
MBE, 16(6): 7546–7561. 
DOI: 10.3934/mbe.2019379 
Received: 02 April 2019  
Accepted: 23 July 2019 
Published: 19 August 2019 

http://www.aimspress.com/journal/MBE 
 

Research article 

Gabor-based anisotropic diffusion with lattice Boltzmann method for 

medical ultrasound despeckling 

Haohao Xu1,2,3, Yuchen Gong3, Xinyi Xia3, Dong Li3, Zhuangzhi Yan3, Jun Shi1,3 and Qi 
Zhang1,2,3,* 

1 The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for 
Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China 

2 Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China 
3 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, 

China 

* Correspondence: Email: zhangq@t.shu.edu.cn. 

Abstract: Medical ultrasound images are corrupted by speckle noise, and despeckling methods are 
required to effectively and efficiently reduce speckle noise while simultaneously preserving details of 
tissues. This paper proposes a despeckling approach named the Gabor-based anisotropic diffusion 
coupled with the lattice Boltzmann method (GAD-LBM), which uses the lattice Boltzmann method 
(LBM) to fast solve the partial differential equation of an anisotropic diffusion model embedded with the 
Gabor edge detector. We evaluated the GAD-LBM on both synthetic and clinical ultrasound images, and 
the experimental results suggested that the GAD-LBM was superior to other nine methods in speckle 
suppression and detail preservation. For synthetic and clinical images, the computation time of the 
GAD-LBM was about 1/90 to 1/20 of the GAD solved with the finite difference, indicating the advantage 
of the GAD-LBM in efficiency. The GAD-LBM not only has excellent ability of noise reduction and 
detail preservation for ultrasound images, but also has advantages in computational efficiency. 

Keywords: despeckling; Gabor-based anisotropic diffusion; lattice Boltzmann method; computation 
time; ultrasound 

 

1. Introduction  

Speckle noise is a granular pattern that is commonly seen in coherent imaging systems, such as 
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ultrasound (US), optical coherence tomography, and synthetic aperture radar imaging. It is a form of 
locally correlated multiplicative noise caused by constructive and destructive coherent interferences 
of sound or light echoes from randomly distributed scatters, whose resolution is beyond the 
capabilities of the imaging systems [1]. In medical ultrasonography, effective and efficient 
despeckling methods are required to guarantee the accuracy of diagnosis. The main purpose of 
despeckling is to reduce the speckle noise while preserving the details in images for further 
processing such as image segmentation, feature extraction and quantitative measurement. That is to 
say, ultrasound image despeckling is an essential preprocessing step for subsequent analysis. 

Many different approaches to reducing ultrasound speckle noise have been proposed. Classic 
ultrasound despeckling methods are based on local statistics [2–4], such as the adaptive weighted 
median filter, Frost filter, and Lee filter, which can effectively reduce noise but may blur some details 
of tissues. Other methods are based on the anisotropic diffusion (AD) [5], and they can suppress 
noise and smooth an image [6]. However, whether they can keep or even enhance image details 
depends on whether the edge detector it uses can efficiently distinguish edges from noise [7].  

The AD method, also known as the P-M model, uses partial differential equation (PDE) to filter 
an image step by step by iterated diffusion [8]. Unlike the traditional spatial filtering, that does not 
protect image edges and details, the AD can preserve or even enhance edges while eliminating noise. 
However, when a medical ultrasound image is seriously corrupted by speckle noise, the AD method 
cannot effectively distinguish image edges from noise, resulting in the unsatisfactory performance of 
noise reduction. The edge detectors in PDEs are critical to filtering. An appropriate edge detector for 
medical ultrasound images should be able to differentiate edges and noise effectively [9]. However, 
speckle noise is a multiplicative noise, which means that the gradient changes caused by noise may 
be equal to or even larger than that caused by edges. In the AD model, the gradient operator acts as 
the edge detector, but it is very sensitive to speckle noise; it is also the main reason why the AD 
cannot obtain acceptable results for ultrasonic image denoising [9–11]. 

We have recently proposed a robust edge detector called the Gabor edge detector based on the 
Gabor transform and embedded it into the AD’s PDE to guide the diffusion. This improved method is 
called the Gabor-based anisotropic diffusion (GAD) [12]. Because the Gabor edge detector can 
distinguish edges from noise effectively, the GAD can not only suppress speckle noise, but also 
preserve the edges, structures and details in an ultrasound image [13,14]. However, the GAD requires 
the finite difference method to solve the PDE iteratively, and thus it is a time-consuming method, 
which limits its application in clinical practice. 

Indeed, various existing AD filters including the GAD have a common drawback, the poor 
efficiency, because they use the finite difference discretization depending on an explicit scheme, 
which requires a very short time step to make the algorithm stable. Hence, many iterations are 
required and cause the entire procedure be rather time-consuming. Alternatively, the lattice 
Boltzmann method (LBM) is a numerical scheme for solving the PDE by constructing a simplified 
discrete microscopic dynamics to simulate the macroscopic model described by the PDE [1,15–17]. 
One large superiority of the LBM is that it is suitable for parallel computation [18,19]. Recently, the 
LBM has been used for solving image diffusion problems, including image denoising with the 
AD [20–22]. Thus, we speculate that the LBM may also have the potential for the GAD denoising. 

In this paper, we propose using the LBM to fast solve the PDE of the GAD and thus derive a 
despeckling approach named the Gabor-based anisotropic diffusion coupled with the lattice 
Boltzmann method (GAD-LBM). In the following sections, we will show that the GAD-LBM not 
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only has the advantages of the GAD including effective speckle noise reduction and detail 
preservation, but also has the advantages of fast computation speed, high parallelization, and good 
stability attributed to the LBM.  

2. Methods 

2.1. Gabor-based anisotropic diffusion 

The two-dimensional Gabor kernels (i.e., functions) can be expressed as [23,24]:  

 ( ) ( )
2 2 2 2

, ,
,2 2, ; , exp exp exp

2 2
v v
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x y v ik zθ θ
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σ σ
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where v and θ are scales and directions of Gabor kernels, z = (x, y) is the spatial coordinates; σ is a 
constant related to the frequency bandwidth of the wavelet and |∙| denotes the norm operator. The 
wave vector is defined as: 

 max
,  = ( ) (cos ,sin )vv

kk
fθ θ θ⋅  (2) 

where kmax is the maximum frequency, and f represents the kernel interval factor in the frequency 
domain. The spatial frequencydomain information at different scales and directions can be extracted 
by changing v and θ. 

In the paper, the Gabor functions are defined at one scale and multiple directions, namely v = 0, 
and θ = θd = d ∙ 2π/D (d = 0, 1,..., D – 1; D is the number of directions). Two-dimensional Gabor 
functions can be decomposed into real and imaginary parts. The imaginary parts are often used to 
compose the edge detector of images [12]. The imaginary part of the Gabor function gb can be 
expressed as follows: 
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where kd = kmax(cosθd, sinθd). In this paper, we set σ = 2π, kmax = π/2 and D = 16 [24]. 
The Gabor transform of an image I(x,y) can be expressed by convolution between the image and 

the Gabor kernel:  

 ( ) ( ) ( ), , , ;d b dG x y I x y g x y θ= ∗  (4) 

Gd(x, y) is the dth convoluted image resulted from the Gabor kernel at the direction θd. The 
details in the input image I(x,y) at the specified direction θd can be captured through the Gabor 
transform. Then the edge-enhanced image Gsd(x, y) by using the Gabor edge detector can be 
determined according to details from multiple directions: 
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The GAD model can be built as the following PDE, which iteratively eliminates small 
variations in an image due to speckle noise and to preserve large variations due to edges: 
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  (6) 

Here g(Gsd) is the diffusion coefficient, which controls the diffusion process that inhibits 
smoothing across edges. g(Gsd) is large where Gsd is small (namely where the edge is weak), and it 
can be expressed as: 
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where k is an edge magnitude threshold; generally, a large k-value produces a smoother result in a 
homogeneous region than a smaller one [25]. 

2.2. Lattice Boltzmann method 

The LBM is built with a lattice together with the lattice vectors cα (α = 0, 1,…, q–1) along q 
directions. On each lattice node, there are a set of particles, consisting of a rest particle (α = 0) and 
q–1 moving particles [26,27]. Each particle has a particle density function Iα (α = 0, 1,…, q–1) ata 
vector direction cα [28]. Our research is based on a two-dimensional LBM model D2Q9 (2 
dimensions and 9 directions) [29]. The lattice vectors of the D2Q9 are defined as: 
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where α = 1, 2, 3, 4 shows the vertical and horizontal directions, α = 5, 6, 7, 8 indicates the directions 
of 45, 135, 225, and 315 degrees, respectively. 

Iα(x,t) is the particle densityfunction (i.e. the image intensity) at the position x = [x, y] and time t 
with a velocity of cα. Its evolution equation is:  

 ( ) ( ) ( ) ( ), , , ,eqI t t t I t I t I tα α α α αω  + ∆ + ∆ − = ⋅ − x c x x x  (9) 

where ω represents the relaxation factor, and 𝐼𝐼𝛼𝛼
𝑒𝑒𝑒𝑒 (x, t) is the equilibrium distribution which is the 

predicted value of Iα(x, t).  
The diffusion is conducted under the law of conservation:  
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The equilibrium distribution function of D2Q9 is:  

 / 9eqI Iα = , α= 0, 1, 2, ···, 8 (11) 

After setting the relaxation factor and equilibrium distribution function in Eq (9), we can solve 
the PDE with given initial values and certain boundary conditions. 
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2.3. The proposed GAD-LBM algorithm 

The GAD is a competent despeckling model for medical ultrasonography which can effectively 
distinguish edges from speckle noise [12]. Moreover, the LBM is an algorithm with advantages of 
high stability, easy parallel implementation and fast calculation speed. The GAD-LBM model 
proposed in this paper combines the GAD and the LBM.  

First, the relaxation factor ω in Eq (9) is not a constant across the image but a function of the 
image intensities denoted by ω(I), thus Eq (9) is rewritten as follows: 

 ( ) ( ) ( ) ( ) ( ), , , ,eqI t t t I t I I t I tα α α α αω  + ∆ + ∆ − = ⋅ − x c x x x  (12) 

We denote x = (x1,x2) and cα = (cα1, cα2). We then use a Taylor expansion on the left side of 
Eq (12) [26] and obtain 
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where ε is a small parameter, and i, j∈ {1, 2}. To derive the macroscopic equation, we use the 
Chapman-Enskog expansion [27] of Iα around 𝐼𝐼𝛼𝛼

𝑒𝑒𝑒𝑒  in powers of ε: 

 ( )2eqI I Oα α αεφ ε= + +  (14) 

Then we have [26] 

 ( )2/ 9I I Oα αεφ ε= + +  (15) 

We substitute (15) into (13) and equate the ε term of both sides of Eq (13) and get 
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Combining Eq (15) and Eq (16), we obtain 
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By taking the sum over α on both sides of Eq (13), we have 
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Here we have used Eqs (10) and (11). By substituting (17) into (18) and equating the ε2-term of 
both sides in Eq (18), we get 

 0
i jt x ij xI D I∂ − ∂ ∂ =  (19) 

where the diffusion tensor 
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Equation (19) is equivalent to 
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with the diffusion coefficient 
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With regard to the GAD-LBM method, we use the Gabor transform to derive the edge-enhanced 
image Gsd via Eq (5) and the diffusion coefficient g(Gsd) via Eq (7). Then we obtain the diffusion 
equation of the D2Q9 for GAD-LBM as follows:  
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where the relaxation factor is given by: 
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2.4. Diffusion control 

The diffusion time t is an important parameter in the process of diffusion-based image filtering. 
If a fixed diffusion time is used to despeckle ultrasound images with different noise levels, the 
filtering method will lose flexibility, and the filtering efficacy and efficiency cannot be guaranteed. In 
order to improve the adaptive ability of the GAD-LBM, we automatically set the diffusion time by 
searching for a fully formed speckle region (FFSR) in the image, which is a homogeneous region 
containing no edges but only speckle noise [12].  

Firstly, we divide the edge-detected image with the Gabor edge detector, Gsd(x, y), into 
several blocks in ms× ns size, and then a global search is carried out, from which a block with the 
smallest mean is selected as the FFSR. During the diffusion iterations in FFSR, the mean 
absolute error (MAE) of two successive filtered images (e.g., at the current time t and the 
previous time t–Δt) is computed:  

 
1 1
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t t t t
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= =

= −
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where It 
FFSR and It–ΔtFFSR(i, j) are the gray levels of pixels (i, j) in the FFSR at two successive iterations. 

When the MAEt value is less than the threshold of 0.002, the diffusion will be automatically 
terminated.  
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2.5. The procedure of GAD-LBM 

The complete procedure of the GAD-LBM model can be summarized as eight steps. 
Step 1: We take an initial noisy image I (x, y, t = 0) with a size of M × N to initialize the 

distribution functions at all directions:  

 
1( , , 0) ( , , 0)
9

I x y t I x y tα = = ⋅ =  (26) 

where α = 0, 1, ···, 8 denoting 9 directions. We then search for the FFSR region in I (x, y, t = 0). 
Step 2: We initialize the relaxation factor according to Eqs (5), (7) and (24). 
Step 3: Collision step:  
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where n is the iteration time, and the x- and y-axis coordinates are i = 1,···, M and j = 1,···, N.  

Step 4: Translation step:  
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where 1nI + ′  is the difference between In+1 and In. 

Step 5: We deal with the boundary condition:  
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Step 6: We update the gray values of pixels:  
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Step 7: We update the edge-enhanced image Gsd in the (n+1)th iteration and the relaxation factor 
of pixels:  

 ( )1
, sd

sd

2
1 3 ( )

n
i j G

g G
ω + =

+
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Step 8: If the MAEt is still greater than the threshold, we change the diffusion time to t + Δt, and 
then return to Step 3 for the next iteration. Otherwise, we stop the diffusion, and the final output I is 
the despeckled image. 

3. Experiments and results 

In this section, we present the experimental results on synthetic and clinical ultrasound images 
by using the proposed algorithm GAD-LBM and nine other algorithms for comparison including the 
Lee filter [30], AD [5], AD-LBM, speckle reducing anisotropic diffusion (SRAD) [31], Laplacian 
pyramid-based nonlinear diffusion (LPND) [32], complex diffusion (CD) [33], non-local means 
(NLM) [34], James-Stein typenon-local means (JSNLM) [35] and GAD (solved with finite 
difference) [12]. 

The parameters of all the existing methods were tuned in accordance with the values suggested 
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in the publications. The computer used in our experiments was a server with the Intel Xeon CPU 
(E5-2620v2 2.1GHz) and 64GB RAM. 

Clinical ultrasound images were acquired from human participants. All procedures performed in 
studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards. Informed consent was obtained from all individual 
participants included in the study. 

3.1. Results of synthetic images 

We used a multiplicative model to add multiplicative speckle noise ns(x, y) to a synthetic 
noise-free image I(x, y) with a size of 256 × 256. The noise was in uniform distribution with a 
mean of zero and a variance of vn. Hence we generated an ultrasound image Y(x, y) contaminated 
by speckle: 

 ( , ) [1 ( , )] ( , )sY x y n x y I x y= +  (32)
 

Firstly, we changed the vn-values from 0.03 to 0.21 in an interval of 0.03 in order to obtain 
synthetic images with various amounts of speckle noise. Simulated images with speckle variances of 
0.03 and 0.12 were shown in Figure 1 and Figure 2 (entitled “Noisy”), respectively.  

In Figure 1 and Figure 2, the GAD-LBM algorithm had the best filtering result through visual 
observation of the image. When the noise variance was 0.03, four methods including the AD-LBM, 
SRAD, GAD, and GAD-LBM yielded satisfactory results (Figure 1). However, when the variance 
of noise increased to 0.12, only the GAD and GAD-LBM seemed to obtain robust despeckling 
results, while the performance of the AD-LBM and SRAD degenerated (Figure 2). Compared with 
the GAD, the GAD-LBM appeared better in speckle noise suppression and edge preservation 
(Figure 1 and Figure 2).  

In addition, we used three quantitative indices, i.e., the peak signal to noise ratio (PSNR), mean 
structural similarity (MSSIM), and Pratt’s figure of merit (FOM), to evaluate the algorithms’ 
capability of noise reduction, structure preservation and edge preservation, respectively [36–38].  

The quantitative indices for synthetic images are listed in Table 1, where the values were 
calculated when the speckle variance vn was 0.12. From the table, we can know that the GAD-LBM 
largely enhanced the image quality measured by the PSNR, MSSIM and FOM, exceeding other nine 
methods in terms of all three indices. 

We changed the variance of noise from 0.03 to 0.21 in an interval of 0.03 when synthesizing the 
images with the multiplicative model and compared the performance of all ten filtering methods. The 
despeckling results are illustrated in Figure 3, where we can see that the GAD-LBM and GAD 
outperformed other methods on almost every noise level in terms of every quantitative index.  

Our experimental results show that when the variance of the speckle noise was relatively low 
(0.03 and 0.06; Figure 3), the GAD, GAD-LBM, AD and AD-LBM all achieved good PSNR values, 
indicating that the GAD-LBM and the traditional algorithms suppressed the noise well when the 
noise level was low. When the noise variances increased from 0.03 to 0.21, the PSNR values of the 
GAD-LBM and GAD were always above 28 dB, demonstrating they maintained excellent noise 
reduction performance at high noise levels. The FOM values of most methods decreased sharply with 
the increase of noise levels. Nevertheless, the FOM of the GAD-LBM still reached 0.67 when the 
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noise increased to the highest variance of 0.21. The results of MSSIM show that the GAD-LBM was 
stable and always higher than 0.92 at a noise variance from 0.03 to 0.21, demonstrating the 
superiority of our method in structural preservation. 

 

Figure 1. Denoising results of a simulated ultrasound image with a speckle variance of 0.03. 

 

Figure 2. Denoising results of a simulated ultrasound image with a speckle variance of 0.12. 

Table 1. Denoising performance for synthetic ultrasound images with a noise variance of 
0.12. The best values are denoted in a bold font. 

 PSNR (dB) MSSIM FOM 
Noisy image 14.553 0.113  0.224  

Lee 23.204 0.495  0.224  
AD 28.981 0.862  0.255  

AD-LBM 28.526 0.833  0.309  
SRAD 28.646 0.844  0.301  
LPND 29.782 0.901  0.248  

CD 23.109 0.502  0.223  
NLM 28.650 0.876  0.228  

JSNLM 28.331 0.812  0.318  
GAD 31.429 0.943  0.638  

GAD-LBM 31.484 0.948 0.744  
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Figure 3. Quantitative comparison of denoising performance for the synthetic ultrasound 
images corrupted by different variances of speckle noise. The proposed GAD-LBM 
method was compared with nine existing methods. Three quantitative indices were 
calculated including the peak signal-to-noise ratio (PSNR), mean structural similarity 
(MSSIM), and Pratt’s figure of merit (FOM). 

From Figure 4, we see that the computation time of the GAD-LBM was stable from 2 to 4s for 
denoising simulated noisy images with a variety of noise variances, which was about 1/50 to 1/20 of 
the GAD, indicating the advantage of the GAD-LBM in efficiency.  

3.2. Results of clinical images 

We also compared the GAD-LBM with nine methods on despeckling two clinical B-scan 
ultrasound images of breast tumor acquired from Huashan Hospital, Fudan University, Shanghai, 
China. The imaging device was the HI VISION Preirus system (Hitachi Medical, Tokyo, Japan) 
equipped with a linear array transducer. In Figure 5 and Figure 6, the yellow line in the original 
image is a sampling line, and we show both the two-dimensional image and the one-dimensional 
signal sampled from the line. 

 

Figure 4. Computation time of the GAD and GAD-LBM at different variances of 
speckle noise. 
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Figure 5. Denoising results for the first clinical ultrasound image of a breast tumor. The 
image was filtered by ten methods. The yellow line on the initial noisy image is a 
sampling line whose pixel intensities are depicted on the plots right to the noisy or 
denoised images.  

 

Figure 6. Denoising results for the second clinical ultrasound image of a breast tumor. 
The image was filtered by ten methods. The yellow line on the initial noisy image is a 
sampling line whose pixel intensities are depicted on the plots right to the noisy or 
denoised images. 
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Table 2. The computation time of ten methods. 

Methods 
Time (s) 

Clinical image 1 Clinical image 2 
Lee 2.049 2.163 
AD 0.273 0.284 

AD-LBM 0.119 0.118 
SRAD 1.130 1.142 
LPND 2.197 2.315 

CD 0.128 0.153 
NLM 28.879 28.423 

JSNLM 0.024 0.027 
GAD 170.667 86.199 

GAD-LBM 2.751 3.233 

It can be seen from Figure 5 and Figure 6 that the GAD-LBM performed best and removed 
noise and preserved edges appropriately. In the denoised images by ten filtering methods, the speckle 
noise was suppressed to different extents. The Lee and the CD methods retained much noise while 
the other methods all smoothed the tumor. Among the ten methods, the GAD-LBM seemed to seek 
the best compromise between the noise reduction and the detail preservation. A sampling line is 
superimposed in the initial noisy image. From the plots of the intensities on the line, we can see that 
the GAD-LBM appropriately eliminated noise and smoothed intensities on the line while the other 
methods either over-smoothed or under-smoothed the intensities. 

Table 2 shows the computation time of ten methods. It can be seen that it took 2 to 4s for the 
GAD-LBM to denoise a clinical ultrasound image, which was comparable to the Lee and LPND 
methods and much quicker than the GAD method. The computation time of the GAD-LBM was 
about 1/90 to 1/30 to that of the GAD, indicating the advantage of the GAD-LBM in efficiency. 

4. Discussion 

Speckle noise corrupts ultrasound images and limits the signal-to-noise ratio. Moreover, the 
speckle noise is multiplicative, increasing the difficulty for noise suppression. In order to improve 
the feasibility and reliability of subsequent image analysis and interpretation, it is necessary to 
preserve or enhance the edge and texture of tissues while reducing speckle noise. However, the 
commonly used denoising methods cannot effectively denoise the speckle noise. The recently 
proposed GAD algorithm has a good performance for despeckling, but it is a time-consuming 
method and hence has limited applications in clinical practice. 

In order to overcome the drawback of traditional algorithms, we combine the GAD with the 
LBM and propose the GAD-LBM model, leveraging the advantages of the GAD on edge 
preservation and the advantages of the LBM on fast parallel implementation. The GAD-LBM 
model achieves excellent results on both simulated and clinical images. Visual observation and 
quantitative comparison has revealed the improvement of the noise reduction, detail preservation, 
and calculation speed of the GAD-LBM compared with other nine methods. However, whether the 
despeckling method can be valuable for disease diagnosis has to be further validated in a future 
study. In addition, compared with the recently published methods, such as the nonlocal total 
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variation [39] and other methods surveyed in [40], the GAD-LBM method has the advantage of 
computation speed on the premise of ensuring the quality of denoising. In our future work, we 
would combine these recent methods with AD and LBM and expect better results. We would also 
introduce higher order lattices [41,42] into the LBM models in future studies to further improve the 
despeckling performance. 

The advantage of the GAD-LBM over the GAD is the computation speed (Figure 4 and Table 1). 
For synthetic and clinical images, the computation time of the GAD-LBM is about 1/90 to 1/20 of 
the GAD, demonstrating the superiority of the GAD-LBM in computational efficiency. From Figure 3, 
we have also found that although the PSNR and MSSIM are almost the same between the 
GAD-LBM and GAD, the FOM-values are different. It may be attributed to the stability of different 
numerical solutions to the diffusion. The LBM may derive more stable results for diffusion thus yield 
better results in FOMs than the finite difference. 

For clinical US images, the GAD-LBM has showed a better balance between noise removal and 
detail preservation than other methods, and it has also demonstrated advantages in computational 
speed. Thus compared with other despeckling methods, the GAD-LBM can produce denoised images 
that could be more suitable for subsequent image analysis and interpretation, such as lesion detection, 
segmentation, feature extraction and intelligent diagnosis [43,44].  

5. Conclusions 

In this paper, we propose a new model called the GAD-LBM for despeckling US images. The 
experiments of filtering simulated and clinical US images have demonstrated that the GAD-LBM not 
only has excellent ability of noise reduction and edge preservation but also has advantages in 
computation efficiency.  
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