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Abstract: Technology has reshaped the workplace and the rapid improvements have transformed how
we work nowadays. In the pursuit of industry 4.0, we build smart machines and robots to replace
manual labor. While the manual labor is replaced by machines, in many cases, humans are trans-
formed into desktop software users. Jobs such as testing, quality inspection, data monitoring, data
entry, and routine editing remain to be done by humans in front of desktop computers. The operations
to software applications in principle can be reduced to screen output understanding and mouse and
keyboard operations. When the characteristics of these jobs are repetitive, tedious, and monotonous,
they can be replaced by GUI automation techniques. GUI automation can be achieved by different un-
derlying technologies, each has its pros and cons. In this paper, we describe a tool-Korat, which uses
computer-vision to achieve maximum cross-platform capability for industrial applications, including
test automation and robotic process automation. Although Korat has been successfully adopted by
several industrial customers, difficult problems remain to be addressed. The problems and difficulties
in applying computer vision for GUI automation are discussed and studied in this paper, particularly
the experiences of applying open source OCR to GUI automation over color screenshots. By intro-
ducing critical pre-processing stages and algorithms, the recognition rate is significantly increased and
becomes feasible for practical usage.

Keywords: GUI automation; computer vision; test automation; optical character recognition; image
analysis

1. Introduction

In the areas of software engineering or industrial applications, which involves hardware and soft-
ware integration, testing is often performed by testers or programmers using keyboards and mouses.
When graphical user interface (GUI) is involved, a tester may use a keyboard and a mouse to drive a
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test run and then monitor the system behaviors at the same time to assert the correctness of a test run.
Since the steps of a test run are often repetitive and monotonous, testers often try to find a suitable
testing tool to automate the task. The basic features of a software testing tool are reproducing the
keyboard and mouse events that drive a test on a system under test (SUT) reliably at good timing and
then asserting the correctness of the system under test in the run.

Technically speaking, what these testing tools perform is actually regression testing. The goal of a
test is trying to expose the bugs hidden in the test run but a regression test is a repeated test to make
sure system features that functioned correctly remains unaffected by the changes of the code due to bug
fixes, feature extension, refactoring, etc. True GUI test automation where test cases are generated and
tested automatically remains to be too hard to be practical in foreseeable future [1]. On the other hand,
regression testing is practically doable, necessary, and indispensable for industrial applications. So, in
software industry or other industrial areas nowadays, testers remain to be responsible for designing the
test cases and preparing the test data to test the code of a SUT.

The underlying technology of test automation is GUI automation. Test Automation is one of the
well-known industrial applications of GUI automation. Other applications are robotic proccess au-
tomation (RPA) or grinding in video gaming, where grinding refers to the playing time spent doing
repetitive tasks within a game to unlock a particular item or to build the experiences needed to progress.
GUI automation, at first glance, should be matured and commercialized to some extent already and ap-
plicable to practical industrial and personal needs. However, GUI automation has limited its usage in
a few narrow domains for several reasons.

First, automating the keyboard and mouse events can be straightforward if operating systems or
the platforms (e.g., web browser) under test supports GUI component accessing and invocation APIs.
Popular commercial or open source testing tools typically adopt such an approach. To click a GUI
button, these approaches actually invoke its click() method instead of moving mouse cursor onto the
button and then performing a click action. We call such an approach platform-dependent (PD) GUI
automation. For instance, popular open-source testing tool, Selenium [2], relies on the testing support
from Firefox browser in its earlier versions. In Windows, commercial testing tools [3, 4, 5, 6] and
robotic process automation (RPA) tools [7] mainly rely on some Windows APIs from .Net framework.

Techniques that adopt such an approach, inevitably limit their use to a specific platform but not all
the operating systems or platforms provide needed API support for GUI automation. The problems of
relying on such an approach are:

e backward compatibility, for example, not applicable to old applications which were built by the
early platform libraries,

e inapplicable to cross platform testing or automation, and

e unpredictable time delay to keep up with new emerging technology advances.

On the other hand, instead of adopting these platform dependent approaches, it is intuitive to ap-
proach the problem by mimicking humans. Humans process the screen output and then control the
mouse and keyboard to drive the GUI automation. We call these approaches, computer-vision (CV)
based GUI automation. For example, test automation tools adopting these approaches include Sikuli
[8], T-Planrobot [9], Egg-plant[10], and Korat [11]. The merits of this approach are:

1. not sensitive to platform support and technology advances,
2. applicable to several platforms such as Windows, Linux, and Web,
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3. capable of verifying the program’s GUI errors, such as layouts, and
4. capable of verifying program output that are rendered in image pixels.

However, the drawbacks of CV approach are:

1. GUI component properties (numeric values or strings) are not accessible in programming,

2. GUI component event triggering is not guaranteed,

3. GUI structured information, such as the elements in a list box, is not available in programming,
and

4. performance can be slower.

Performance in item 4 in general is not a critical issue in practice. First, reliability of a black-box
test is often more important than speed. Second, the bottlenecks of testing performance are often or
mainly attributed to the response time of systems under test.

Technically speaking, CV approaches in several cases make the GUI automation problem more
difficult to deal with, i.e., CV approaches turn a programming problem into an image processing prob-
lem. Particularly, programming is still an indispensable part in applications such as test automation
and RPA. So, it is not surprising that these applications favor PD approach.

However, through years of development and experiences in applying and promoting Korat in several
industrial applications, we now believe CV approach can be a competitive solution in many scenarios.
We have encountered several industrial customers who tried to adopt PD-based solutions but eventually
gave up for different reasons, such as backward compatibility and cross-platform capability. Many
industrial applications have legacy and cross-platform issues, which makes PD approaches inapplicable
or failed from time to time.

In this paper, we will describe the computer vision problems and how we address these problems
practically in Korat. One of the most critical computer vision problem and challenges for CV GUI
automation is optical character recognition (OCR). OCR is in general remains to be a difficult problem
in practice. Commercial product such as ABBYY [12] or Google Vision [13] have already dominated
the market in various domains. However, although these services have been available for some time and
they provide adequate accuracy in general, cost and their technical constraints are always problems. For
example, applying Google Vision cloud service requires internet connections, but in our applications
to industry, most Korat users are not allowed to have internet connections in their factories. In addition,
Korat’s test cases may run in 24 hours. Cost becomes a real issue and could not be ignored. So, it is
inevitable for us to seek out open-source solutions as an alternative. In this paper, we describe how
we improve and enhance an open source OCR tool-Tesseract [14] for the character recognition on the
screenshots.

This paper is organized as follows. In Section 2, we compare the techniques of test automation.
Section 3 gives an overview of Korat, which adopts computer vision in GUI automation for testing.
The major computer vision problems in GUI automation are discussed in Section 4. The improvements
and evaluations are at the end of Section 4. Section 5 ends the paper with conclusion remarks.

2. Related work

Technically speaking, GUI automation is only an underlying technology to reproduce UI events
(such as mouse and keyboard events) so that a GUI desktop software can be automated without human
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intervene. Among its applications, regression test automation is the most well-known one. Regres-
sion test automation can be done by programming, tools, or a combination of them. Systems with
sophisticated GUI are often difficult to automate. Besides, system testing must wait until an executable
program is built. So, writing xUnit test code has become a popular approach to support regression
test automation at the programming level. However, xUnit testing requires programming skills and
considerable code maintenance efforts [15]. For several reasons, unit tests can never replace system
tests.

Instead of programming test cases, Capture/Replay (CR) is an advanced feature in software regres-
sion testing. Its basic idea is to record the operations of users, particularly in a GUI, into a test script,
mainly consisting of keyboard and mouse events. When a system under test (SUT) is modified, the
test script is replayed to see if the SUT is damaged by the change. In the replay, the previously saved
keyboard and mouse events are sent to SUTs to emulate the testing behaviors of a tester. If a test can
be successfully replayed, the test run is passed. Since Capture/Replay is a very practical approach,
many commercial CR tools have been built. Examples of some CR tools are: T-Plan Robot [9], HP
QuickTest [3], Rational Robot [16], etc..

Capture/Replay approaches may sound like a straightforward method for software regression testing
but in practice they are often complicated by a lot of problems [17]. First, an SUT’s execution time
for the same test can be different in two separate runs. The timing to trigger a series of events may
not always be the same between two different runs. So, a straightforward replay is often infeasible.
Second, to intercept the mouse/keyboard events, CR tools often cause performance interference to
the SUTs. There are a few ways to intercept mouse events. If monitored events are not local to the
applications, a global hook is often used to intercept the mouse events from O.S. Unfortunately, hooks
tend to slow down the system because they increase the amount of processing the system must perform
for each message. The interference can be so significant that the temporal synchronization between
a capture run and a replay run becomes difficult. Mouse dragging events are the most common GUI
events that often fail to synchronize replayed runs in a precise manner [17]. Automating the CR tests
for 3D games, for example, is even more challenging. Since no GUI components can be captured in a
3D scene, an intrusive CR approach was proposed [18].

In most software applications, human testing behaviors are mainly keyboard/mouse operations
guided by human sight. A tester not only work as a test driver but also a test oracle to monitor and as-
sert the correctness of a test run. So, in a human test, the human brain, eyes, and hands combine to play
the roles of test driver and test oracle. So, to emulate what humans do, one intuitive CR approach is to
analyze screen output (image pixels) and guide the mouse and keyboard to repeat a capture run. This
CR approach is CV-based in this sense. The representative image-analysis CR tool is Sikuli [8]. Sikuli
proposes a GUI scripting language called Sikuli, in which the sequence of operations of a test, called
visual workflow, is recorded. The advantage of Sikuli script is its visual and easy-to-understand char-
acteristics. In principle, limited programming skills are required for using Sikuli for software testing.
One major drawback of Sikuli is the performance interference caused by intercepting mouse events
with global hooks. Another drawback is that Sikuli’s test scripts are often sensitive to the failures of
image analysis and recognition. The major image recognition approach provided by Sikuli is template
matching from OpenCV, which can fail by false positive cases (i.e., objects are incorrectly identified),
and false negative cases (i.e., objects are incorrectly rejected) in practice.

Korat’s initial work was first published in [11]. In this previous work, the prototype of Korat was
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presented to address the BIOS testing scenarios in industrial personal computer manufacturing, where
a test case is across from BIOS, OS boot up, to Windows/Linux GUI systems. Note that in the stages
of BIOS and OS boot up, there are no commercial operating systems to support testing need. Korat
introduced a two-machine testing architecture to address the problem and achieved test scenarios which
are capable of crossing platforms. In the best of our knowledge, Korat is unique in such a domain.
Another work that is closely related to Korat is T-Plan Robot [9]. Unlike Sikuli, T-Plan Robot is
run at a separate machine from SUT, which is the same approach as Korat. Running CR tools on a
separate machine can guarantee no performance interference on the execution of SUT. However, the
problem is how to intercept mouse/keyboard events from SUTs. The answer of T-Plan Robot is to run
a VNC (Virtual Network Computing) server on the SUT machine. VNC is a common tool for users to
remotely control another computer. It transmits the keyboard and mouse events from one computer to
another and graphical screen updates back in the other direction over a network. So, T-Plan robot can
be platform independent wherever a VNC server can be installed. Compared to Korat’s approach, a
VNC server can still cause performance interference to SUTs. Besides, VNC servers are only allowed
in platforms which often require a general purpose O.S. For example, it is inapplicable to BIOS testing
and many other embedded devices. The platform independence is considered more limited than Korat.

3. Maximize cross-platform capability by CV GUI automation

Mouse devices, keyboards, and touch screens are now the major input devices for most software
products. These input devices typically work with a GUI system. As a result, most system test au-
tomation tools aim for GUI automation driven by keyboards and mouse devices. One critical fact is
that most software products, even mobile applications, are developed in major desktop environments,
such as Windows, Macs, or Linux. These environments are mainly operated by a mouse device and a
keyboard.

For the purpose of explaining GUI automation approaches, it is convenient to use an example to
help explain the technical details behind it. This example is to move the cursor to click a button. When
a GUI automation technique tries to reproduce the example move, it is possible to make a real mouse
click, an emulated mouse click, or a fake mouse click. Making a fake mouse click is to invoke a GUI
component’s event handler such as its click() method without any real/emulated mouse events. This
approach has been widely discussed in previous sections as the platform-dependent approaches.

Making a real mouse click can be done by producing a series of mouse USB signals without a
real mouse device but let the SUT recognize it as a mouse device. Tools which adopt this approach
are capable of being independent of operating systems and platforms. If USB signals are keyboard
signals, it is even applicable to non-GUI environment such as BIOS and DOS. Let the approach be
called Method-USB. The major challenge of such an approach is tracking the mouse cursor in an SUT
and determining when and where to perform a click. Korat [11] supports such an approach.

Making an emulated mouse click is to insert mouse actions into a GUI system’s input queue. For
example, Windows is an operating system bundled with a GUI system. It provides APIs to allow
processes to insert mouse actions into system input queue to control mouse cursors. Typically, these
APIs allow you to move a mouse cursor to a specific screen coordinate and perform mouse button
actions. Let the approach be called Method-OS. Tools relying on such an approach inevitably depend
on the operating system. Building a tool by Method-OS is comparatively less difficult than Method-
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Figure 1. Korat architecture in Method-USB mode.

USB because you can precisely navigate the mouse cursor. However, the problem of determining when
and where to perform a click is the same as Method-USB. Tools that adopt this approach include Korat,
Sikuli [8]. Sikuli and Korat are capable of driving SUTs under the same operating system. Basically,
this approach needs image analysis and computer vision methods to determine where to click.

3.1. Modes of cross-platform

In Figure 1, the architecture of Korat in Method-USB mode is illustrated. As shown in the figure,
Korat is run at a separate machine from SUT but the SUT’s video output is connected to a video image
capture card installed in the Korat machine. In this mode, Korat is a two-system testing tool but it
is completely non-intrusive. An ARM-cortex M4 development board is used as a USB emulator to
intercept and send keyboard/mouse events to SUT’s USB ports.

Korat’s main GUI program is shown in Figure 2. When a tester clicks the “record” button, the
screen of the SUT is shown in a window (captured from the video signal) for the tester to operate. In
recording mode, a tester’s operations, including mouse and keyboard events, are all intercepted and
saved by Korat but sent to the SUT at the same time.

Figure 3 shows the Korat in Method-OS mode. When Method-USB is too expensive to deploy,
Korat can run in this mode to capture the image from screen and control mouse without the USB
emulator. In this mode, Korat is not limited to test Windows programs. Programs in other platforms
can be tested via virtual machines, VNC, or TeamViewer as well.

3.2. Combinations of image recognition methods

Similar to other CV-based tools, Korat uses image recognition methods such as template matching
to find the target to click or drag. Even though the captured image is clean and no distortion, image
processing techniques are inevitably troubled by false-positive and false-negative errors. When an
image recognition fails, Korat allows users to adjust the threshold of the recognition. While most cases
can be resolved in this way, adjusting thresholds in some cases is a knife with two edges. For example,
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Figure 3. Korat in Method-OS mode.
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Figure 4. The dialog to create combinations of image recognition methods.

fixing a false-positive problem may cause more false-negative errors to occur. This dilemma often can
be resolved by using other image recognition method in Korat. Korat currently provide several basic
image recognition methods:

Template matching (colors are critical)

Template matching without background (only foreground template pixels are computed)
Generalized Hough transform (contours are critical but color and scale are irrelevant)
Anchored Images (use an additional image to filter the duplicated candidates)

Korat provides a tool to allow flexible combinations of above methods (see Figure 4 for the user
interface). Basically, Korat allows you to create a combination of image analysis method which could
best fit your computer vision problem. Its basic concept is that each method identifies a set of pri-
oritized candidates and you can combine additional methods to filter candidates to recognize the real
target. For example, suppose there are two folders with same image icons in the desktop. Template
matching may match two targets to be clicked. You can use a recycling bin icon as an anchor to lo-
cate the exact target. For example, a selected item may change background color (see Figure 7 in the
later section), causing the template matching to fail. A straightforward solution is to use two template
matching on two templates (one with white background and one with color background) and then union
the results of the two by OR operation so that either one of the two is recognized.

3.3. Assertions

In the test automation scenarios, a tester may judge the correctness of a test run by different methods.
It is a tool’s responsibility to provide support for common assertions but in the meantime provide
an extensible architecture for new assertions to add in. For common assertions, Korat provides the
following methods:

e Image recognition
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e Fixed font/size - Optical Character Recognition (OCR) (very high recognition rate tailored only
for BIOS)

e Google cloud vision OCR

e Drag and select for string processing

The image recognition methods are basically the same as the previous section but the prioritized can-
didates identified by an image recognition method can further be counted or compared. For example,
in many industrial personal computer (IPC) tests, after Korat opens the device manager in Windows,
the tests need to unfold a tree entry and assert the number of items. See Figure 5 for example. So, Korat
provides an assertion command to compare (<, =, >) the number of prioritized candidates, which is
heavily used in IPC’s tests.

Since Korat is an CV-based tool, it cannot use a GUI component’s property for assertions. So,
using OCR to extract texts from images into ASCII texts is a very straightforward solution. However,
a generic OCR tool that is capable of recognizing arbitrary fonts and sizes is in general difficult to
build. We have studied and tried several OCR tools such as Tesseract [14] and FineReader[12]. They
are usable but recognition rate is not precise enough for us to deal with IPC’s requirements. In IPC’s
requirements, they need to recognize a string on screen, such as a product number, in their production
lines but the precision must be very close to 100%.

In order to achieve this mission, we designed and implemented a fixed font/size OCR of our own
with precision close to 100%. Note that this part of work is completely independent of Tesseract work
which will be described later. The trick is to force users to tell Korat the font and size of the texts in the
images; that is, by providing heuristic, we can greatly reduce the complexity of the problem. Such a
trick allows us to use template matching and dynamic programming to guarantee the high recognition
rate. Such an approach, of course, is only feasible to a specific domain for characters with fixed
fonts/sizes. However, to IPC industry, they are happy to trade a little inconvenience for recognition
rate.

The last interesting method is using Korat’s GUI automation to drag and select a region of texts,
copy-and-paste, and then extract the texts for assertions. This method is getting momentum in Korat’s
applications, particularly when the texts are not English characters. Using this method allows Korat to
avoid Chinese character OCR, which is considered more difficult than English character OCR.
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3.4. Applications

Korat has been applied and adopted for BIOS testing by world-famous Taiwanese companies, such
as ADLINK and Inventec. ADLINK used Korat to record 282 BIOS regression test cases for design
verification. Inventec used Korat to record more than 300 test cases in their server mother board man-
ufacturing. Taiwan Semi-conductor Manufacturing Co. (TSMC) mainly use Korat for RPA purposes
but we are sorry that the number of Korat scripts is not available to us.

4. Apply computer-vision in GUI automation

In general, the problems and challenges of applying computer vision in GUI automation can be
summarized as follows:

e image recognition approaches
e image understanding for higher-level structure
e optical character recognition (OCR).

In theory, if the first and third item can be addressed successfully; that is, accruate and reliable, the
CV approaches can at least level up with platform dependent approaches. The second item, on the other
hand, can bring explicit benefits over platform dependent approaches. Unfortunately, these challenges
still require more research and the difficulties behind the challenges will be thoroughly discussed in
this section.

4.1. Image recognition

One basic feature of Korat is to recognize the image areas, such as a button, and then guide mouse
cursor to perform operations, such as a click or a drag. Surprisingly, most image recognition can simply
be achieved by template matching (TM) with adequate accuracy. In Korat’s real, daily applications,
reliability is critical. Korat may be scheduled to run hundreds of test cases daily in industry. The
system under test may crash or behave abnormally. On the other hand, Korat should restart the system
under test and then faithfully replay the remaining test cases. So far, template matching perform well
in most of the cases.

The sources images for Korat are screenshots from a computer desktop or a frame grabber which
captures individual, digital still frames from an analog video signal or a digital video stream. Frame
grabbers are widely used in healthcare, manufacturing, astronomy, etc. In principle, if you capture
a frame from the frame grabber, its RGB pixel values should be identical to the screenshot taken
by a desktop application. In our experiences, this is nearly true at all time except when hardware
components introduce very insignificant interference. The story is in the following:

In one of the Korat IPC applications, a defective VGA cable was used. Instead of producing ob-
vious noises, this defective VGA cable only decreased pixel’s RGB values by one or two randomly.
Coincidentally, an IPC tester used Korat to test drive a Linux machine and the scenario was to wait for
Linux logo in the boot up. So, the tester selected a large image area as a template. From his under-
standing, larger template contains more information and the probability of recognition failure should
be less. Unfortunately, the two coincidences added up to trigger an error in image recognition. It was
not straightforward and easy to find out why template matching failed because template and target
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template foreground mask

Figure 6. A foreground mask example.

images looked nearly the same on screen. We printed out the binary data of the two images, compared
them, and eventually found the root cause.

Straightforward template matching, of course, in several scenarios, no longer works. The followings
are some template matching variants that help to deal with the problem.

4.1.1. Foreground mask for template matching

Most computers have different desktop wall paper or background. So, to deal with different back-
ground in template matching, a foreground mask in Figure 6 can be produced in Korat. Similar situ-
ations also occurs in some fancy web design. This is the case with large background images—using a
slide show with a variety of different photographs means that whatever color text you choose it will
show up better on some than on others. So, the solution has been to place a filter or transparent layer
between the image and the text, meaning that the text will show just as clearly on any image. These
transparency and filters are getting more momentum in mobile applications as well. When these GUI
rendering techniques are used, it increases a lot of difficulties in computer vision.

4.1.2. Background color switch

Figure 7 is another case where straightforward template matching fails. The “sleep” item in the
listbox was originally in black and white but it changes color after it is clicked to memorize the state.
If you want to click the “Sleep” item with black and white template, it no longer works. Foreground
mask does not work for this case as well. This problem, of course, can be resolved by OCR, which
will be elaborated in later sections. However, it can be simply searched by two templates, one with the
black and white and one with the blue background. Korat can use (see Figure 4) two template matching
and then union the searched results into a priority queue. Either one should trigger a match.

4.1.3. Anti-aliasing effect

Another interesting case that makes template matching fail is character’s anti-aliasing effect. Figure
8 shows the difference of two magnified images. Apparently, the two templates are still similar but the
threshold required to pass the similarity can be as low as 0.5. Again, this problem, in principle can be
resolved by a powerful OCR, but it can be resolved by changing template matching parameter. Ko-
rat’s default template matching parameter is CV_TM_CCOEFF_NORMED. By changing the template
matching parameter to CV_TM_CCORR_NORMED, the anti-aliasing effects can be ignored and two
images are determined as similar without lowing the threshold value.

The two methods to compute similarity are listed in Figure 9. CCOEFF matches a template relative
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Figure 8. An example of anti-aliasing effects.

to its mean against the image relative to its mean, so a perfect match will be 1 and a perfect mismatch
will be -1; a value of 0 simply means that there is no correlation. Comparatively, CCORR simply
compute the cross-correlation among the template and target image, which is not as strict as CCOEFF
and then resolve the anti-aliasing problem.

4.2. Image understanding

Platform-dependent approaches have their strength, particularly the programming level support to
interact with GUI components. However, software applications are eventually rendered as image pixels
in the desktop. There are several things can go wrong or unexpected in this process. For example, in
web development, the cross browser compatibility testing is an important task for software testers. An
implementation of web-based UI can be rendered differently in another browser or OS platform. For
example, in browser compatibility check lists, a tester needs to verify the alignment of the elements
in a web page; verify the spacing between the elements in a web page; and verify the page layout in
different resolutions, etc. An example of layout problems in two different browsers is shown in Figure
10, where a web page is rendered differently in IE9 and Firefox3.7. Similar problems occur in mobile
app development as well. It is often inevitable to test applications on real device.

Cross-browser compatibility testing [19] is a practical problem in software industry, where a lot
of tools and cloud services have been provided [20]. Browser compatibility testing involves a lot of
techniques to address the problem. For example, a web crawler or a test driver, such as Selenium [2] or
Appium, must be used to explore the web pages. Then when a web page is loaded, a set of equivalence
relations is checked, either by HTML structure or by screenshots. Tools [20] that perform compatibility
testing mostly involve taking screenshots while running the web application inside a browser. Checking

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7526-7545.



7538

method=CV_TM_CCORR_NORMED

Zxr,y,[T[xf‘yr] Ix £ x5y +y”)
\/Zx',yv T{X’,y-’]z . Zx',y'](x—i_xr!y _I_y;]z

R(x,y) =

method=CV_TM_CCOEFF
Rixy) =D (T'(¥,y') - 1(x +x,y +y'))
xhy'

where

Txy ) =Ty ) =1/ (w-h) -3 T, y")

B

POty +) = 10k %,y +y) — 1/w 1) - Ty 10y )
method=CV_TM_CCOEFF_NORMED
R(x,y) = 2oy (TX5Y) - T+ y +y'))
\/fo,yfT’[x’,y’Jl Yy T+ %,y +y)?

Figure 9. The cross-correlation vs cross-correlation with co-variances.
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the equivalence relation by computer vision is complicated and requires more advanced technology in
image understanding to ensure that a page layout is “equally” or “structurally” the same in different
browsers. Currently, browser compatibility testing is beyond the scope of Korat. However, computer
vision approaches have an explicit edge over platform-dependent approaches.

4.3. Improve tesseract OCR for GUI automation

One major drawback that makes computer vision approaches less attractive than platform-dependent
approaches is numeric and string data acquisition from the system under test. In platform-dependent
approach, the numeric and string data can be accessed via GUI component properties, while in com-
puter vision approaches, the data acquisition problem becomes an OCR problem.

Despite OCR techniques have been commercialized by companies such as ABBYY or Google,
in our opinions, it remains to be a difficult problem in practice. Compared to recent deep learning
achievement in image recognition (e.g., competitions for ImageNet database), OCR still has much
room to improve. In practice, an image recognition algorithm which reaches 98% accuracy is con-
sidered an achievement, however, a 98% accuracy in OCR can still be classified as unusable in many
industrial scenarios.

Although commercial OCR services or products have been available for some time, adopting these
techniques can be impeded by different reasons. For example, Google Vision OCR is integrated in Ko-
rat as the default OCR engine. Unfortunately, applying Google Vision cloud service requires internet
connections, but in Korat’s applications to industry, it is often not allowed to have internet connections
in factories. In addition, Korat’s test cases may run in 24 hours. Cost becomes significant and could
not be ignored. So, these reasons drove us to seek out open-source solutions as an alternative.

4.3.1. Tesseract to colorful images

Since general-purpose OCR is a difficult subject, Tesseract [21] could probably the only OCR en-
gine that is free for download. The history of Tesseract can be accessed at [21], which can date back
to 1990. It was originally an HP lab product and now owned by Google. Since HP had independently-
developed page layout analysis technology that was used in products (and therefore not released for
open-source) Tesseract never needed its own page layout analysis. Therefore, Tesseract assumes that
its input is a binary image with optional polygonal text regions defined.

The latest version of Tesseract uses an end-to-end deep learning-based recognition model [22].
Tesseract takes an image as input and performs page layout analysis to find the regions that contains
text. Each region is then segmented into images of individual lines of text. These line images are then
fed to the deep learning model for text recognition. More technical details can be found at [22].

To evaluate the feasibility and usability of Tesseract for Korat, we first evaluated Tesseract by many
web pages as a beginning. Some of test images are shown in Figure 12 and Figure 13. Note that, there
were many more test images evaluated. Here, we select these images to explain the findings and how
we improved Tesseract for Korat.

Tesseract performed poorly on several test images. In the first column of Table 1, it lists the char-
acter recognition rate by inputting the original image of screenshots. In Table 1, we attach the Google
Vision OCR recognition rate as the last column for comparison purposes. Tesseract performed poorly
on test images with color background and color characters, particularly in test images like (C) and (E).
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Figure 12. Test images of (A)(B)(E).

In Tesseract’s official website, there is information on tools and procedures to train the neural nets
engine of Tesseact. The first thought to raise the recognition rate is training the Tesseract’s neural net
engine in iterations to correct the failed characters. Unfortunately, the recognition rate was nearly the
same. This interesting results pushed us to find a answer. So, we explored and studied Tesseract’s
related publications and documentations.

According to [22], Tesseract implemented a pipeline shown in Figure 11. In this pipeline, Tesseract
first performs page layout analysis (PLA) to detect the text in the image and segments the image into
sub-images containing one line of text each. Then, each line image is scaled and normalized to match
the training data of the recognition model to output the combined text prediction. Tesseract used
4 long-short-term memory (LSTM) layers with, respectively, 64,96,96, and 512 hidden units. This
explains why its recognition model output the “combined” text prediction as compared to character-
based recognition in the legacy version of Tesseract.

In our understanding of Tesseract history, the legacy Tesseract was designed to analyze a binary
document. So, its latest-version page layout analysis and segmentation could be designed to process a
binary document only, where background color is white and foreground color is black. These observa-
tions could explain why training did not increase the recognition rate. Our first improvement plan is to
binarize the image before inputting to Tesseract.

Several image thresholding algorithms can be used to binarize the image automatically. One can-
didate we choose is Otsu thresholding [23] from opencv. The results of applying Otsu binarization is
shown in the second column of Table 1 and Table 2. The results are nearly as poor as Tesseract. The
recognition rate are higher in test image (C) and (E), but the increases in the recognition rate has little
impact to the usability. Figure 14(A) explains why Otsu algorithm failed. At first glance, the image
thresholding performed by Otsu algorithm is actually very good. However, the algorithm cannot tell
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the foreground pixels and background pixels in the context of text binarization. We are looking for
some binarization method which could produce the results in Figure 14(B), where the pixels of texts
should be drawn as black pixels regardless of its color and background.

To achieve the text binarzation results in Figure 14(B), we applied the font and background color
independent (FBCITextBin) algorithm from [24]. We use the algorithm to preprocess the screenshots
for Tesseract. The result (3rd column in Table 1) is a significant increase in recognition rate, nearly
50% improvement.

Table 1. Character recognition rate by different binarization algorithms.

Terrseract Otsu Bin FBCITextBin Google
Google Login page (A) 87.97 87.34 98.12 100.0
Twitter login page (B) 96.51 98.25 100.0 100.0
stack overflow (C) 23.33 34.56 81.38 08.67
Facebook (D) 91.72 91.37 91.95 98.62
Yahoo (E) 22.09 31.97 85.46 97.67
Average 64.32 68.69 91.38 98.99
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Table 2. Character recognition rate after training.

Tesseract (Trained) Otsu Bin (trained) FBCITextBin (trained) Google

Google Login page (A) 89.24 87.97 99.36 100.0
Twitter login page (B) 97.67 98.25 100.0 100.0
stack overflow (C) 23.33 34.56 80.79 98.67
Facebook (D) 92.52 90.57 91.83 98.62
Yahoo (E) 22.25 31.97 85.88 97.67
Average 65.00 68.66 91.57 98.99
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Figure 14. (A) The binarization using Otsu algorithm. (B) the binarization using text bina-
rization approach.

4.3.2. Text binarization with training

Even though the recognition rate has increased significantly, 80% recognition rate can be unusable
in practical applications. We further investigated and studied the characters which are not recognized
correctly. The pixels of these characters are damaged by text binarization. Some of these damages
are shown in Figure 15. So, there is much room to improve in the text binarization algorithms. The
FBClITextBin uses Canny edge detection to find the contour of a character but it fails to produce stable
and good results in many cases due to the anti-aliasing effects. These failures unfortunately cannot
be completely overcome by training in the neural net engine. In Table 2, training could not raise the
recognition rate further more because some of the characters are already poorly recognizable after text
binarization.

Overall, these research results show that Tesseract OCR for screenshots in GUI automation can be
improved significantly for practical usage in some domains. However, general OCR that are capable
of dealing with arbitrary input remains to be difficult. Even Google Vision OCR may fail on some
obvious places. For example, Google Vision OCR cannot recognize the world “FIELD” in test image
(E), while our method can. OCR will always be the Achilles heel for several computer vision problems.
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5. Conclusions

In this paper, we describe two major approaches of GUI automation techniques. While platform de-
pendent approaches are favored by more commercial products, computer vision approaches have their
unique merits such as cross platform capability and no need to keep up with platform’s technology
advances. Computer vision approaches are feasible on application domains like compatibility testing,
games, etc., whereas platform dependent approaches are not. However, computer vision approaches
introduce more difficulties to the GUI automation problems which require more computer vision re-
search or technology breakthrough before having an edge over platform dependent approaches.

As pointed out in the paper, among the computer vision problems, OCR is probably the most critical,
essential, and difficult problem to deal with. Other computer vision problems are engineering problems
and are comparatively solvable by ordinary image analysis techniques. We believe commercial services
such as Google vision OCR may become better and better by big data but there are problems as always.
For example, Google Vision OCR cannot recognize the world “FIELD” in test image (E), while our
method can. Page layout analysis, preprocessing, and segmentation remain to play a key role in OCR. A
powerful recognition engine such as deep neural nets can be implicitly compromised by the processing
quality in previous stages.

In this paper, we improved the recognition rate from nearly 25% to nearly 85% (see test images
(C)(E)) by introducing text binarization as a key preprocessing stage, which shows that we could be in
a correct path. Currently, we are investigating and improving algorithms to raise the recognition rate
to 98%. In our evaluation, the text binarization algorithm [24] are not stable and failed in many cases.
According to our analysis, these cases are resolvable. In other words, we aim to build a page layout
analysis and segmentation preprocessing stage specifically tailored for color desktop screenshots.
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