x,t)
∂x2 + 1 − S (x, t) − 2S (x,t)[I(x+l,t−τ)+I(x−l,t−τ)]

2+[I(x+l,t−τ)+I(x−l,t−τ)] ,
∂I(x,t)
∂t =

∂2I(x,t)
∂x2 +

2S (x,t)[I(x+l,t−τ)+I(x−l,t−τ)]
2+[I(x+l,t−τ)+I(x−l,t−τ)] − I(x, t)

(5.3)

and

Λ(λ, c) = λ2 − cλ + [elλ−cτλ + e−lλ−cτλ] − (µ + γ).

We first show the graph of Λ(λ, c) as follows when τ = 1, l = 1 by Figures 10 and 11.
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Figure 10. c : [0, 0.8], λ : [0, 1]. Figure 11. c : [0, 1], λ : [0, 1]

Comparing Figures 4 and 5 with Figures 10-11, we see that the nonlocality increases the invasion
speed. We τ = l = 2, we see that c∗ is close to 1 from the following Figure 12.

Figure 12. c : [0, 1], λ : [0, 1]. Figure 13. S (x, t) defined by (5.3)
with τ = l = 2.

Although τ = 2 > 1, c∗ is close to 1 due to the role of spatial nonlocality. The evolution of S , I with
τ = l = 2 is presented as follows.

Figure 14. I(x, t) defined by (5.3) with τ = l = 2.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7562–7588.



7583

To further show the effect of spatial nonlocality, we also simulate S , I by l = 4, τ = 2 by the
following Figures 15 and 16.

Figure 15. S (x, t) defined by (5.3)
with l = 4, τ = 2.

Figure 16. I(x, t) defined by (5.3)
with l = 4, τ = 2.

Clearly, although τ = 2 > 1 in Figures 6 and 7, the spreading speed is close to that in Figures 6 and
7, which indicates the role of spatial nonlocality.

To show the role of spatial nonlocality, we fix τ = 2 and take l = 2, l = 4 and compare the
distribution. From the following Figures 17 and 18, we see that the stronger nonlocality implies larger
spreading threshold.
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Figure 17. τ = 2, l = 2.
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Figure 18. τ = 2, l = 4.

Finally, different from that in the monotone model (5.1), we consider the following system without
comparison principle ∂S (x,t)

∂t =
∂2S (x,t)
∂x2 + 1 − S (x, t) − 2S (x, t)I(x, t)e−6I(x,t),

∂I(x,t)
∂t =

∂2I(x,t)
∂x2 + 2S (x, t)I(x, t)e−6I(x,t) − I(x, t).

(5.4)

Clearly, the spreading speed of (5.4) is the same as that in (5.1), and the following figures imply the
spreading speed of I is close to 2.
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Figure 19. S (x, t) defined by (5.4). Figure 20. I(x, t) defined by (5.4).

6. Discussion

The spatial spreading of epidemic models attracts much attention since it greatly affects the human
behavior in modern days. In population dynamics, there are many works on the study of spatial
dynamics of epidemic models. Since the interesting works of [7, 8], the threshold of spatial spreading
of epidemic models has been widely studied. Thus the analysis of parameters dependence of
propagation threshold may show the factors on disease spreading and control. In this paper, we have
shown the effect of time delay and spatial nonlocality by theoretical analysis and numerical
simulations. But it is difficult to change the latent periods in many cases. Due to our analysis, the
spatial movement of the infective in history may increase the spreading speed of the disease, and it is
reasonable to restrain the spatial movement of potential infective individuals to control some diseases.
The recipe has been utilized in controlling many disease including SARS.

As we have mentioned in Section 1, the traveling wave solutions can not well illustrate the outbreak
of some diseases, of which the initial prevalent district is small. To model the feature, asymptotic
spreading is a suitable index. Comparing with the traveling wave solutions, there are a few results on
the asymptotic spreading of nonmonotone epidemic models. In this paper, we obtained the spreading
speed in a class of epidemic models. In fact, the methodology in this work can be extended to more
general systems. For example,

∂S (x,t)
∂t = d ∂2S (x,t)

∂x2 + f (S (x, t)) − S (x, t) f1((J1 ∗ I)(x, t)),
∂I(x,t)
∂t =

∂2I(x,t)
∂x2 + S (x, t) f2((J2 ∗ I)(x, t)) − (µ + γ)I(x, t),

S (x, 0) = 1, I(x, s) = φ(x, s),

in which f1 , f2 is admissible and kernel functions J1, J2 may be different, f may be a function
including f (u) = ru(1 − u). Under proper assumptions, we could estimate the spreading speed of I.

The spreading speed in this paper equals the minimal wave speed of traveling wave solutions in
some known results. For some models similar to (2.1), it has been proven that the traveling wave
solutions with minimal wave speed is stable in the sense of weighted functional spaces, see [51, 52]
and references cited therein. Therefore, it is possible to understand the dynamics of the corresponding
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initial value problems by traveling wave solutions. In this paper, we show a rough speed on the branch
I(x, t). Very likely, the shape of spreading of I governed by (1.2) can be approximated by the shape of
traveling wave solutions with minimal wave speed in proper weighted functional spaces.
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