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Abstract: The Hi-C experiment can capture the genome-wide spatial proximities of the DNA, based 

on which it is possible to computationally reconstruct the three-dimensional (3D) structures of 

chromosomes. The transcripts of the long non-coding RNA (lncRNA) Xist spread throughout the 

entire X-chromosome and alter the 3D structure of the X-chromosome, which also inactivates one 

copy of the two X-chromosomes in a cell. The Hi-C experiments are expensive and time-consuming to 

conduct, but the Hi-C data of the active and inactive X-chromosomes are available. However, the Hi-C 

data of the X-chromosome during the process of X-chromosome inactivation (XCI) are not available. 

Therefore, the 3D structure of the X-chromosome during the process of X-chromosome inactivation 

(XCI) remains to be unknown. We have developed a new approach to reconstruct the 3D structure of 

the X-chromosome during XCI, in which the chain of DNA beads representing a chromosome is stored 

and simulated inside a 3D cubic lattice. A 2D Gaussian function is used to model the zero values in the 

2D Hi-C contact matrices. By applying simulated annealing and Metropolis-Hastings simulations, we 

first generated the 3D structures of the X-chromosome before and after XCI. Then, we used Xist 

localization intensities on the X-chromosome (RAP data) to model the traveling speeds or acceleration 

between all bead pairs during the process of XCI. The 3D structures of the X-chromosome at 3 hours, 

6 hours, and 24 hours after the start of the Xist expression, which initiates the XCI process, have been 

reconstructed. The source code and the reconstructed 3D structures of the X-chromosome can be 

downloaded from http://dna.cs.miami.edu/3D-XCI/. 
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1. Introduction  

Chromosome conformation capture (3C) [1] is a method that can be used to obtain the spatial 

organization of the DNA. Its data reflect the interaction frequencies between a single pair of loci on the 

genome (“one vs one”). The 3C-on-chip (4C) [2] technology was developed to map the interactions 

between a locus and all other regions (“one vs all”). The 3C-Carbon Copy (5C) [3] method was 

invented to detect the interactions between multiple pairs of genomic loci (“many vs many”). The 

interactions within the whole genome can be detected by the Hi-C technique [4], a method that 

combines proximity-based ligation with massively parallel sequencing to probe the three-dimensional 

proximation relationships within the genome (“all vs all”). Population Hi-C method is based on a 

population of cells and has been used in many studies, such as modeling the structures for balanced and 

unbalanced chromosomal rearrangements in primary human tumor samples [5], detecting the 

unknown 3D organization of chromosomes during human brain development [6], discovering that the 

3D chromatin landscape is relatively stable once established in a particular cell type [7], and 

demonstrating that individual chromosomes maintain domain organization at the megabase scale [8]. 

Moreover, single-cell Hi-C method has been developed to reveal cell-to-cell variabilities in terms of 

chromosome structures [9]. Although we have developed computational approach [10] to reconstruct 

chromosomal 3D structures based on single-cell Hi-C data, this study will focus on using population 

Hi-C data due to the availability limitation of single-cell Hi-C data for X-chromosome inactivation. 

The 3C, 4C, 5C, and population Hi-C data have been widely used to reconstruct the 3D structures 

of chromosomes by many computational methods. Duan et al. [11] constructed a 4C- based model that 

provided a way to observe the structure and function of a eukaryotic genome. Bau et al. [12] generated 

high-resolution 3D models of chromatins at megabase scale by developing an approach that combined 

5C data with the Integrated Modeling Platform (IMP). Tanizawa et al. [13] explored the model 

organism fission yeast by utilizing an approach combining the 3C data and high throughput 

sequencing. The above-mentioned methods use multidimensional scaling (MDS), which model the 3D 

structures of chromosomes by making the Euclidean distance between each pair of beads as close as 

possible to the target distance that is converted from the number of 3C, 4C, or 5C contacts. 

Zhang et al. [14] built the ChromeSDE method that improves the MDS objective function. 

Ben-Elazar et al. [15] proposed a statistical framework to reconstruct chromatin structures using a 

minimum set of assumptions. PASTIS [16] assumes the Hi-C contact counts following a Poisson 

distribution; and these contact counts decrease with the physical distances between genomic loci. 

Combing the Poisson counts with target distance, PASTIS was used to generate enzymes structures in 

different environments. Hu et al. [17] developed Bayesian probabilistic approaches BACH and 

BACH-MIX to study the structural variation of chromatin in a cell population using high resolution 

Hi-C dataset. Zou et al. [18] developed HSA, which globally searches the latent structure underlying 

different cleavage footprints; its robustness and accuracy outperform existing tools. Oluwadare et al. [19] 

developed a maximum likelihood algorithm called 3DMAX, which automatically re-estimates the 

conversion factor for converting interaction frequency to target distance and is more robust to 

structural variability and noise. 

Dieter W. Heermann et al. [20] built a computational model for simulating the 3D structure of the 
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chromosome fiber on a coarse-grained level. Depending on the high complexity for establishing 

large-scale chromosomes, they systematically eliminated smaller details such as nucleosomes or 

small-scale chromatin loops to obtain an all-scale compact globular structure rather than the 

small-scale linear structures. They accomplished the modeling by using coarse-grained lattice Monte 

Carlo [21] that puts the chromosomes chain into a large cubic and randomly selected a monomer to 

move to the neighboring positions. 

The X-linked genes in female mammal cells are twice of those in male cells because females have 

two X-chromosomes, whereas males only have one. The dose of double X-linked genes may pose a 

great harmful influence to the individual; and mammalian females have evolved a unique way called 

X-chromosome inactivation (XCI) to eliminate the gene imbalance [22]. The XCI does not delete the 

extra X-chromosome directly but rather, spreads Xist RNA transcripts on one of two X-chromosomes 

to silence the redundant gene expressions [23–26]. After XCI, one X-chromosome is compressed into 

a compact structure and silenced in terms of gene expression in the regular condition [27]. 

It is important to detect the 3D structure of the inactive X-chromosome during the XCI process. 

Many studies are based on the structure of the active and inactive X-chromosome to study the 

mechanism of the X-chromosome inactivation. For example, Bonora and Disteche [28] used 

traditional microscopy and super-resolution technology to reveal uneven compaction of the inactive 

X-chromosome. Naughton et al. [29] presented a high-resolution chromatin fiber analysis of 

transcriptionally active and inactive X and showed that the formation of facultative heterochromatin 

depends on factors at a level above the 30 nm fiber and transcription does not alter bulk chromatin fiber 

structures. By isolating a comprehensive protein interactome for Xist RNA [30], the study of Minajigi 

et al. unveiled many layers of inactive X-chromosome repression and demonstrated a central role for 

Xist RNA in the topological organization of mammalian chromosomes. Nora et al. [31] used 5C and 

super-resolution microscopy to analyze the spatial organization of a 4.5 Mb region including Xist RNA 

on active and inactive X-chromosome. They uncovered a series of discrete 200 kb–1 Mb topologically 

associating domains (TADs) and the disruption of a TAD boundary causing ectopic chromosomal 

contacts and long-range transcriptional mis-regulation. In the study of [32], Deng et al. applied a 

recently developed Hi-C assay to mouse F1 hybrid systems and discovered a specific bipartite 

organization of the mouse inactive X-chromosome that may reveal the maintenance of gene silencing. 

Chaumeil et al. [33] concluded that the chromatin and genome structure influenced the epigenetic 

control of XCI. 

In mammal genomes, Xist, a long non-coding RNA (lncRNA) in the X-chromosome, can localize 

on the X-chromosome and silence gene expressions by condensing the 3D structure of the 

X-chromosome. Engreitz et al. [34] triggered the XCI process by using tetracycline on male mouse ES 

cells to start the expressions of the Xist transcripts. They detected the Xist localization intensities on 

the entire X-chromosome at five time points: 0 hours, 3 hours, 6 hours, 24 hours, and 48 hours 

after tetracycline was applied by using a biochemistry experiment named RNA Antisense 

Purification (RAP) [34]. They have found that Xist transcripts spread to spatially proximal sites and 

uses its a-repeat domain to spread over the active genes when encounters a new region. A-repeat 

domain may allow Xist to recruit PRC2 or other proteins to modify and compact chromatin that 

reposition nearby regions into the Xist RNA compartment. Through this process, Xist compartment 

will grow that pull the interacted region closer to the Xist transcription locus to propagate Xist 

spreading [34]. They have discovered that the regions with higher localization intensity of Xist usually 

have shorter spatial distances with the Xist locus (a significant correlation between the number of Hi-C 
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contacts and Xist localization intensities). Recent conformation capture approaches [35] have 

generated the Hi-C data of the X-chromosome 0 hours and 48 hours after doxycycline induction (the 

start and end of the XCI process) that are associated with the active and inactive X-chromosomes, 

respectively. However, the Hi-C data of the X-chromosome during the process of XCI are still not 

available so that the 3D structures of the X-chromosome during XCI are still unknown. 

In this study, we represented a chromosome as beads-on-a-string. Unlike other existing methods, 

we put it into a 3D cubic lattice and then conducted Metropolis-Hasting simulations. Based on the Xist 

RAP data, we then inferred the 3D structures of the X-chromosome at 0 hours, 3 hours, 6 hours, 24 

hours, and 48 hours after the start of XCI. 

2. Materials and method 

2.1. Hi-C data 

The Hi-C data of Cast (Xa, or active X-chromosome, treated as the 0 hours X-chromosome in this 

research) and 129s (Xi, or inactive X-chromosome, treated as the 48-hour X-chromosome after XCI) 

of mouse neural progenitor cells (NPC) were downloaded from Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72697) with ID GSM1868576. From the 

same GEO entry but with IDs GSM1868576 and GSM2053973, we downloaded the Hi-C data of 

mouse embryonic stem cells before and after the doxycycline induction, which were used as the data 

before and after XCI in our research. 

2.2. Xist localization data 

The Xist RAP data from GEO IDs GSM1141197 to GSM1141201 are the Xist RNA-seq data at 0 

hours, 3 hours, 6 hours, 24 hours, and 48 hours after the induction of doxycycline on mouse embryonic 

stem cells. We downloaded these data from GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46918) that were published in the study of 

Engreitz et al. [34], which provides RAP data for all chromosomes. We only used the RAP data on 

X-chromosome for our research. 

2.3. Lattice-based approach to reconstruct chromosome 3D structures 

A chromosome is represented as a chain of DNA beads. Each bead is the size of the resolution, 

e.g., 1 Mb, 500 kb, 250 kb, and 40 kb. For initialization, the program puts the first bead randomly into 

the cubic lattice. When putting the n-th bead (n>=2), the n-th bead must have a distance of         

with the (n-1)-th bead [36]. Also, to prevent knotting, the n-th bead cannot be smaller than 2 or 

equal    to all previously existent beads in the cubic lattice-based on the protocol in [36]. The 

restriction setting between         with an exception of    are excluded volume constraints and 

the limitations on the changes in the covalent bond length, which have been used in simulating 

polymer molecules such as proteins [36,37]. Here, we adopt the same protocols when modeling the 3D 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72697
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46918
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structure of a chromosome.   

The number of lattice sites or volume of the cubic lattice is: 

                           Eq. (1) 

, where s is      with   as the number of beads. This bigger space (compared to setting each side 

of the cubic lattice to be n) allows enough free space to simulate the 3D structure.  

We used a cooling schedule based on [38], in which we set the starting temperature      . The 

decrement of temperature is: 

                              Eq. (2) 

, where c is the number of times that temperature has been decremented, and    is the current 

temperature. In this way, the temperature will keep decreasing with a rate of 0.9 every time the 

temperature’s value is updated. At the beginning of the simulation process, the value of temperature is 

relatively high that makes the algorithm to have higher probability to accept non-optimal moves, that is, 

the moves that do not reduce the value of the loss function. In this way, the algorithm allows relatively 

larger alternations of the 3D structure exploring bigger conformational space. This is an important 

feature for the simulated annealing protocol because in this way the algorithm may jump out of local 

minima. Towards the later stages of the simulation process, the value of temperature will be gradually 

reduced, which will make it stricter and stricter at accepting non-optimal moves. In this way, the 

algorithm will be more and more constringent, which means it will only allow small refinements of the 

3D structure when the simulation is reaching the later stages. The following two equations will further 

explain this mechanism.  

We repeated trials at each temperature until the system stabilized at that temperature. At each 

temperature, if on average there are 10 accepted moves per DNA bead or the number of trials exceeds 

100 times of the number of beads, the algorithm will decrease the temperature based on Eq. (2) and 

continue running with the new temperature. If the desired acceptance number, that is, on average 

10 accepted moves per bead, is not achieved for three consecutive temperatures, the annealing 

process is stopped.  

For each trial, the algorithm randomly selects a DNA bead to move and then accepts the move 

with probability: 

                                         Eq. (3) 

if      (     means it is not an optimal move, i.e., it is the move makes the 3D structure to 

have a bigger discrepancies with the target distances between all bead pairs), or always accepts the 

move if      (     means the move reduced the value of loss function, i.e., making the new 3D 

structure to better fit the target distances between all bead pairs), where T is the current temperature 

and    is the change of the loss value after the move: 

                                          Eq. (4) 

The loss function we used is:  

  =            
       

   
                      Eq. (5) 

, where w is a parameter to scale the value of the loss value (for this study   = 0.0001),     is the 
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actual Euclidean distance between beads   and   in the current structure, and    
  is the normalized 

target distance between beads   and  . The square of the target distance    
   is also put as the 

denominator because doing that will better normalize extremely large or small target values. The    
  

is re-scaled from     that is: 

        
    

                                   Eq. (6) 

, where     is the number of normalized Hi-C contacts between beads   and  . Eq. (6) including the 

parameter -1/3 is a classic approach to convert the number of Hi-C contacts to Euclidean distances in 

the 3D space that is motivated by polymer physics. Eq. (6) has been widely used by existing 

Hi-C-based 3D modeling methods [11,16], in which higher Hi-C values result in smaller Euclidean 

target distances. We normalized the value of the target distance by using: 

   
      

   

         
                            Eq. (7) 

, where     is the maximum allowed target distance in the 3D structure, that is also the diagonal 

length of a cubic lattice whose side length is the number of beads n, and           is the maximum 

target distance calculated from Hi-C contacts. This normalization process makes sure that the 

normalized target distance will fit within the size of our cubic lattice.  

The population Hi-C contact matrices may contain many zero values due to reasons such as 

experimental imperfection, especially at high resolution. These zero values cannot be converted to 

target distances by Eq. (6) (would be infinity). Therefore, we use a 2D Gaussian function Eq. (8) to 

impute the zero values in the Hi-C contact matrices. This mechanism is based on 2D sequential 

proximity between DNA bead pairs. Specifically, if one bead pair on the DNA has lots of Hi-C contacts, 

its sequentially adjacent bead pairs may not have zero Hi-C contact. In other words, the number of 

Hi-C contacts for a zero-Hi-C bead pair can be modeled based on the Hi-C contact values of its 

adjacent bead pairs. Specifically, it can be modeled as: 

      
   

      

 
 
      

 
   

  
        

           

                          
               Eq. (8) 

In Eq. (8),     indicates the original zero Hi-C value between beads   and  ;      indicates the 

imputed Hi-C value between beads   and  . The non-zero values of normalized Hi-C contact between 

beads   and   are used to impute the value between beads   and  . The value    indicates the 

number of neighboring bead pairs whose non-zero Hi-C values are used to impute the value for beads 

  and  . The   and   values are the X and Y coordinates in the 2D Hi-C contact matrix, which are in 

the range of (i-  , i+  ) and (j-  , j+  ). The value    is a distance threshold that controls the 

amount of surrounding non-zero values that will be used for the imputation. The parameter   controls 

how much influence a non-zero value can generate to the originally zero value. A larger   results in 

smaller influence. The default values of   and    are determined by the resolutions of the Hi-C data 
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and the percentage of zero Hi-C values. The values of these parameters can be freely changed when 

executing our source code. 

2.4. Generating high-resolution 3D structures 

To generate a 3D structure at a high-resolution, for example, 40 kb resolution, our algorithm at 

first generates the 3D structure at 400 kb resolution using the protocol defined above and then adds 

nine beads in between every two consecutive 400 kb beads. The resulting resolution of the 3D 

structure will be 40 kb. The procedure of adding beads is the same as the way of initializing the 3D 

structure in the cubic lattice as previously mentioned. 

After beads are added, the system starts new simulations on the high-resolution structure. The 

initial temperature for the simulations is set to 0.1, and the number of trials at each temperature is five 

times of the number of the beads at 40 kb resolution. The reason why we used fixed temperature and 

trials here is that these simulations are performed on the 400 kb structure that has already been 

optimized. Therefore, we would only need to refine the structure instead of largely altering it. This will 

also help ensure to be able to generate high-resolution structures within reasonable amount of time. 

2.5. 3D structure of the X-chromosome during XCI 

The distance of each bead pair traveling towards each other or further away from each other from 

0 hours (before XCI) to 48 hours (after XCI) should equal the sum of travelled distances at each time 

interval, that is, from 0 hours to 3 hours, 3 hours to 6 hours, 6 hours to 24 hours, and 24 hours to 48 

hours. This is modeled by the equation: 

             
      

      
              

      

      
               

       

      
                  

                                                     Eq. (9) 

In Equation (9),        is the relative average traveling speed between beads   and   during the 

0 hours to 3 hours period;       is the traveling time for beads   and   from 0 hours to 3 hours with 

speed       . We used             to model the distance the beads   and   have traveled towards 

or further away from each other from 0 hours to 3 hours after XCI starts. Similarity,  
      

      
          

   is the distance beads   and   have traveled from the 3 hours to 6 hours after XCI starts, in which:  

                                         Eq. (10) 

, where         and         are the RAP values on beads   and   respectively at 0 hours that were 

used to indicate the intensity of Xist localization on DNA. Therefore, the average of these two values, 

which is the        value in Eq. (10), is the Xist localization intensity of the beads   and  . The 

      ,       , and         in Eq. (9) are calculated using the same way.  

At first, we used constant speed and assumed no acceleration for bead pairs’ traveling (we would 

later model it with acceleration considered). We further assume that higher average RAP value on two 

beads will result in higher speed for the two beads’ traveling: 

         
      

      
                          Eq. (11) 
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, where        is the constant speed from 3 hours to 6 hours after XCI starts. This assumption is based 

on the study in [34] that proposes a model for how Xist exploits and alters 3D genome structure to 

spread across the X-chromosome. Specifically, Engreitz et al. [34] proposed that Xist exploits the 

existing 3D structure of the X-chromosome to search for target sites to localize. After encountering a 

new site, Xist transcripts bind to that region and accumulate at spatially proximal sites of active 

gene-dense regions. By silencing the active region into Xist silenced compartment, Xist effectively 

pulls new regions of active chromatin closer to the Xist transcription locus, which eventually changes 

the 3D conformation of the chromosome.  

Similarity, we set  
      

      
  as the ratio between        and       : 

         
      

      
                        Eq. (12) 

, where        is the constant speed from 6 hours to 24 hours after XCI starts. In Eq. (9), 

 
      

      
              is the travelled distance between beads   and   from 6 to 24 hours after XCI 

starts. We used the same method to calculate the distance beads   and   have travelled between 24 

hours and the end of inactivation (48 hours). 

The right of the equal sign in Eq. (9) indicates the total travelled distance from the beginning of 

XCI (0 hours) to the end of XCI (48 hours), in which        and         are the target distances 

between beads beads   and   at 0 hours and 48 hours that are converted from the number of 

normalized Hi-C contacts. From Eq. (9), we can solve the equation and get the value of       . After 

that, we can calculate       ,       , and        , i.e., the speeds from 3 hours to 6 hours, 6 hours to 24 

hours, and 24 to 48 hours. This allows us to further calculate the target distance between each bead pair 

at 3 hours, 6 hours, and 24 hours since we know the target distance at 0 hours and the speed and 

traveled time during each period of time. 

Figure 1 shows the Xist localization intensity (RAP data) on the X-chromosome 0 hours, 3 hours, 

6 hours, 24 hours, and 48 hours after XCI starts. It can be found that at the beginning of XCI, e.g., 

between 0 hours and 3 hours, the Xist locus has the highest level of Xist RNA, followed by the regions 

that are spatially proximate to Xist locus. We assume this high intensity of Xist localization results in 

higher speed of Xist pulling the proximate region towards Xist locus. In comparison, the 5’ region of 

the X-chromosome tends to have less localized Xist RNA. Therefore, the 3D conformation at that 

region is not intensively altered, corresponding to smaller traveling speed at that specific region.  

At 24 and 48 hours after XCI, the localization intensities of Xist transcripts in the Xist locus 

dropped (see Figure 1), similar to some other spatially proximal regions. In that case, our model 

assigns reduced traveling speed for the bead pairs in those regions. This makes sense as the 3D 

conformation in those regions have already been altered at the beginning of XCI. Therefore, the 

intensity of the 3D conformation being changed is reduced, which indicates smaller traveling speed at 

the later stage of XCI.     
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Figure 1. The Xist localization intensities at different time points during the XCI process 

(0 hours, 3 hours, 6 hours, 24 hours, and 48 hours after XCI starts). 

We also model the travelling of bead pairs considering a different acceleration value for every 

periods of time. Similarly as in Eq. (9), the distance of each bead pair that had travelled towards each 

other or further away from each other from 0 hours (before XCI) to 48 hours (after XCI) after XCI 

starts should equal the sum of travelled distances at each time period, that is, from 0 hours to 3 hours, 3 

hours to 6 hours, 6 hours to 24 hours, and 24 hours to 48 hours. This is modeled by the equation: 
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                                   Eq. (13) 

, where        is the initial velocity of bead   and bead   at 0 hours; and we assumed it as zero. The 

travelling time for the first time period is       hours. The        is the acceleration of bead   and 

bead   during 0 to 3 hours.  

The first two terms in Eq. (13):               
 

 
               represent the travelled 

distance of bead   and bead   during 0 to 3 hours after XCI starts. Similarity,       ,       , and 

        are the initial velocities of bead   and bead   for three time periods: 3 to 6 hours, 6 to 24 hours, 

and 24 to 48 hours. The       ,       , and         are the accelerations for bead   and bead   in 

different time periods respectively.  

As Xist transcripts cause the structural change of the X-chromosome, we model the acceleration 

with respect to the localization intensity of Xist transcripts or the RAP values as: 

        
      

      
                     Eq. (14) 

, where        is the average Xist localization intensity of bead   and bead   at 0 hours calculated as: 

       
 

 
         +       )                         Eq. (15) 

, where parameters         and         are the Xist localization intensities for bead   and bead   

at 0 hours respectively. 

From Eq. (13), the value of        can be calculated. After that, we can get all the acceleration 

values for all time periods. Thus, the distances of bead   and bead   approaching or moving away 

from each other in each XCI time period can be calculated, and we can further obtain the target 

distance between every bead pair at 3 hours, 6 hours, and 24 hours after XCI starts. 

3. Results 

3.1. Low-resolution 3D structures of the active and inactive X-chromosomes for neural progenitor 

cells and embryonic stem cells 

We resized the Hi-C data downloaded from [35] at 500 kb resolution of the active and inactive 

NPC X-chromosomes into 1 Mb low resolution. Figure 2 (a) shows the 1 Mb resolution Hi-C contact 

heatmaps of the X-chromosome of NPC. These heatmaps indicate the normalized Hi-C data, in which 

the “none” entries have been deleted with darker color indicating higher Hi-C values. The Hi-C 

matrices in Figure 2 (a) contains zero values.   

Figure 2 (b) shows the heatmaps of Hi-C contacts for the NPC X-chromosome, in which the 

“none” entries have been removed and the zero values have been imputed by the 2D Gaussian function. 

Therefore, there are no zero values in the Hi-C matrices; all of the values in the Hi-C contact maps 

can be converted to target distances between bead pairs. Target distances are the Euclidean 

distances between bead pairs in the 3D space that our method uses as the target to achieve. In other 
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words, our method tries to make the real distances between all bead pairs as close as possible to 

their target distances.  

Figure 2 (c) shows the heatmaps of the target distances. We used these target-distance matrices as 

the input when modeling the 3D structures of the X-chromosome. The 3D structures were generated 

using the algorithms discussed in the Methods section. The structures of the active (0 hours) and 

inactive X-chromosomes (48 hours after Xist expression) of NPC at 1 Mb resolution are shown in 

Figure 2 (d). 

The results for the mouse ES cells can be found in Supplementary Figure S1.  

 

Figure 2. (a) 1 Mb resolution heatmaps of the original Hi-C contacts of the NPC 

X-chromosome (both active and inactive X-chromosomes). Zero values are included. (b) 

The heatmaps of the Hi-C contact matrices of the NPC X-chromosome, in which the zero 

values have been imputed by the 2D Gaussian function. (c) The heatmaps of target 

distances between all bead pairs of the active and inactive X-chromosomes of NPC. (d) 1 

Mb resolution structures of the active (0 hours) and inactive (48 hours after XCI starts) 

X-chromosomes of NPC. 
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3.2. Validation of the lattice-based approach for generating 3D chromosome structures  

Supplementary Figure S2 shows the values of the loss function from the first trial to the last trial 

during the simulation process. It can be seen that our simulated annealing algorithm was able to keep 

reducing the loss function.  

To validate the accuracy of our lattice-based model, we compared the 3D structure our method 

generated with the one constructed by PASTIS. We executed PASTIS using the same loss function as 

we used in Eq. (5) with the difference that PASTIS uses the software IPOPT [16] to solve the 

optimization problem.  

We constructed the 1 Mb resolution 3D structure of the active X-chromosome (Xa) that was 

derived from neural progenitor cells (NPC) of hybrid mice [35]. In total, 40 jobs were executed 

independently to 40 3D structures in total. In this way, a pool of 40 structures, an ensemble, was 

generated. After that, we used Q-score [39] to select the top three structures. The Q-score of a target 

structure is the average of the pair-wise comparison, that is, the TM-score [40], between the target 

structure and all other structures in the pool (in this case, other 39 structures). TM-score [40] is an 

algorithm for measuring the structural similarity between two protein 3D structures, in which zero 

indicates no similarity between the two structures and one indicates that the two structures are exactly 

the same. It has been proven in the protein structure prediction community that the top predicted 

structure(s) ranked by the Q-score (also called clustering method) usually best match the native 

structure [41]. Therefore, Q-score has been largely used to pick up the best predicted structure from a 

pool of predicted protein structures. Here, we also used Q-score to pick up the most representative top 

three structures and then compare them with the structure generated by PASTIS.  

Figure 3 (a)–(c) show our top three structures of the inactive X-chromosome at 1 Mb resolution 

ranked by Q-score. Figure 3 (d) shows the 3D structure constructed by PASTIS. The TM-scores 

between the top three structures and PASTIS structure are all 0.96. Besides using the top-three 

structures, we also compared all of the 40 structures with the PASTIS structure. The lowest TM-score 

between our 40 structures and PASTIS structure is 0.93 and the highest is 0.98 (the distribution of the 

40 TM-scores is plotted in Supplementary Figure S3). These high TM-scores indicate that our 

lattice-based method was correctly implemented, and our approach can generate stable structures.  

Figure 3 (e) shows the heatmap of the target distances for the inactive X-chromosome (48 hours) 

and the heatmap of the Euclidean distances parsed from the top-one 3D structure we reconstructed. 

The Pearson’s correlation between the two heatmaps (matrices) is 0.93 with a p-value < 0.00001 

indicating that our 3D modeling method successfully reconstructed the 3D structure, i.e., made a high 

correlation between target and actual distances in the reconstructed 3D structure. The correlations and 

p-values at different stages of the XCI process are shown in Supplementary Figure S4 (1 Mb resolution) 

and Supplementary Figure S5 (250 kb resolution).  

3.3. 3D structure of the NPC X-chromosome during the process of X-chromosome inactivation 

Figure 4 (a) shows the travelling speed (assuming no acceleration) of each bead pair at different 

time periods during XCI. The travelling speeds between the bead that contains Xist locus and all other 

beads are indicated in Figure 4 (b), in which the X-axis represents every bead in the X-chromosome 

and the Y-axis represents the speed.  

Based on the speed values shown in Figure 4 (a), we calculated the target distances at 3 hours, 6 
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hours, and 24 hours after XCI starts as shown in Figure 4 (c). Based on the target distances, we 

modeled the 1 Mb resolution structures at 3 hours, 6 hours, and 24 hours after XCI starts, as shown in 

Figure 4 (d).  

Figure 5 shows the similar contents when acceleration is considered. Specifically, Figure 5 (a) 

shows the heatmaps of acceleration values at different time periods of XCI. Figure 5 (b) shows the 

acceleration between the Xist-locus-containing bead and all other beads. Figure 5 (c) indicates the 

target distances at three time points during the XCI (3 hours, 6 hours, and 24 hours after XCI starts). 

 

Figure 3. (a)–(c) The top three 1 Mb structures inactive NPC X-chromosome generated by 

our modeling method. The TM-score between the structure generated by PASTIS and the 

top three structures our method generated are listed in the figure. (d) The 1 Mb resolution 

3D structure of the inactive NPC X-chromosome that was generated by PASTIS. (e) (left) 

The heatmap of target distances between all bead pairs of the inactive X-chromosome and 

(right) the Euclidean distances parsed from the 3D structure our approach reconstructed. 
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Figure 4. (a) The heatmaps of the traveling speeds between all bead pairs during different 

time periods of XCI. The red and blue colors in the heatmaps indicate the positive (getting 

closer) and negative (away from each other) traveling speeds of every bead pair, 

respectively. (b) Shown at 1 Mb resolution: The traveling speeds between Xist-containing 

bead and other beads at different time periods of XCI for the NPC X-chromosome. The 

dotted red line indicates the location of the Xist locus. (c) The heatmaps of target distances 

between all bead pairs of the NPC X-chromosome at 3 hours, 6 hours, and 24 hours after 

XCI starts at 1 Mb resolution. (d) 1 Mb resolution 3D structures of the NPC 

X-chromosome at 3 hours, 6 hours, and 24 hours after XCI starts. 
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Figure 5. (a) The heatmaps of the acceleration values between all the bead pairs in the 

NPC X-chromosome at different time periods. The red and blue colors in the heatmaps 

indicate the positive (getting closer) and negative (away from each other) accelerations of 

every bead pair, respectively. (b) Shown at 1 Mb resolution: The accelerations between 

Xist locus containing bead and all other beads in the X-chromosome at four XCI time 

periods. (c) The heatmaps of the target distances at three time points, 3 hours, 6 hours, and 

24 hours after XCI starts (with acceleration considered). (d) The 3D structures of the 

X-chromosome at different time points according to the target distances shown in (c). 



7399 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 7384–7404. 

3.4. High-resolution 3D structures of the NPC X-chromosome during the process of XCI 

Our lattice-based model can also generate high-resolution 3D structures of the X-chromosome. 

Figure 6 (a)–(d) show the 3D structures we reconstructed (when assuming constant travelling speed) 

for the NPC X-chromosome at 0 (before XCI starts), 3, 6, and 24 hours (during XCI), and 48 hours 

(after XCI) at 1 Mb, 500 kb, 250 kb, and 40 kb resolutions. It clearly shows how the 3D structure of the 

X-chromosome gradually changed into two large domains, also known as a bipartite structure. Figure 

7 shows the structures when acceleration is considered. 

 

Figure 6. (a)–(d) The reconstructed 3D structures of the NPC X-chromosome at 0 

hours (before XCI), 3, 6, and 24 hours (during XCI), and 48 hours (after XCI); at 1 Mb, 

500 kb, 250 kb, and 40 kb resolutions. Constant traveling velocity is used to model the 

travelled distances. 
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Figure 7. (a)–(d) The reconstructed 3D structures of the NPC X-chromosome at 0 hours 

(before XCI), 3, 6, and 24 hours (during XCI), and 48 hours (after XCI) at 1 Mb, 500 

kb, 250 kb, and 40 kb resolutions. Acceleration was considered when modeling the 

travelled distances. 

4. Discussion 

We developed a new approach to model the chromosome 3D structure based on population Hi-C 

data. Our approach is based on simulations performed on a 3D lattice. Furthermore, we used the 

method to reconstruct the 3D structures of the X-chromosome during the XCI process. We first 

modeled the X-chromosome in mouse NPC cells. From 40 independent simulations, we selected the 

top three structures based on the Q-score and then compared them with the structure generated by 

PASTIS. Each of the top three structures has a TM-score of 0.96. We then compared all of the 40 

structures with PASTIS structure and found that all of them have a TM-score at around 0.96. This 

indicates that our approach has been correctly implemented and that the structures generated by our 
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approach are stable. The Pearson’s correlation between the target distances converted from the Hi-C 

contact matrices and the Euclidean distances parsed from the reconstructed 3D structure at 1 Mb 

resolution is 0.93. It proves that our model can successfully generate the 3D structures. 

We also proposed and implemented a 2D Gaussian method to model the zero values in the Hi-C 

contact maps, that is, making the zero values non-zero based on their sequential distances to the 

neighboring bead pairs that originally have non-zero Hi-C contacts. This approach can be largely used 

as an imputation procedure on the Hi-C contact maps.  

We downloaded the Xist localization intensity data (RAP) data for NPC and ES cells at 0, 3, 6, 24, 

and 48 hours after XCI starts. Based on the previous finding that Xist spreads to spatially proximal site 

from the Xist locus and pulls the interacting segments to the Xist locus, we developed two methods to 

model the traveling speed and acceleration between every bead pair in the X-chromosome. The speed 

or acceleration of two beads traveling closer to or away from each other can be used to infer the target 

distances between all bead pairs at different time points in the XCI process.  

Based on the traveling speed and acceleration, we further calculated the target distances between 

all bead pairs at different time points of XCI. Then, we reconstructed the 3D structures of the 

X-chromosome during XCI. These structures show how the active X-chromosome gradually changed 

into the inactive X-chromosome.  

One may argue that the findings from [34] indicate that Xist pulls regions of active chromatin 

closer to the Xist transcription locus, but here our mathematical model assigns speeds not only for the 

bead pairs between the Xist-locus-containing bead and other beads, but also the bead pairs none of 

which contains Xist locus. We believe our mathematical model does not violate the previous finding 

that the regions of active chromatin are pulled towards the Xist locus. This is because the speed we 

assign to a bead pair that neither of which is Xist-locus-containing bead can be considered as the 

relative speed between the two beads even if both beads travel towards the Xist locus. Also, the speed 

in the middle of XCI process is based on the 3D structures before and after XCI (0 hours and 48 hours) 

that are inferred from Hi-C data. Therefore, if the spatial distance between a bead pair do change 

during the XCI process (even these two beads may both travel towards the Xist locus), it can be 

indicated by our mathematical model with a none zero speed (can be getting closer or apart). If the 

spatial distance between a bead pair did not change during XCI, their relative speed would be zero. 

Either way, it can be modeled by our mathematical model and fits the Hi-C (also the 3D structures 

inferred from Hi-C) before and after the XCI process. 

5. Conclusion 

Our 3D lattice-based approach can generate accurate and stable high-resolution 3D chromosome 

structures based on population Hi-C data. We used Xist localization intensity to infer the traveling 

speed and acceleration between DNA bead pairs during the process of XCI. We reconstructed the 3D 

structure of the X-chromosome at different time points of XCI. For the first time, this can show the 

changing of 3D structure of the X-chromosome during the XCI process.  
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