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Abstract: In this paper we consider a time-delayed mathematical model describing tumor growth
with angiogenesis and Gibbs-Thomson relation. In the model there are two unknown functions: One
is σ(r, t) which is the nutrient concentration at time t and radius r, and the other one is R(t) which is
the outer tumor radius at time t. Since R(t) is unknown and varies with time, this problem has a free
boundary. Assume α(t) is the rate at which the tumor attracts blood vessels and the Gibbs-Thomson
relation is considered for the concentration of nutrient at outer boundary of the tumor, so that on the
outer boundary, the condition

∂σ

∂r
+ α(t) (σ − N(t)) = 0, r = R(t)

holds, where N(t) = σ̄

(
1 −

γ

R(t)

)
H(R(t)) is derived from Gibbs-Thomson relation. H(·) is smooth on

(0,∞) satisfying H(x) = 0 if x ≤ γ, H(x) = 1 if x ≥ 2γ and 0 ≤ H′(x) ≤ 2/γ for all x ≥ 0. In
the case where α is a constant, the existence of steady-state solutions is discussed and the stability of
the steady-state solutions is proved. In another case where α depends on time, we show that R(t) will
be also bounded if α(t) is bounded and some sufficient conditions for the disappearance of tumors are
given.

Keywords: tumor growth; time delay; free boundary problem; Gibbs-Thomson relation; stability

1. Introduction

Tumor growth is a complex process. Many mathematical models have been established from
different aspects to describe this process in recent years (see, e.g., [1–6]). There are several distinct
stages of tumor growth, starting from the early stage without angiogenesis (see, e.g., [2, 7–11]) to the
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process with angiogenesis (see, e.g., [12]). Experiments have shown that changes in the rate of tumor
cell proliferation can lead to changes in the rate of apoptosis, which does not happen immediately:
There is a time lag between the two changes (see [1]). Rencently, the study of mathematical models
for tumor growth with time delays has attracted many interests of other researchers (see,
e.g., [9, 13–15]). In this paper we consider a mathematical model for tumor growth with angiogenesis
and Gibbs-Thomson relation. The model has a time delay and a free boundary that depends on time.

First, let us introduce the mathematical model. Suppose the tumor is spherical and occupies the
following space:

{r | r ≤ R(t), r =

√
x2

1 + x2
2 + x2

3},

where R(t) is an unknown function which represents the outer tumor radius at time t. In the model
there is another unknown function σ(r, t) which is the concentration of nutrient at time t and radius r.
It is assumed that the consumption rate of nutrient is proportional to the nutrient concentration at the
corresponding local place, and the proportionality constant is Γ. Then σ satisfies the equation:

c
∂σ

∂t
=

1
r2

∂

∂r

(
r2∂σ

∂r

)
− Γσ, 0 < r < R(t), t > 0,

where
c = Tdi f f usion/Tgrowth > 0 (1.1)

is a constant which is the ratio of time scale of the nutrient diffusion to time scale of the tumor growth
(see [2, 10, 13]). By the mass conservation law, R satisfies

d
dt

(
4πR3

3

)
= S (t) − Q(t),

where S (t) denotes the net rates of proliferation and Q(t) is the net rates of natural apoptosis. From
[1, 9, 13], we know that there is a time delay in the process of cell proliferation. The size of the time
delay is the time required from the beginning of cell division to the completion of division. Assume
that the proliferation rate is proportional to the corresponding local nutrient concentration and the
coefficient of proportionality is µ, then

S (t) =

∫ 2π

0

∫ π

0

∫ R(t−τ)

0
µσ(r, t − τ)r2 sin θdrdθdϕ

where τ is the time delay in the process of cell proliferation. Suppose the rate of the apoptotic cell loss
is µσ̃, then

Q(t) =

∫ 2π

0

∫ π

0

∫ R(t)

0
µσ̃r2 sin θdrdθdϕ.

Assume the boundary value condition on r = R(t) is as follows:

∂σ

∂r
+ α(t) (σ − N(t)) = 0,

where α(t) depends on the density of the blood vessels. Thus, it is a positive valued function. N(t) is a
given function which is the supply of nutrients outside the tumor. The special cases of the above
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boundary value has been studied extensively. For the case where α(t) = ∞ and N(t) is a constant,
Friedman and Reitich [10] gave a strict mathematical analysis of the spherically symmetric case of the
corresponding model. They proved the existence, uniqueness and asymptotic stability of spherically
symmetric steady state solutions. Cui [16] studied the generalized model of [10] where the cell
proliferation rate and nutrients consumption rate are assumed to be nonlinear functions.
From [17–19], we know that the energy would be consumed in maintaining the tumors compactness
by cell-to-cell adhesion on the external boundary of the tumor and the nutrient acts as the source of
energy, and the nutrient concentration on the external boundary satisfies a Gibbs–Thomson relation
given by

N(t) = σ̄

(
1 −

γ

R(t)

)
H(R(t))

which denotes the concentration of nutrients at external boundaries, where γ > 0 is a constant
describing the cell-to-cell adhesiveness. H(·) is smooth on R+ = (0,∞) such that H(x) = 0 for x ≤ γ,
H(x) = 1 for x ≥ 2γ and 0 ≤ H′(x) ≤ 2/γ for x ≥ 0. N(t) is induced by Gibbs–Thomson relation
( [11, 18, 19]).

We will consider the problem together with the following initial conditions

σ0(r, t) = ψ(r, t), r ∈ [0,R(t)], t ∈ [−τ, 0],

R0(t) = ϕ(t), t ∈ [−τ, 0].

We assume that ψ and ϕ satisfy compatibility conditions. From [2, 7] we know that Tdi f f usion ≈ 1min
and Tgrowth ≈ 1day, noticing (1.1), so that c � 1. In this paper we only study the limiting case where
c = 0. The model studied in this paper is as follows

1
r2

∂

∂r

(
r2∂σ

∂r

)
= Γσ, 0 < r < R(t), t > −τ, (1.2)

∂σ

∂r
+ α

(
σ − σ̄

(
1 −

γ

R(t)

)
H(R(t))

)
= 0, r = R(t), t > −τ, (1.3)

d
dt

(
4πR3(t)

3

)
= 4π

(∫ R(t−τ)

0
µσ(r, t − τ)r2dr −

∫ R(t)

0
µσ̃r2dr

)
, t > 0, (1.4)

σ0(r, t) = ψ(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.5)

R0(t) = ϕ(t), − τ ≤ t ≤ 0. (1.6)

Consider the compatibility of the problem, we assume Eqs (1.2) and (1.3) are hold for t > −τ. The

model (1.2)–(1.6) with the boundary condition (1.3) replaced by σ = σ̄

(
1 −

γ

R(t)

)
H(R(t)) on r = R(t)

(which is the case α = ∞) was studied in [19] and in the model studied in [19], the time delay is
not considered. In [19], the author established the global existence and uniqueness of the solution
and discussed the stability of the stationary solutions. The model where N(t) is a constant has been
studied by Friedman and Lam [12]. In [12], the authors mainly discussed the dynamics behavior of the
solutions.

The structure of this paper is as below. In section 2, some preliminaries are given. In section 3, the
existence and uniqueness of the solution to Eqs (1.2)–(1.6) is proved. Section 4 is devoted to studying
the case where α(t) = constant. In section 5, we discuss the case when α(t) is bounded. In the last
section, we give some computer simulations and dscussions.
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2. Preliminaries

First we introduce some functions which will be used in our analysis:

p(x) =
x coth x − 1

x2 , q(x) = xp(x), g(x) =
p(x)

α + q(x)
, f (x) = α

(
1 −

γ

x

)
g(x)H(x)

and
J(x) = α[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x),

where α is a positive constant.

Lemma 2.1. (1) p′(x) < 0 for all x > 0, and limx→0+ p(x) =
1
3
, limx→∞ p(x) = 0.

(2) The function q(x) = xp(x) satisfies:
(i) q(0) = 0, (ii) limx→∞ q(x) = 1, (iii) q′(0) = 1/3, (iv) q′(x) > 0 for x ≥ 0.
(3) k(x) = x3 p(x) is strictly monotone increasing for x > 0.

(4)
(

xp′′(x)
p′(x)

)′
< 0 and −2 <

xp′′(x)
p′(x)

< 1 for x > 0.

(5) For any α, γ > 0, J′(x) < 0 for x > γ.
(6) For any α > 0,

(
x3g(x)

)′
> 0 for x > 0.

Proof. (1) and (2) can be found in Lemma 2.1 and Lemma 2.2 [12]. For the proof of (3), please
see [9]. In the following we prove (4), (5) and (6).

(4) From Lemma 3.3 [7], we know
(

xp′′(x)
p′(x)

)′
< 0 for x > 0 and

xp′′(x)
p′(x)

=
2(sinh3 x − x3 cosh x)

(x2 + x cosh x sinh x − 2 sinh2 x) sinh x
− 2.

By a simple calculation, we have limx→∞
xp′′(x)
p′(x)

= −2. Thanks to the fact limx→0
xp′′(x)
p′(x)

= 1 (see the

proof of Lemma 2.1 in [20]), then −2 <
xp′′(x)
p′(x)

< 1 for x > 0 follows.

(5) Let L1(x) = (x2 − γx)p′(x) + γp(x) and L2(x) = (2γx − x2)p2(x). Then J(x) = αL1(x) + L2(x). In
the following we prove that L′i(x) < 0 (i = 1, 2) for all x > γ. First, we prove L′1(x) < 0 for all x > γ.
Direct computation yields

L′1(x) =2xp′(x) + (x2 − γx)p′′(x) (2.1)

=p′(x)
(
2x + (x − γ)

xp′′(x)
p′(x)

)
. (2.2)

Since
(

xp′′(x)
p′(x)

)′
< 0 and −2 <

xp′′(x)
p′(x)

< 1, one can get that

(x − γ)
xp′′(x)
p′(x)

> −2(x − γ)

if x > γ. It follows that 2x + (x − γ)
xp′′(x)
p′(x)

> 2x − 2(x − γ) = 2γ > 0. By the fact that p′(x) < 0, we

have L′1(x) < 0. And then we prove L′2(x) < 0 for x > γ. Since
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L′2(x) =2(γ − x)p2(x) + 2(2γx − x2)p(x)p′(x)
=2p(x)[γ(p(x) + 2xp′(x)) − x(p(x) + xp′(x))]
<2p(x)[γ(p(x) + xp′(x)) − x(p(x) + xp′(x))]
=2p(x)(γ − x)(xp(x))′,

where we used the fact p′(x) < 0, by the facts that p(x) > 0 and (xp(x))′ > 0, we can get that for x > γ,
L′2(x) < 0. Thus,

J′(x) = αL′1(x) + L′2(x) < 0

for x > γ.
(6) Since

(x3g(x))′ =

(
k(x)

α + q(x)

)′
=

k′(x)(α + q(x)) − q′(x)k(x)
(α + q(x))2

=
αk′(x)

(α + q(x))2 +

(
k(x)
q(x)

)′ q2(x)
(α + q(x))2

=
αk′(x)

(α + q(x))2 + 2x
q2(x)

(α + q(x))2 ,

it verifies that (x3g(x))′ > 0 noticing k′(x) > 0. This completes the proof of Lemma 2.1.
The following lemma will be used to prove the global stability of steady-states.
Lemma 2.2. ( [21]) Consider the following initial value problem:

ẋ(t) = G(x, xτ), t > 0 (2.3)

x(t) = x0(t), − τ ≤ t ≤ 0. (2.4)

where xτ = x(t − τ)). Assume G is defined on R+ × R+ and continuously differentiable. Assume further
that G is strictly monotone increasing in the variable xτ, then one can get the following results:

(1) Assume G(x, x) = 0 has a unique positive solution xs in (c, d) such that G(x, x) > 0 for a < x < xs

and G(x, x) < 0 for xs < x < b, where c, d are two positive constants. If x(t) be the solution to the
problem of (2.3), (2.4), assume that x0(t) ∈ C[−τ, 0], and c < x0(t) < d for −τ ≤ t ≤ 0. Then
limt→∞ x(t) = xs.

(2) Assume G(x, x) < 0 for all x > 0, then limt→∞ x(t) = 0.
(3) Assume G(x, x) = 0 has a unique positive solution xs in (0, xs] such that G(x, x) < 0 for 0 < x <

xs and G(0, 0) = 0. Let x(t) be the solution to the problem of (2.3),(2.4), assume that x0(t) ∈ C[−τ, 0]
and 0 ≤ x0(t) < xs for −τ ≤ t ≤ 0, then limt→∞ x(t) = 0.

(4) Assume G(x, x) = 0 has a unique positive solution xs in [xs,∞) such that G(x, x) < 0 for x > xs.
Let x(t) be the solution to the problem of (2.3),(2.4), assume that x0(t) ∈ C[−τ, 0] and x0(t) > xs for
−τ ≤ t ≤ 0, then limt→∞ x(t) = xs.
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3. The existence and uniqueness of the solution to Eqs (1.2)–(1.6)

Theorem 3.1. Assume ϕ(t) is continuous and nonnegative on [−τ, 0]. Suppose α(t) is continuous
and positive on [−τ,∞], then there exists a unique nonnegative solution to problem (1.2)–(1.6) on
interval [−τ,∞).

Proof. Using scale transformation of the spatial variable, one can assume Γ = 1. Then, the solution
to (1.2) and (1.3) is

σ(r, t) =
ασ̄

α + q(R)
ζ(r)
ζ(R(t))

(
1 −

γ

R(t)

)
H(R(t)), (3.1)

where ζ(x) = sinh x/x. Substituting (3.1) into (1.4), we obtain

dR
dt

= µσ̄R
[

α(t − τ)
α(t − τ) + q(Rτ)

R3
τp(Rτ))

R3

(
1 −

γ

Rτ

)
H(Rτ) −

σ̃

3σ̄

]
=: G(R(t),Rτ). (3.2)

where Rτ = R(t − τ) and

G(x, y) = µσ̄x
[

α(t − τ)
α(t − τ) + q(y)

y3 p(y))
x3

(
1 −

γ

y

)
H(y) −

σ̃

3σ̄

]
.

Denote x = R3, then Eq (3.2) becomes

dx
dt

= 3µσ̄F( 3
√

x(t − τ)) − µσ̃x(t), (3.3)

where

F( 3
√

x(t − τ) =
α(t − τ)x(t − τ)p( 3√x(t − τ))
α(t − τ) + q( 3√x(t − τ))

(
1 −

γ
3√x(t − τ)

)
H( 3

√
x(t − τ)).

Then, the initial condition of x(t) have the following form

x0(t) = [ϕ(t)]3, − τ ≤ t ≤ 0. (3.4)

By the step method it is obvious that the problem (3.3), (3.4) has a unique solution x(t) which exists
on [0,∞), since we can rewrite the problem (3.3), (3.4) in the following functional form:

x(t) = x0(0)e−σ̃t + 3µσ̄
∫ t

0
e−σ̃(t−s)F( 3

√
x(s − τ))ds,

and solve it by using the step method (see, e.g., [22]) on intervals [nτ, (n + 1)τ], n ∈ N. Thus, the
solution of (3.3) exists on [−τ,∞).

Next, we prove that the solution is nonnegative. Consider the following auxiliary problem:

dx
dt

= −µσ̃x(t), t > 0; x(0) = x0 ≥ 0.

The solution is x(t) = x0e−µσ̃t ≥ 0. By Theorem 1.1 [23], to prove the solution of problem (3.3), (3.4) is
nonnegative on the interval on which it exists, we only need to prove that F(x) ≥ 0 for all x ≥ 0 which
follows from Lemma 2.1 and the fact H ≥ 0. This completes the proof.
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4. α(t) = constant

In this section, we study the case where α(t) = constant denoted by α. We will discuss the existence
and stability of stationary solutions. The stationary solution denoted by (σs(r),Rs) of the problem
(1.2)–(1.6) must satisfy the following equations:

1
r2

∂

∂r

(
r2∂σs(r)

∂r

)
= Γσs(r), 0 < r < Rs, (4.1)

∂σs(r)
∂r

+ α

(
σs(r) − σ̄

(
1 −

γ

Rs

)
H(Rs)

)
= 0, r = Rs, (4.2)∫ Rs

0
µσs(r)r2dr −

∫ Rs

0
µσ̃r2dr = 0. (4.3)

Using spatial scale transformation, one may assume Γ = 1. Then, the solution to (4.1) and (4.2) is

σs(r) =
ασ̄

α + q(Rs)
ζ(r)
ζ(Rs)

(
1 −

γ

Rs

)
H(Rs), (4.4)

where ζ(x) = sinh x/x and by (4.3), Rs satisfies

f (Rs) =
σ̃

3σ̄
. (4.5)

Theorem 4.1. Let x∗ be the unique solution to J(x) = 0, then there exists a unique positive constant
ϑ∗ which is determined by

ϑ∗ = 3 f (x∗)

such that the following conclusions are valid:
(i) If 0 < σ̃ < ϑ∗σ̄, there exist two different stationary solutions (σs1(r),Rs1) and (σs2(r),Rs2) to

problem (1.2)–(1.6), where Rs1 < Rs2.
(ii) If σ̃ = ϑ∗σ̄, there exists a unique stationary solution (σs(r),Rs) to problem (1.2)–(1.6).
(iii) If σ̃ > ϑ∗σ̄, there is no stationary solutions to problem (1.2)–(1.6).
Proof. Through a simple calculation, one can get that if γ < x ≤ 2γ,

f ′(x) =
α

x2 [γg(x) + (x2 − γx)g′(x)] + α
(
1 −

γ

x

)
g(x)H′(x)

=
α

x2[α + xp(x)]2 J(x) + α
(
1 −

γ

x

)
g(x)H′(x)

and if x ≥ 2γ,

f ′(x) =
α

x2 [γg(x) + (x2 − γx)g′(x)]

=
α

x2[α + xp(x)]2 J(x)

where
J(x) = α[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x).
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Since 0 ≤ H′(x) ≤ 2/γ for x ≥ 0, noting J(x) is strictly monotone decreasing and

lim
x→2γ

J(x) = αγ[2γp′(2γ) + p(2γ)] = αγ
[
xp(x)

]′
|x=2γ

= αγq′(x)|x=2γ > 0,

where we have used q′(x) > 0 for x ≥ 0 (see Lemma 2.1 (2)), then f ′(x) > 0 for γ < x ≤ 2γ. By a
simple computation, limx→γ+ J(x) = αγp(γ) + γ2 p2(γ) > 0. Since limx→∞ q(x) = limx→∞ xp(x) = 1,

there exists a positive constant M0, such that xp(x) >
1
2

. Choose M1 = max{M0 + 1, 3γ, 2γ(α + 1)}, it
follows that

[αγ + (2γ − M1)M1 p(M1)]p(M1) <

(
αγ +

1
2

(2γ − M1)
)

p(M1)

≤

(
αγ +

1
2

(2γ − 2γ(α + 1))
)

p(M1) = 0.

Then
J(M1) = α[(M2

1 − γM1)]p′(M1) + [αγ + (2γ − M1)M1 p(M1)]p(M1) < 0.

Since J′(x) < 0 for x > γ, by the mean value theorem, we have there exists a unique constant x∗ ∈
(γ,M1) such that J(x∗) = 0; J(x) < 0 for x > x∗ and J(x) > 0 for γ < x < M1. It follows that

f ′(x) =
α

x2[α + xp(x)]2 J(x) + α
(
1 −

γ

x

)
g(x)H′(x)


> 0, γ < x < x∗,
= 0, x = x∗,
< 0, x > x∗.

Then
ϑ∗ =: 3 f (x∗) = 3 max

x∈[γ,M1]
f (x).

Since f (x) = α
(
1 −

γ

x

)
g(x) and αg(x) < p(x) < 1/3, one can get

ϑ∗ = 3 f (x∗) ∈ (0, 1).

Noticing (4.5), we can get (i), (ii) and (iii). This completes the proof.
For simplicity of notation, in the following of the paper, let’s denote |ϕ| = max−τ≤t≤0 ϕ(t) and write

min−τ≤t≤0 ϕ(t) simply as minϕ.
Theorem 4.2. For any continuous nonnegative initial value function ϕ, the nonnegative solution

of (3.2) and (1.6) exists for t ≥ −τ and the dynamics of solutions to problem (3.2) and (1.6) are as
follows:

(I) If σ̃ > ϑ∗σ̄, then limt→∞ R(t) = 0.
(II) If σ̃ = ϑ∗σ̄, when |ϕ| < Rs, then limt→∞ R(t) = 0 and when minϕ > Rs, we have limt→∞ R(t) =

Rs.
(III) If 0 < σ̃ < ϑ∗σ̄, when |ϕ| < Rs1, we have limt→∞ R(t) = 0 and when minϕ > Rs1, then

limt→∞ R(t) = Rs2.
Proof. By Theorem 3.1, for any continuous initial value function ϕ, we know that the nonnegative

solution of (3.2) and (1.6) exists for t ≥ −τ. Next, we study the dynamics of solutions to Eq (3.2)
where α is a constant. By a direct computation, one can get

∂G
∂y

=
µασ̄

x2

[
γyg(y)H(y) + H′(y)y3g(y)(1 −

γ

y
) + (y3g(y))′(1 −

γ

y
)H(y)

]
. (4.6)
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Figure 1. An example of the function f for γ = 2 and α = 5, 8 respectively.

Noting properties of the function H and Lemma 2.1, n, one can easily get
∂G
∂y

> 0. By properties of

f (x) and noticing the fact

G(x, x) = µσ̄x[ f (x) −
σ̃

3σ̄
], (4.7)

it immediately follows that
(P1) If σ̃ > ϑ∗σ̄, we have f (x, x) < 0 for all x > 0.
(P2) If σ̃ = ϑ∗σ̄, we have f (x, x) < 0 for all x , Rs.
(P3) If 0 < σ̃ < ϑ∗σ̄, we have f (x, x) < 0 for all x < Rs1, f (x, x) > 0 for all Rs1 < x < Rs2 and

f (x, x) < 0 for all x > Rs2.
By (P1)–(P3) and Lemma 2.2, we can readily get (I)–(III). This completes the proof.
Remark. Since f , ϑ∗ and Rs are functions depending on α and γ, we can rewrite them as f (x, α, γ),

ϑ∗(α, γ) and Rs(α, γ). Simple computation yields

∂ f
∂α

=
p(x)q(x)

(α + q(x))2 (1 −
γ

x
)H(x) > 0,

∂ f
∂γ

= −
α

x
g(x)H(x) < 0, x > γ, (4.8)

which implies that
∂ϑ∗

∂α
≥ 0 and

∂ϑ∗

∂γ
≤ 0. Moreover, for 0 < σ̃ < ϑ∗σ̄, by (4.8) we also can get that

∂Rs1

∂α
≤ 0,

∂Rs2

∂α
≥ 0,

∂Rs1

∂γ
≥ 0 and

∂Rs2

∂γ
≤ 0. From Theorem 4.2, we see that the stable stationary

solution Rs2 is decreasing in γ and increasing in α. Two examples are given (see Figure 1 for γ = 2
and α = 5, 8 and Figure 2 for α = 8 and γ = 2.5, 3). From Figures 1 and 2, it is obvious that the stable
stationary solution Rs2 (if it exists) is decreasing in γ and increasing in α.
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Figure 2. An example of the function f for α = 8 and γ = 2.5, 3 respectively.

5. α(t) is bounded

If α(t) is bounded, there exists two constants m,M (0 ≤ m < M) such that m ≤ α(t) ≤ M. By Eq
(3.2), we can get

dR
dt
≤ µσ̄R

[
M

M + q(Rτ)
R3
τp(Rτ)
R3

(
1 −

γ

Rτ

)
H(Rτ) −

σ̃

3σ̄

]
. (5.1)

Consider the following initial value problem

dR
dt

=µσ̄R
[

M
M + q(Rτ)

R3
τp(Rτ)
R3

(
1 −

γ

Rτ

)
H(Rτ) −

σ̃

3σ̄

]
, t > 0, (5.2)

R0(t) =ϕ(t), − τ ≤ t ≤ 0. (5.3)

Define

G1(x, y) = µσ̄x
[

M
M + q(y)

y3 p(y))
x3

(
1 −

γ

y

)
H(y) − η/3

]
.

where η = σ̃/σ̄. By similar arguments as that in section 4, one can get there exists a unique positive
constant X∗ satisfies the following equation:

J1(x) = M[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x) = 0.

Let f1(x) = M
(
1 −

γ

x

)
g(x)H(x), one can get the following two lemmas by similar arguments as that in

section 4.
Lemma 5.1. Let X∗ be the unique solution to J1(x) = 0, then there exists a unique positive constant

θ∗ which is determined by
θ∗ = 3 f1(X∗)

such that the following conclusions are valid:
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(i) If 0 < σ̃ < θ∗σ̄, there exist two stationary solutions (σM
s1(r),RM

s1) and (σM
s2(r),RM

s2) to problem
(5.2)–(5.3), where RM

s1 < RM
s2.

(ii) If σ̃ = θ∗σ̄, there exists a unique stationary solution (σM
s (r),RM

s ) to problem (5.2)–(5.3).
(iii) If σ̃ > θ∗σ̄, there is no stationary solution to problem (5.2)–(5.3).
Lemma 5.2. For any nonnegative initial value function ϕ, the nonnegative solution of (5.2) and

(5.3) exists for t ≥ −τ and the following conclusions can be drawn:
(I) If σ̃ > θ∗σ̄, then limt→∞ RM(t) = 0.
(II) If σ̃ = θ∗σ̄, when |ϕ| < RM

s , then limt→∞ RM(t) = 0 and when minϕ > RM
s , we have

limt→∞ RM(t) = RM
s .

(III) If 0 < σ̃ < θ∗σ̄, when |ϕ| < RM
s1, we have limt→∞ RM(t) = 0 and when minϕ > RM

s1, then
limt→∞ RM(t) = RM

s2.
Theorem 5.3. For any nonnegative continuous ϕ(t), the nonnegative solution of (5.2) and (5.3)

exists for t ≥ −τ. Moreover, if α(t) is uniformly bounded, the dynamics of solutions to this problem are
as follows:

(1) If σ̃ > θ∗σ̄, then limt→∞ R(t) = 0.
(2) If σ̃ = θ∗σ̄, when |ϕ| < RM

s , then limt→∞ R(t) = 0 and when minϕ > RM
s , we have

lim supt→∞ R(t) ≤ RM
s .

(3) If 0 < σ̃ < θ∗σ̄, when |ϕ| < RM
s1, we have limt→∞ R(t) = 0 and when minϕ > RM

s1, then
lim supt→∞ R(t) ≤ RM

s2.
Proof. By (5.1) and the comparison principle (see, e.g. Lemma 3.1 in [9]), we just need to prove

∂G
∂y

> 0. Actually,

∂G1

∂y
=
µMσ̄

x2

[
γyg1(y)H(y) + H′(y)y3g1(y)(1 −

γ

y
) + (y3g1(y))′(1 −

γ

y
)H(y)

]
(5.4)

where g1(y) =
1

M + q(y)
. Noting properties of the function H and Lemma 2.1, one can easily get

∂G1

∂y
> 0. The comparison principle (see, e.g. Lemma 3.1 in [9]) implies that

R(t) ≤ RM(t). (5.5)

By Lemma 5.2, noticing R(t) ≥ 0 and taking upper limits for both R(t) and RM(t) as t → ∞, one can
get (1), (2) and (3). This completes the proof.

6. Computer simulations and discussions

In this section, by using Matlab R2016a, we give some numerical simulations of solutions to Eq
(3.3) for special parameter values (see Figures 3 and 4). We use matlab to find some special cases
where the steady-state solutions are larger than 2γ. In this case H(x) = 1, therefore

f (x) = α(1 −
γ

x
)g(x). (6.1)

If the parameters in Eq (3.3) are taken values as

σ̄ = 5, µ = 1, σ̃ = 1, α = 8, γ = 2, τ = 3, x0 = 100, 1600, (6.2)
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Figure 3. The curve of the function f for σ̄ = 5, µ = 1, σ̃ = 1, α = 8, γ = 2.

by using Matlab R2016a, we can solve the equation

f ( 3√x) =
σ̃

3σ̄
.

It has two positive solutions: The smaller one is xs1 = 25.03 and the larger one is xs2 = 870.26 (The
curve of f is shown in Figure 3). Noticing (4.5), we have Rs1 =

3√25.03 and Rs2 =
3√870.26 > 2γ = 4.

Since ϑ∗ > 3 ∗ 0.085 (see Figure 3), it is obvious that

0 < σ̃ = 1 < 3 ∗ 0.085 ∗ 5 = 1.275 < ϑ∗σ̄.

Therefore, the conditions of Theorem 4.2 (III) are satisfied. Since the initial conditions x0 = 100, 1600
are larger than Rs1 which third power is smaller than 100. Thus all the solutions of Eq (3.3) tend to
Rs2 =

3√870.26. The dynamics of solution to Eq (3.3) for the parameters in Eq (3.3) are taken values
as (6.2) are given by Figure 4.

In this paper considering the time-delay in the cell proliferation process and the Gibbs-Thomson
relation in the boundary condition, we study a time-delayed free boundary problem describing tumor
growth with angiogenesis. We prove the existence and uniqueness of time-varying solutions. When
α is a positive constant, we discuss the existence of steady-state solutions and the number of steady-
state solutions (Theorem 4.1), and prove the asymptotic behavior of solutions (Theorem 4.2). From
the biological point of view, the result of Theorem 4.2 (I) means when σ̃ which represents the rate
of apoptosis of tumor cells is less than a critical value ϑ∗σ̄, the tumor will disappear. The result of
Theorem 4.2 (II) means when σ̃ is equal to the critical value ϑ∗σ̄, for small initial functions satisfying
max−τ≤t≤0 ϕ(t) < Rs, the tumor will disappear; for large initial functions satisfying min−τ≤t≤0 ϕ(t) > Rs,
the tumor will not disappear and will tend to the unique steady-state. The result of Theorem 4.2 (III)
means that when σ̃ is relatively small (less than a critical value ϑ∗σ̄), whether the tumor will disappear
or not depends on the value of the initial value function. When the minimum value of the initial value
function is greater than Rs1, the tumor tends to the larger steady-state solution; when the maximum
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Figure 4. An example of the dynamics of solution to Eq (3.3) for σ̄ = 5, µ = 1, σ̃ = 1, α =

8, γ = 2, τ = 3 and x0 = 100, 1600, respectively.

value of the initial value function is less than Rs1, the tumor will disappear. We prove that with the
increase of α, the larger steady-state solution will increase when nutrients is sufficient (see Remark
in section 4). According to the conclusion of the Theorem 4.2 (III) and the Remark in section 4,
increasing α can increase the final volume of the tumor. Noting that α represents the ability of tumor
to attract blood vessels, this indicate that the larger α is, the stronger it is to attract blood vessels, and
the larger the tumor will be, which is consistent with biological phenomena. We also prove that when
α(t) is bounded, tumors will not increase indefinitely and will remain bounded.
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