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Abstract: We consider a mosquito population suppression model with time delay. We show that, in
the absence of sterile mosquitoes released, the model solutions oscillate with respect to its unique non-
zero equilibrium. With the releases of sterile mosquitoes, we then determine an oscillation threshold,
denoted by b̂, for the constant release rate of the sterile mosquitoes such that all non-trivial positive
solutions oscillate when the release rate of the sterile mosquitoes is less than b̂, and the oscillation
disappears as the release rate exceeds b̂. We also provide some numerical simulations to validate our
theoretical results.
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1. Introduction

Mosquito-borne diseases such as dengue, yellow fever, and Zika are threatening more than half the
world’s population. Due to the lack of vaccines, the primary traditional method in control of these
mosquito-borne diseases to suppress the mosquito population density by spraying insecticides. How-
ever, this method failed to achieve a sustainable effect on keeping mosquito population density below
the critical level of epidemic risk. Even worse, heavy applications of pesticides have led to insecticide
resistance and environmental pollution. In recent years, releasing sterile mosquitoes has provided an
effective and biologically safe control method for eliminating or reducing mosquito populations and
thus to control mosquito-borne diseases. In such a method, male mosquitoes are first sterilized using
radiological or chemical techniques, and then released into the field to sterilize wild females. A wild
female mosquito that mates with a sterile male will either be non-reproductive, or lay eggs that are
not hatchable. Repeating releases of sterile mosquitoes could eventually wipe out wild mosquitoes, or,
more realistically, suppress the wild mosquito population [1, 2].
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Various mathematical models have been developed to study the interactive dynamics of wild and
sterile or Wolbachia-infected mosquitoes, including ordinary differential equation models [3–9], delay
differential equation models [10–14], partial differential equation models [15–18], and stochastic dy-
namical equation models [19, 20], to cite only a few. Recently, Li in [7] formulated a simple model
with constant release rate of sterile mosquitoes

dS ν(t)
dt

=
aS ν(t)

S ν(t) + S g(t)
(1 − ξνS ν(t))S ν(t) − µ1S ν(t),

dS g(t)
dt

= b − µ1S g(t),
(1.1)

where S ν(t) and S g(t) are the numbers of wild and sterile mosquitoes at time t respectively, a is the
number of offspring produced per individual female adult per unit of time, b is the constant release
rate of sterile mosquitoes, ξν is the carrying capacity parameter such that 1 − ξνS ν describes the effect
of density dependence, and µ1 is the death rate of wild or sterile mosquitoes. In (1.1), it was assumed
implicitly that the mating of sterile male mosquitoes with wild females has an instant impact on the
reproduction such that the model is based on ordinary differential equations without time-delay. It does
not incorporate the development or maturation of mosquitoes that undergo four distinct life stages.

Including the maturation process, we let τ be the average waiting duration from the eggs to the
eclosion of adults in the next generation. We then extend model (1.1) to the following model with time
delay 

dS ν(t)
dt

=
ae−µ0τS ν(t − τ)

S ν(t − τ) + S g(t − τ)
(1 − ξνS ν(t − τ))S ν(t − τ) − µ1S ν(t),

dS g(t)
dt

= b − µ2S g(t).
(1.2)

In this new model e−µ0τ is the survival rate of the immature mosquitoes that were born at time t − τ and
are still alive at the time t, and µ1, µ2 are the death rates of wild and sterile mosquitoes, respectively.

The initial condition for (1.2) is given as

φ(t) = (φν(t), φg(t)) ∈ C1
(
[t0 − τ, t0],

(
0,

1
ξν

)
× (0,∞)

)
, (1.3)

where t0 ≥ τ. For convenience, we write

M = max
t∈[t0−τ,t0]

φg(t), M0 = max{b/µ2,M},

m = min
t∈[t0−τ,t0]

φg(t), m0 = min{b/µ2,m}.
(1.4)

It is well-known that the oscillation phenomena may appear when time delays are included in dif-
ferential equations, as shown, for example, in recent studies of mosquito population models with time
delays [10,12]. We aim to offer an accurate description of the oscillation phenomena of (1.2), and study
how the oscillatory properties change with respect to the release of sterile mosquitoes. Specifically to
our model (1.2)-(1.3), we define the oscillations as follows.

Definition 1.1. Let (S ν(t), S g(t)) be a non-constant positive solution of (1.2)-(1.3). We say that
(S ν(t), S g(t)) is non-oscillatory about its equilibrium (S ν, S g) if S ν(t) − S ν and S g(t) − S g are posi-
tive or negative eventually. Otherwise, it is said to be oscillatory about (S ν, S g). We say that (1.2) is
oscillatory about (S ν, S g) if every non-constant solution of (1.2) is oscillatory. Otherwise, (1.2) is said
to be non-oscillatory about (S ν, S g).
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In this paper, we study the oscillatory properties of (1.2). The paper is organized as follows. In
Section 2, we establish useful lemmas and find that, (1.2) is oscillatory about the unique non-zero
equilibrium when no sterile mosquitoes are released. In Section 3, we determine an oscillation thresh-
old, denoted by b̂, for the constant release rate b of sterile mosquitoes, such that all non-trivial positive
solutions oscillate when b < b̂, and the oscillation disappears when b > b̂. In Section 4, numerical
simulations are provided to demonstrate our new findings. Concluding remarks are finally given in
Section 5.

2. Preliminaries

In this section, we first establish useful lemmas that help us to prove the main results of this paper.
In addition, we show that every non-trivial solution of (1.2) oscillates with respect to its unique non-
zero equilibrium when no sterile mosquitoes are released. We first determine the monotonicity of the
following birth-progression function.

Lemma 2.1. Consider the birth-progression function

g(x, z) =
ae−µ0τ(1 − ξνx)x2

x + z
, 0 < x < 1/ξν, z > 0,

and let

C∗(z) =
1 − 3ξνz +

√
(1 − 3ξνz)2 + 16ξνz

4ξν
.

Then

g′x(x,m0)


> 0, 0 < x < C∗(m0),
= 0, x = C∗(m0),

< 0, C∗(m0) < x <
1
ξν
.

Proof. We omit the detail of the proof since the result can be obtained by directly taking the derivative
of g(x, z) with respect to x. �

We next discuss the boundedness and positivity of solutions of (1.2).

Lemma 2.2. Suppose µ1 > ξνg(C∗(m0),m0). Then system (1.2)-(1.3) has a unique solution (S ν, S g)
which is bounded and positive for all t ∈ [t0,∞).

Proof. The existence and uniqueness of the solution of (1.2) follows from the standard results in the
theory of delay differential equations [21]. From the second equation of (1.2), it is easy to see that
0 < m0 ≤ S g(t) ≤ M0 for all t ≥ t0, where m0 and M0 are defined in (1.4). It remains to verify the
positivity and boundedness of S ν in (1.2).

We first confirm that S ν(t) < 1/ξν holds for all t ≥ t0 when µ1 > ξνg(C∗(m0),m0). Otherwise, there
exists t1 > t0 such that S ν(t1) = 1/ξν, and S ν(t) < 1/ξν for all t ∈ [t0−τ, t1). Hence S ′ν(t1) ≥ 0. However,
from (1.4) and the first equation of (1.2), we have

S ′ν(t1) ≤ −µ1S ν(t1) + g(S ν(t1 − τ),m0) ≤ −
1
ξν

(
µ1 − ξνg(C∗(m0),m0)

)
< 0,

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7362–7374.



7365

which is a contradiction to S ′ν(t1) ≥ 0.
Next, we prove the positivity of S ν(t). If not, there exists t2 > t0 such that S ν(t2) = 0 and 0 < S ν(t) <

1/ξν for all t ∈ [t0 − τ, t2). Hence S ′ν(t2) ≤ 0, which contradicts

S ′ν(t2) =
ae−µ0τ(1 − ξνS ν(t2 − τ))S 2

ν(t2 − τ)
S ν(t2 − τ)) + S g(t2 − τ))

> 0.

The proof is complete. �

Remark 1. We assume that the condition µ1 > ξνg(C∗(m0),m0) holds throughout the rest of this paper.

Define the intrinsic growth rate of wild mosquito population by

r0 =
ae−µ0τ

µ1
.

The following lemma clarifies the existence of equilibria of (1.2).

Lemma 2.3. Define

b∗ :=
µ2(r0 − 1)2

4ξνr0
. (2.1)

If 0 < b < b∗, then (1.2) has three nonnegative equilibria: N0 :=
(
0, b

µ2

)
and N∓ =

(
S ∓ν ,

b
µ2

)
, where

S ∓ν :=
(r0 − 1)µ2 ∓

√
(r0 − 1)2µ2

2 − 4bξνr0µ2

2ξνr0µ2
;

When b = b∗, (1.2) has two nonnegative equilibria: N0 and N∗ :=
(
r0 − 1
2r0ξν

,
b
µ2

)
; When b > b∗, N0 is the

only nonnegative equilibrium of (1.2).

We next investigate the oscillation of (1.2) with respect to the unique non-zero equilibrium when
b = 0. In this case, (1.2) becomes

dS ν(t)
dt

=
ae−µ0τS ν(t − τ)

S ν(t − τ) + S g(t − τ)
(1 − ξνS ν(t − τ))S ν(t − τ) − µ1S ν(t),

dS g(t)
dt

= −µ2S g(t).
(2.2)

It is clear that lim
t→∞

S g(t) = 0. Therefore, the oscillation of (2.2) is exactly the same as that of the next
equation

dS ν(t)
dt

= ae−µ0τS ν(t − τ)(1 − ξνS ν(t − τ)) − µ1S ν(t), (2.3)

which has a unique positive equilibrium S (1)
ν = (r0 − 1)/r0ξν.

We now study the oscillation of (2.3) with respect to S (1)
ν when r0 > 2. Let y(t) = S ν(t)− S (1)

ν . Then
instead of considering the oscillation of S ν(t) with respect to S (1)

ν in (2.3), we consider the oscillation
of y(t) about y(t) = 0 for the following equation

y′(t) = −µ1y(t) − qy(t − τ) − µ1r0ξνy2(t − τ), (2.4)

where q = µ1 (r0 − 2) > 0.
To proceed, we first establish the following three lemmas to reach the conclusion of Theorem 1.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7362–7374.
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Lemma 2.4. If r0 > 2, then every non-oscillatory solution of (2.4) about y(t) = 0 converges to zero as
t → ∞.

Proof. Let y(t) be an arbitrary non-oscillatory solution of (2.4) about y(t) = 0. Then it is positive or
negative eventually. It suffices to prove that

lim
t→∞

y(t) = 0. (2.5)

(i) Suppose that y(t) is eventually positive. Then there exists t̄1 > t0 large enough such that y(t) > 0
for all t > t̄1 + τ. In the meantime, based on (2.4), we have

y′(t) = −µ1y(t) − qy(t − τ) − µ1r0ξνy2(t − τ) < 0.

Thus lim
t→∞

y(t) = L holds and we claim that L is non-negative. If L > 0, then

lim
t→∞

y′(t) = −µ1L − qL − µ1r0ξνL2 := % < 0.

Thus we have y′(t) ≤ % < 0 for sufficiently large t, and hence limt→∞ y(t) = −∞, which is a contradic-
tion. Therefore, limt→∞ y(t) = L = 0.

(ii) Suppose that y(t) is eventually negative. To prove (2.5), we let

y = lim sup
t→∞

y(t), y = lim inf
t→∞

y(t).

It is easy to see that (2.5) is true if and only if y = 0. Otherwise, y < 0. There are only two cases to
consider: y = y, and y < y.

If y = y < 0, then limn→∞ y(t) = y = y exists. Taking limits in (2.4) on both sides gives

lim
t→∞

y′(t) = −y(µ1 + q + µ1r0ξνy).

Notice that y(t) is bounded, then we derive µ1 + q + µ1r0ξνy = 0 and y = −S (1)
ν . Hence there exists a

sequence {tn} large enough such that y′(tn) ≤ 0, y(tn) → −S (1)
ν , and y(tn) = min

t≤tn
y(t). Then it follows

from (2.4) that
0 ≥ y′(tn) = −µ1y(tn) − qy(tn − τ) − µ1r0ξνy2(tn − τ),

which leads to
µ1y(tn) ≥ −y(tn − τ)[q + µ1r0ξνy(tn − τ)],

and

µ1 ≤ −
y(tn − τ)

y(tn)
[
q + µ1r0ξνy(tn − τ)

]
≤ −

[
q + µ1r0ξνy(tn − τ)

]
,

Solving the inequality above, we obtain y(tn − τ) ≤ −S (1)
ν , which is a contradiction to y(tn − τ) > −S (1)

ν .
If y < y < 0, then there exists a sequence {sn} large enough such that y′(sn) = 0, y(sn) → y. From

(2.4), we have
µ1y(sn) = −qy(sn − τ) − µ1r0ξνy2(sn − τ).
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Notice that y(sn−τ) is bounded in the interval (−S (1)
ν , 0). Then there exists a convergent subsequence,

denoted by {sn} again, such that
µ1y = −qy1 − µ1r0ξνy2

1,

where y ≤ y1 := limn→∞ y(sn − τ) ≤ y. Hence

µ1 = −
y1

y
[q + µ1r0ξνy1] ≤ −[q + µ1r0ξνy1],

and y1 ≤ −S (1)
ν . Meanwhile, y1 ≥ y ≥ −S (1)

ν , thus y1 = y = −S (1)
ν .

Take t∗ > t0 large enough such that y′(t∗) = 0, and y(t∗) = min
t≤t∗

y(t). Then it follows from (2.4) that

µ1y(t∗) = −qy(t∗ − τ) − µ1r0ξνy2(t∗ − τ),

which yields

µ1 = −
y(t∗ − τ)

y(t∗)
[q + µ1r0ξνy1] ≤ −[q + µ1r0ξνy(t∗ − τ)],

and y(t∗ − τ) ≤ −S (1)
ν , a contradiction to y(t∗ − τ) > −S (1)

ν . The proof is complete. �

To show the oscillatory behavior of solutions of (2.4) about y(t) = 0, we linearize (2.4) at y(t) = 0
which leads to

y′(t) = −µ1y(t) − qy(t − τ). (2.6)

Based on the results in [22], we immediately have the following necessary and sufficient condition for
the oscillation of solutions of (2.6) with respect to y(t) = 0.

Lemma 2.5. [22] Every non-trivial solution of (2.6) is oscillatory about y(t) = 0 if and only if

qτeµ1τ >
1
e
, (2.7)

where q = µ1(r0 − 2) > 0.

We then show the equivalence of the oscillations between (2.4) and (2.6) about y = 0.

Lemma 2.6. Equation (2.4) is oscillatory about y = 0 if and only if (2.6) is oscillatory about y = 0.

Proof. Assume that (2.4) is oscillatory about y = 0. We confirm that (2.6) is also oscillatory about
y = 0. Otherwise, there exists a solution y(t) of (2.6) that is non-oscillatory about y(t) = 0. Without
loss of generality, suppose that y(t) is eventually negative. Then there exist δ > 0 and t1 > t0 such that
−δ < y(t) < 0, for all t > t1. Let Y(t) be a solution of (2.4) with the same initial value condition as that
of y(t) in (2.6). Notice that

−µ1y(t) − qy(t − τ) − µ1ξνr0y2(t − τ) ≤ −µ1y(t) − qy(t − τ).

By the comparison principle, we have Y(t) ≤ y(t) < 0, for t > t1, which is a contradiction to the
assumption that (2.4) is oscillatory about y(t) = 0.

On the other hand, we show that (2.4) oscillates about y = 0 if (2.6) oscillates about y = 0. If not,
then there exists a solution y1(t) of (2.4), which is either eventually positive or eventually negative.
There are two cases to consider.
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(i) If y1(t) is eventually positive, then there exists t2 > t0 such that y1(t) > 0, for all t > t2. Let
Y1(t) be the solution of (2.6) with the same initial condition as that of y1(t) in (2.3). Again, by the
comparison principle, we have Y1(t) ≥ y1(t) > 0, for all t > t2, a contradiction to the oscillation of (2.6)
about y(t) = 0.

(ii) If y1(t) is eventually negative, then there exists t3 > t0 such that y1(t − τ) < 0, y1(t) < 0, for all
t > t3. From Lemma 2.4, we have limt→∞ y1(t) = 0. Since (2.7) holds, there exists a positive constant
ε0 < 1 such that

ε0qτeµ1τ >
1
e
,

which suggests that the equation

y′(t) + µ1y(t) + ε0qy(t − τ) = 0

is oscillatory about y(t) = 0. Moreover, since

lim
t→∞

q + µ1ξνr0y(t − τ)
q

= 1,

there exists t4 > t3 such that

q + µ1ξνr0y(t − τ) > ε0q, for all t > t4.

Then
(q + µ1ξνr0y(t − τ))(−y(t − τ)) > ε0q(−y(t − τ)), for all t > t4,

and thus
−µ1y(t) − qy(t − τ) − µ1ξνr0y2(t − τ) > −µ1y(t) − ε0qy(t − τ).

Let Y(t) be a solution of the equation y′(t)+µ1y(t)+ε0qy(t−τ) = 0 with the same initial condition as
the solution y1(t) of (2.4). Then Y(t) < y1(t) < 0 for all t > t4, which is a contradiction to the oscillation
of the equation

y′(t) + µ1y(t) + ε0qy(t − τ) = 0

about y(t) = 0. Therefore, equation (2.4) is oscillatory about y = 0 if and only if (2.6) is oscillatory
about y = 0. The proof is complete. �

We note that the oscillations of S ν about S (1)
ν between system (2.2) and (2.3) are exactly the same.

Based on Lemmas 2.3, 2.4, and 2.5 above, a sufficient and necessary condition for the oscillations of
solutions of equation (2.2) can be summarized as follows.

Theorem 1. If r0 > 2, then every non-trivial positive solution of (2.2) is oscillatory about S (1)
ν if and

only if (2.7) holds.

Remark 2. Theorem 1 provides a sufficient and necessary condition for the oscillations of non-trivial
positive solutions about the unique non-zero equilibrium in equation (1.2) when no sterile mosquitoes
are released. In fact, from the estimation of parameters of (1.2) in Table 1, we find that (2.7) is always
true and so (2.2) is oscillatory about S (1)

ν , which is consistent with the oscillation phenomenon of the
annual abundance of wild mosquitoes in the wild. These results are important for the discussion of the
main results in Section 3.
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3. Main results

Given that (1.2) is oscillatory about the unique non-zero equilibrium in the absence of sterile
mosquitoes, it becomes interesting to ask how the oscillatory property of (1.2) with the increase of
the releases of sterile mosquitoes. Interestingly, we find an oscillation threshold, denoted by b̂, for the
release rate of the sterile mosquitoes, and show that this oscillation phenomenon will be maintained
when the release rate b < b̂, whereas it will disappear when b > b̂. The result of oscillation threshold
is described as follows.

Theorem 2. Let b̂ be the unique solution of

q(b)τeµ1τ =
1
e
,

where

q(b) =
µ1µ2S +

ν (3r0ξνS +
ν + 1 − 2r0)

µ2S +
ν + b

> 0.

Then b̂ is the oscillation threshold of the release rate b, below which the oscillation phenomenon
maintain, and above which it will disappear.

Proof. By using the similar argument as that in Theorem 1, we conclude that every non-trivial positive
solution of (1.2) is oscillatory about the non-zero equilibrium N+ if and only if

q(b)τeµ1τ >
1
e
. (3.1)

The proof is nearly the same as that of Theorem 1, so we omit it.
Next, we claim that q(b) decreases with the increase of b. It follows from the definition of S +

ν

in Lemma 2.3 that S +
ν (b) is monotonously decreasing. Hence 3r0ξνS +

ν − 2r0 + 1 is positive and
monotonously decreasing with respect to b. Moreover, By taking derivative, we obtain

d
db

(
S +
ν

µ2S +
ν + b

)
< 0,

thus S +
ν /(µ2S +

ν + b) is monotonously decreasing. Consequently, q(b) is monotonously decreasing.
Notice that (1.2) is oscillatory about N+ when b = 0. According to Theorem 1, we have q(0)τeµ1τ >

1/e. Meanwhile, when b = b∗, we have

q(b∗) =
µ1µ2S +

ν (3r0ξνS +
ν + 1 − 2r0)

µ2S +
ν + b

=

(
−

1
2

r0 −
1
2

)
µ1µ2S +

ν

µ2S +
ν + b

< 0.

Thus, there exists unique b̂ ∈ (0, b∗) such that q(b̂)τeµ1τ = 1/e. Notice that (1.2) is oscillatory about N+

if and only if (3.1) holds, we conclude that system (1.2) is oscillatory about N+ when 0 ≤ b < b̂, and
non-oscillatory when b̂ ≤ b ≤ b∗. The proof is complete. �

4. Numerical simulations

In this section, numerical simulations are given to validate the main theoretical results in Section 3.
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4.1. Estimation of parameters

In Table 1 below, we list important parameter values for Aedes albopictus and sterile mosquitoes,
most of which are taken from earlier experimental data in the literature [23–29]. Since the parame-
ter values are affected by many factors such as temperature and rainfall, we can not determine their
exact values but take reasonable estimations of the ranges. Using a similar method for the param-
eter estimations as in [12], we estimate τ ∈ [16, 66]. By using the measured half-lives, we have
µ1 ≈ 0.0277 from [29], and µ1 ∈ [0.0231, 0.0693] from [26], hence the life span of adult mosquitoes
is T1 = 1/µ1 ≈ 36.10, and T1 ∈ [14.43, 43.29]. Furthermore, it takes 5 days on average for a female
mosquito to lay eggs after the eclosion, and the total number of eggs laid by each female is 120.76
on average [26]. Consequently, the egg-laying phase of a female mosquito is T2 ∈ [9.43, 38.29],
and a ∈ [3.15, 12.81]. From [23, 24], we find that sterile mosquitoes will die in about 7 days after
releasing to the wild field. Thus we estimate that the death rate of sterile mosquitoes is about 1/7. Be-
sides, according to [27], we obtain that the survival probability of the average maturation time of wild
mosquitoes is about 0.05. We note that ξν is usually proportional to the area size. From simulations, it
shows that different values of ξν produce similar dynamics, which allows us to take ξν = 0.0025 as a
representative value.

Table 1. Parameter values adapted to Aedes albopictus population suppression in subtropical
monsoon climate, especially in Guangzhou.

Para. Definitions Ranges References

τ The average waiting duration from eggs to the eclosion [16, 66] [25]
of adults in the next generation (day)

a The number of offsprings produced per individual, [3.15, 12.81] [26, 28]
per unit of time

e−µ0τ The survival rate of the immature mosquitoes (day−1) 0.05 [27]
ξν The carrying capacity parameter of wild mosquitoes 0.0025 Given
µ1 The death rate of wild mosquitoes (day−1) [0.0231, 0.0693] [26]
µ2 The death rate of sterile mosquitoes (day−1) 1/7 [23, 24]

4.2. Oscillation threshold

To make the oscillation behavior be clearer, we employ simulation examples with different release
rates to testify the result of oscillation threshold given in Theorem 2.

Suppose that the model parameters of (1.2) are given as

a = 4, τ = 36, e−µ0τ = 0.05, µ1 = 0.05, µ2 = 1/7, ξν = 0.0025. (4.1)

All the parameter values in (4.1) are within the estimation ranges given in Table 1. By substituting
these parameter values into (2.1), we derive b∗ ≈ 32.143. Notice that the oscillation threshold b̂ is the
unique solution of the equation q(b)τeµ1τ = 1/e, we have b̂ ≈ 21.7754.

We select three different release rates b = 0, b = 3 and b = 6 from the interval [0, b̂). For these
three cases, the number of wild mosquitoes S ν(t) oscillates around S +

ν , as shown in Figure 1. This
testifies the first part of Theorem 2, that is, the non-trivial positive solutions of (1.2) are oscillatory
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about N+ when b < b̂. When b = 0, there is no sterile mosquitoes released into the wild, the number of
mosquitoes oscillates with a larger amplitude, as shown in Figure 1 (A). As the release rate increases,
the amplitude is reduced. When b = 6, the number of mosquitoes oscillates in a narrow range around
S +
ν , as shown in Figure 1 (C).
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Figure 1. The oscillatory behavior of (1.2) with respect to N+ when the release rates b =

0, 3, 6 are smaller than the oscillation threshold b̂ ≈ 21.7754.

We increase the release rate of sterile mosquitoes further, and let b̂ < b < b∗. For instance, we take
b = 24, b = 27 and b = 30 separately from the interval [b̂, b∗]. As shown in Figure 2, we find that the
number S ν(t) is less than S +

ν , and then gradually increases and approaches to S +
ν . This phenomenon

testifies the second part of Theorem 2, that is, the solutions (S ν, S g) are non-oscillatory about N+.
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Figure 2. The release rates b = 24, b = 27 and b = 30, respectively, are larger than the
oscillation threshold b̂ ≈ 21.7754. The corresponding solutions (S ν, S g) of (1.2) are non-
oscillatory about N+.

Figure 2 also shows that the wild mosquito population is first suppressed to a low level by releasing
sterile mosquitoes with higher rates, then gradually tends to a stable level S +

ν . Figure 1 and 2 both show
that the stable level of wild mosquitoes is reduced when the release rate increases from 0 to b∗.

5. Concluding remarks

To control the life-threatening mosquito-borne diseases such as dengue, yellow fever, and Zika, one
of the biologically safe methods is to release male sterile mosquitoes into the field to suppress the
wild mosquito population. We, in this paper, consider the oscillatory properties of a delayed mosquito
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population suppression model with a constant release rate of sterile mosquitoes. We find that every
non-trivial positive solution of the model oscillates with respect to its unique non-zero equilibrium
when no sterile mosquitoes are released, i.e., b = 0. We then study the oscillatory behavior of the
model with the releases of sterile mosquitoes, and establish an oscillation threshold, denoted by b̂, for
the constant release rate b of sterile mosquitoes such that the oscillation of solutions maintains when
b < b̂, whereas the oscillation disappears when b > b̂. Furthermore, through numerical examples,
we show that the amplitudes of the oscillation become smaller and smaller and then the oscillation
disappears as release rates of sterile mosquitoes increase. Oscillatory phenomenon is common for
solutions of delay differential equations. However, to the best of our knowledge, an establishment of
the oscillation threshold which determines the existence or disappearance of solution oscillations is
one of the first in the field of mosquito population dynamics.
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