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Abstract: Modelling integrated pest management (IPM) with a threshold control strategy can be
achieved with a non-smooth Filippov dynamical system coupled by an untreated subsystem and a
treated subsystem which includes chemical and biological tactics. The releasing constant of natural
enemies related to biological control generates the complex dynamics. Comprehensive qualitative
analyses reveal that the treated subsystem exists with transcritical, saddle-node, Hopf and Bogdanov-
Takens bifurcations, for which the threshold conditions and bifurcation curves are provided. Further,
by applying techniques of non-smooth dynamical systems including the Filippov convex method and
sliding bifurcation techniques, we first obtain the sliding dynamic equation, and then we analyze the
existence and stability of regular/virtual equilibria, pseudo-equilibria, boundary equilibria, sliding
segments and sliding bifurcations. In particular, if we choose the economic threshold (ET) as the
bifurcation parameter, then interesting dynamical behaviors, including boundary equilibrium →

pseudo-homoclinic → touching → buckling → crossing bifurcations, occur in succession. It is
interesting to note that although the number of pests in the untreated subsystem could increase and
exceed the economic injury level (EIL), the final size could be less than ET and stabilizes at a relative
low level due to side effects of the pesticide on natural enemies. However, the side effects can be
effectively avoided by increasing the releasing constant, which can maintain the number of pests below
the EIL always and thus achieve the control purpose.

Keywords: Filippov system; integrated pest management; bifurcation; sliding dynamics; releasing
constant

1. Introduction

Various modelling and analytical techniques have been widely employed to address the
effectiveness of integrated pest management (IPM), which is a threshold control strategy [1–3] and it
can be defined as follows: if the number of pests is below the economic threshold (ET), then the
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integrated control strategy is not applied at all; above the ET then the integrated control measures
including biological control and chemical control are applied with the aim of maintaining the number
of pests below the economic injury level (EIL). In order to reveal the effectiveness of IPM, various
mathematical models have been developed and studied based on the action mechanism of pesticides
and the implementation of control strategies [4–10]. In particular, Filippov systems which are widely
employed to depict intermittent control strategies and to describe many practical problems [7, 11–18],
have been received much attention and investigated [7, 16–18]. However, most of the previous models
strategy were designed to simplify the dynamic behavior of two subsystems without considering the
constant releasing rate commonly used in IPM [17, 18]. In practical biological control methods, a
constant releasing strategy is often used to facilitate operation and avoid monitoring the number of
natural enemies, which has been proved to play an important role in the pest control [19–22].

In the present paper, a planar Filippov system formulated by two subsystems is proposed to reveal
the effect of the constant releasing rate of natural enemy on the pest control, in which the discontinuity
boundary or switching line is determined by the ET [23–27]. Therefore, the IPM strategy including
spraying pesticide which the killing rate assumes to be proportional to the number of pests and releasing
a constant number of natural enemies is applied once the number of the pest population exceeds the
ET, otherwise the pest-natural enemy system is free from any control effects.

Based on the above facts, the pest-natural enemy interaction system without control measurements
can be modelled by the classical Holling-II predator-prey model [28, 29] as follows:

dx(t)
dt

= rx −
r
K

x2 −
βxy

1 + ωx
,

dy(t)
dt

=
ηβxy

1 + ωx
− δy,

(1.1)

where x(t) and y(t) represent the number of prey (pest) and predator (natural enemy), r is the intrinsic

growth rate of the pest population and K represents its carrying capacity,
βx

1 + ωx
denotes the Holling-II

functional response function, which is a saturating function of the numbers of pests present, δ denotes
the death rate of the natural enemy population, and η (η ∈ (0, 1]) denotes the conversion rate of the
pest. The dynamics of this subsystem (also called an untreated subsystem) is well known and has been
well studied [28], and will be summarized in the coming section.

The other subsystem (also called a treated subsystem) must be employed to model the artificial
control strategies (spraying pesticides and releasing natural enemies), which can be represented as
follows: 

dx(t)
dt

= rx −
r
K

x2 −
βxy

1 + ωx
− αx,

dy(t)
dt

=
ηβxy

1 + ωx
− δ1y + τ,

(1.2)

where τ represents the releasing constant of natural enemies, α denotes the pest killing rate due to
the spraying of pesticides, and δ1 ≥ δ implies that the pesticide has side effects on the natural enemy.
From a mathematical point of view, the essential difference between model (1.1) and model (1.2) is the
constant release rate τ, which will result in rich dynamical behaviors and will be investigated in more
detail in Section 3.
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Combining the above two subsystems, we get the following non-smooth Filippov pest-natural
enemy system with constant releasing rate as follows:

dx(t)
dt

= rx −
r
K

x2 −
βxy

1 + ωx
− εαx,

dy(t)
dt

=
ηβxy

1 + ωx
− (δ + εh)y + ετ

(1.3)

with ε = 0, x(t) < ET,

ε = 1, x(t) > ET,

where for convenience we denote δ1 = δ + h with h ≥ 0. Note that if τ = 0, then two subsystems
(i.e., models (1.1) and (1.2) of Filippov system (1.3) have exactly the same dynamics, which have been
widely used and investigated [24].

The objective of this paper is to systematically study the dynamical properties of non-smooth
Filippov pest-natural enemy system with constant releasing rate and discuss bifurcations of
model (1.3) depending on important parameters. This paper is organized as follows. In Section 2, we
introduce the main definitions and terminologies of the generic second-order Filippov system. In
Section 3, we systematically study the dynamical behavior of system (1.2) (i.e., subsystem S 2) and
address how the constant releasing strategy affects the qualitative behaviors, which is crucial for
analyzing Filippov system (1.3). The results show that system (1.2) exists rich dynamical behaviors
including transcritical, saddle-node, Hopf and Bogdanov-Takens bifurcations [30, 31]. In Section 4,
we study the existence and stability of the regular/virtual equilibria, pseudo-equilibria, sliding
segments and sliding bifurcations of system (1.3) by employing the methods for non-smooth
dynamical systems including the Filippov convex method and sliding bifurcation
techniques [23, 26, 27, 32]. Particular attention is paid to the effect of the threshold level ET and
releasing constant τ on the dynamical behavior of Filippov system (1.3) and successful pest control.
The paper ends with brief conclusions and discussions.

2. Preliminaries

The generic second-order ( i.e.,X(t) ∈ R2
+ ) Filippov system can be defined as follows [12, 17, 23]:

Ẋ(t) =

FS 1(X), X ∈ S 1,

FS 2(X), X ∈ S 2,
(2.1)

where X(t) = {x(t), y(t)}T and R2
+ = {(x, y)|x ≥ 0, y ≥ 0}, and the regions S 1 and S 2 are separated by

the discontinuity boundary Σ described by H(X) = 0, where H(X) is a smooth scalar function with
non-vanishing gradient HX(X) on Σ. For convenience, we call Filippov system (2.1) defined in region
S 1 as subsystem S 1 and defined in region S 2 as subsystem S 2. Denote

σ(X) = 〈HX(X), FS 1(X)〉 · 〈HX(X), FS 2(X)〉,

where 〈, 〉 is a Cartesian product in R2 and HX(X) pointing to the region S 2 is called the positive
direction. Based on the above concepts, we provide the necessary definitions of Filippov system (2.1)
as follows:
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Definition 1. If all these points (x, y) ∈ Σ satisfy the condition σ(X) ≤ 0, then we say that (x, y)
belongs to the sliding segment, denoted by Σs. While the complement to Σs in Σ is called a crossing
set, denoted by Σc. For the stability of the sliding segment, if

〈HX(X), FS 1(X)〉 > 0, 〈HX(X), FS 2(X)〉 < 0,

then the sliding segment is stable. If

〈HX(X), FS 1(X)〉 < 0, 〈HX(X), FS 2(X)〉 > 0,

then it is unstable.

Definition 2. If the point R(x∗, y∗) of Filippov system (2.1) satisfies the following conditions

FS 1(x∗, y∗) = 0 for (x∗, y∗) ∈ S 1 or FS 2(x∗, y∗) = 0 for (x∗, y∗) ∈ S 2,

then it is called a regular equilibrium of Filippov system (2.1). Similarly, if it satisfies

FS 1(x∗, y∗) = 0 for (x∗, y∗) ∈ S 2 or FS 2(x∗, y∗) = 0 for (x∗, y∗) ∈ S 1,

then it is called a virtual equilibrium of Filippov system (2.1).

Definition 3. If the point T (x∗, y∗) of Filippov system (2.1) satisfies

〈HX(x∗, y∗), FS 1(x∗, y∗)〉 = 0 for (x∗, y∗) ∈ Σs or 〈HX(x∗, y∗), FS 2(x∗, y∗)〉 = 0 for (x∗, y∗) ∈ Σs,

then it is called a tangent point of Filippov system (2.1).

Definition 4. If the point P(x∗, y∗) of Filippov system (2.1) satisfies

FS 1(x∗, y∗) = 0 for H(x∗, y∗) = 0 or FS 2(x∗, y∗) = 0 for H(x∗, y∗) = 0,

then it is called a boundary equilibrium of Filippov system (2.1).

Note that the three points P(x∗, y∗), T (x∗, y∗) and R(x∗, y∗) may collide together for some critical
cases, and for more definitions and properties of Filippov system (2.1) please see [12, 17, 23]. Now let
us turn to non-smooth Filippov system (1.3), which can be represented as:

Ẋ(t) =

 f1(x, y), (x, y) ∈ S 1,

f2(x, y), (x, y) ∈ S 2,
(2.2)

where the discontinuity boundary is Σ = {(x, y) ∈ R2
+|H(x, y) = 0} and H(x, y) = x − ET , which

separates the two regions S 1 = {(x, y) ∈ R2
+|H(x, y) < 0} and S 2 = {(x, y) ∈ R2

+|H(x, y) > 0}. The vector
field for subsystem S 1 is

f1(x, y) =

{
rx −

r
K

x2 −
βxy

1 + ωx
,

ηβxy
1 + ωx

− δy
}T

and the vector field for subsystem S 2 is

f2(x, y) =

{
rx −

r
K

x2 −
βxy

1 + ωx
− αx,

ηβxy
1 + ωx

− δ1y + τ
}T

.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7327–7361.



7331

The dynamics of two subsystems S 1 and S 2 are crucial for analyzing the global dynamics of Filippov
system (2.2), and the complete dynamical behavior of subsystem S 1 has been discussed in more detail
in the literature [28]. That is to say, subsystem S 1 always exists with a trivial equilibrium R0

S 1
(0, 0)

which is unstable, and a boundary equilibrium R1
S 1

(K, 0) which is globally stable if δ
ηβ−δω

≥ K or δ
ηβ−δω

<

0holds true. Meanwhile, subsystem S 1 exists with a positive equilibrium R2
S 1

(
δ

ηβ−δω
, rη(Kηβ−Kδω−δ)

K(ηβ−δω)2

)
if and

only if 0 < δ
ηβ−δω

< K, which is a globally stable node or focus provided that ωK ≤ ηβ+δω

ηβ−δω
. Otherwise,

it is an unstable node or focus and there exists a unique and stable limit cycle.
However, the dynamical behavior of subsystem S 2 has not been addressed so far because the

constant releasing rate will bring some challenges for qualitative analysis. Although a similar model
was investigated in reference [31], we realize that the sign of the constant τ (minus τ was used in [31])
could result in different dynamics including the existence and stability of equilibria and various
bifurcations. Thus, we first carry out qualitative analyses for subsystem S 2 in the following.

3. The dynamics of subsystem S 2

In this section, we will investigate the dynamical behavior of subsystem S 2 and focus on the effect
of parameter τ on the dynamics, i.e., the effect of the control strategy (releasing natural enemies) in the
pest control. For convenience, we rewrite the subsystem S 2 as follows:

dx(t)
dt

= rx −
r
K

x2 −
βxy

1 + ωx
− αx � P1(x, y),

dy(t)
dt

=
ηβxy

1 + ωx
− δ1y + τ � Q1(x, y),

(3.1)

here we assume that r > α.

3.1. Existence and stability of the equilibria of system (3.1)

Firstly, let us begin to determine the location and number of the equilibria of system (3.1) in R2
+.

It is easy to check that the point R0
S 2

(0, τ
δ1

) is always the boundary equilibrium of system (3.1). In the
following, we mainly focus on the existence of the positive equilibria of system (3.1).

It is clear that equations P1(x, y) = 0,
Q1(x, y) = 0,

(3.2)

have at most two positive real solutions:

x1 �
KR2 − K

√
∆

2rR0
, y1 � (r1 −

r
K

x1)
1 + ωx1

β

and

x2 �
KR2 + K

√
∆

2rR0
, y2 � (r1 −

r
K

x2)
1 + ωx2

β
,

where

r1 � r − α, R0 � ηβ − δ1ω, R1 � βτ − r1δ1, R2 � r1(ηβ − δ1ω) +
rδ1

K
and ∆ � R2

2 +
4rR0R1

K
.
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That is to say, system (3.1) has at most two positive equilibria in R2
+, denoted by R1

S 2
(x1, y1) and

R2
S 2

(x2, y2). And we have the following simple theorem which describes the number and location of
equilibria of system (3.1). The proof is omitted.

Lemma 3.1. For system (3.1), with R0, R1, R2 and ∆ defined as above, we have:

(i) when R0 > 0, system (3.1) has at most two equilibria in R2
+ and it has the following possibilities:

(a) if R1 > 0 holds, then system (3.1) has a unique equilibrium R0
S 2

;

(b) if R1 < 0 holds, then system (3.1) has two equilibria R0
S 2

and R1
S 2

;

(c) if R1 = 0 holds, then R0
S 2

and R1
S 2

coalesce at a boundary equilibrium of multiplicity 2.

(ii) when R0 < 0, system (3.1) has at most three equilibria in R2
+ and it has the following possibilities:

(a) if R1 > 0, R2 < 0 and ∆ > 0 hold, then system (3.1) has three equilibria R0
S 2

, R1
S 2

and R2
S 2

;

(b) if R1 > 0, R2 < 0 and ∆ = 0 hold, then R1
S 2

and R2
S 2

coalesce at a positive equilibrium of
multiplicity 2, which coexists with R0

S 2
;

(c) if R1 > 0, R2 < 0 and ∆ < 0 hold, then system (3.1) has a unique equilibrium R0
S 2

;

(d) if R1 < 0 holds, then system (3.1) has two equilibria R0
S 2

and R1
S 2

;

(e) if R1 = 0 and R2 < 0 hold, then R0
S 2

and R2
S 2

coalesce at a boundary equilibrium of
multiplicity 2, which coexists with R1

S 2
;

(f) if R1 = 0 and R2 > 0 hold, then R0
S 2

and R1
S 2

coalesce at a boundary equilibrium of
multiplicity 2, and R2

S 2
disappears in this case;

(g) if R1 = 0 and R2 = 0 hold, then R0
S 2

, R1
S 2

and R2
S 2

coalesce at a boundary equilibrium of
multiplicity 3.

Next we discuss the possible phase portraits of system (3.1) and analyze the stability of equilibria
according to Lemma 3.1.

3.1.1. Case (i): R0 > 0

In this case, system (3.1) has at most two equilibria R1
S 2

(x1, y1) and R0
S 2

(0, τ
δ1

) in R2
+, and we can get

the following results.

Theorem 3.1. If R0 > 0 and R1 > 0, then system (3.1) exists with a boundary equilibrium R0
S 2

in
R2

+, which is a globally asymptotically stable node.

Proof. In this case, system (3.1) only has a boundary equilibrium R0
S 2

(0, τ
δ1

) in R2
+. And the Jacobian

matrix at R0
S 2

is given by

AR0
S 2

=

r1 −
2rx
K −

βy
(1+ωx)2 −

βx
1+ωx

ηβy
(1+ωx)2

ηβx
1+ωx − δ1

 ∣∣∣∣∣∣
R0

S 2

=

r1 −
βτ

δ1
0

ηβτ

δ1
−δ1

 .
The corresponding characteristic equation is

|AR0
S 2
− λE| = λ2 + pR0

S 2
λ + qR0

S 2
= 0,
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where qR0
S 2
� βτ−r1δ1 = R1 > 0, pR0

S 2
� δ1+

βτ

δ1
−r1 > 0 and p2

R0
S 2

−4qR0
S 2

= (δ1−
βτ

δ1
+r1)2 > 0. This means

that R0
S 2

is a locally asymptotically stable node. Especially, when τ = 0, we have qR0
S 2

= −r1δ1 < 0

which indicates that R0
S 2

is an unstable saddle.
Now we begin to discuss the global stability of R0

S 2
. In the first quadrant, the two non-zero isoclines

L1
S 2

and L2
S 2

of system (3.1) divide R2
+ into four regions:

I = {(x, y)|P1(x, y) < 0, Q1(x, y) < 0}; II = {(x, y)|P1(x, y) > 0, Q1(x, y) > 0};

III =

{
(x, y)|P1(x, y) < 0, Q1(x, y) > 0, x ≤

δ1

R0

}
;

IV =

{
(x, y)|P1(x, y) < 0, Q1(x, y) > 0, x >

δ1

R0

}
,

at which the signs of two functions P1(x, y) and Q1(x, y) are clear.
It is known that system (3.1) does not exist with any other equilibria in R2

+ except R0
S 2

. From
Figure 1, we can see that the trajectory {x(t, x0, y0), y(t, x0, y0)} of system (3.1) will approach the
boundary equilibrium R0

S 2
directly, or intersects with the non-zero isoclines L1

S 2
or L2

S 2
firstly, and then

tends to the boundary equilibrium R0
S 2

as t → +∞ for any initial value (x0, y0) ∈ I
⋃

II
⋃

III.

Figure 1. Illustration of the global stability of the boundary equilibrium R0
S 2

, where the
vector field of system (3.1) and its trajectories are shown.

By a simple calculation, we have

∣∣∣∣∣dy
dx

∣∣∣∣∣ =

∣∣∣∣∣Q1(x, y)
P1(x, y)

∣∣∣∣∣ =

∣∣∣∣∣ηβ − δ1ω

β

∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣
1 −

δ1
ηβ−δ1ω

x +
δ1

ηβ−δ1ω
( τβ+ τω

β x)

xy

1 +
rω
βK x2−

r1ω−
r
K

β −
r1
β

xy

∣∣∣∣∣∣∣∣∣∣ <
R0

β

for all (x, y) ∈ IV and y � 1. That is to say, the trajectories of system (3.1) can not always remain
to the right of the line x = δ1

R0
, which indicates that the trajectories starting from the region IV must
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cross the line x = δ1
R0

and enter into the region III, and then approach the boundary equilibrium R0
S 2

as
t → +∞. Thus, the boundary equilibrium R0

S 2
is a globally stable node. This completes the proof.

Theorem 3.2. If R0 > 0 and R1 = 0, then system (3.1) does not exist with a positive equilibrium,
and the boundary equilibrium R0

S 2
is a saddle-node of codimension 1.

Proof. Note that if R1 = 0, then the boundary equilibrium R0
S 2

collides with the positive equilibrium
R1

S 2
in R2

+, which is a high order singular point. Translating the boundary equilibrium R0
S 2

(0, τ
δ1

) to the
origin by making the change of variables u = x and v = y − τ

δ1
, renaming (u, v) as (x, y) and expanding

the right-hand side of system (3.1) in a Taylor series about the origin, then we can obtain
dx
dt

= (r1ω −
r
K

)x2 − βxy − r1ω
2x3 + βωx2y + M1(x, y),

dy
dt

= r1ηx − δ1y − r1ηωx2 + ηβxy + r1ηω
2x3 − ηβωx2y + M2(x, y),

(3.3)

where M1(x, y) and M2(x, y) are C∞ functions in (x, y) at least of the fourth order.
Notice that δ1 > 0, making the following change of variables

u = x, v = r1ηx − δ1y

and renaming (u, v) as (x, y), then system (3.3) becomes

dx
dt

= −
R2

δ1
x2 +

β

δ1
xy +

r1ωR0

δ1
x3 −

βω

δ1
x2y + M3(x, y) � P2(x, y),

dy
dt

= −δ1y −
r1η

δ1
(R2 + δ1R0)x2 + (1 +

r1

δ1
)ηβxy + r1ηωR0(1 +

r1

δ1
)x3 − ηβω(1 +

r1

δ1
)x2y + M4(x, y)

� Q2(x, y) − δ1y,
(3.4)

where R2 > 0, and M3(x, y), M4(x, y) are C∞ functions in (x, y) at least of the fourth order. Solving the
equation −δ1y + Q2(x, y) = 0, we can obtain the implicit solution

φ(x) � −
r1η

δ2
1

(R2 + δ1R0)x2 + O(x3). (3.5)

where R2 + δ1R0 > 0. And substituting φ(x) into P2(x, y), which can be written in the form

ψ(x) � P2(x, φ(x)) = −
R2

δ1
x2 + O(x3). (3.6)

According to Theorems 7.1–7.3 in [30], it is easy to obtain that R0
S 2

is a saddle-node of
codimension 1 if R0 > 0 and R1 = 0. The proof is completed.

In the following, we discuss the stability of the positive equilibria of system (3.1). For convenience,
we first denote

R3 �
K(ηβ − δ1ω −

r
K + r1ω)x1

Kδ1 + 2rωx2
1

and R4 �
(ηβ − δ1ω −

r
K + r1ω)

√
2rδ1ωK

4rδ1ω
.

Moreover, we have the following main results.
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Theorem 3.3. If R0 > 0 and R1 < 0, then system (3.1) has an unstable boundary equilibrium R0
S 2

and a positive equilibrium R1
S 2

in R2
+. Further, if R3 < 1, then R1

S 2
is a locally stable node (or a focus),

and it is globally stable provided that R4 < 1.

Proof. For the boundary equilibrium R0
S 2

(0, τ
δ1

), we have

|AR0
S 2
− λE| = λ2 + pR0

S 2
λ + qR0

S 2
= 0

with qR0
S 2

= βτ − r1δ1 = R1 < 0, which indicates that R0
S 2

is an unstable saddle.

For the positive equilibrium R1
S 2

(x1, y1), the characteristic equation is as follows:

|AR1
S 2
− λE| = λ2 + pR1

S 2
λ + qR1

S 2
= 0, (3.7)

where

pR1
S 2

=
1

1 + ωx1

[
2rω
K

x2
1 − (ηβ − δ1ω −

r
K

+ r1ω)x1 + δ1

]
(3.8)

and

qR1
S 2

=
2rR0x1

K(1 + ωx1)

[
KR2

2rR0
− x1

]
. (3.9)

Obviously, qR1
S 2
> 0. It follows from (3.8) that if

ηβ − δ1ω −
r
K

+ r1ω <
Kδ1 + 2rωx2

1

Kx1

holds true, which is equivalent to the following inequality

K(ηβ − δ1ω −
r
K + r1ω)x1

Kδ1 + 2rωx2
1

< 1, i.e., R3 < 1,

then pR1
S 2
> 0 and consequently R1

S 2
is a locally asymptotically stable node (or focus).

In order to show the global stability of R1
S 2

, for simplifying the calculations, we consider a
polynomial system, which has the same equilibria R0

S 2
, R1

S 2
, R2

S 2
and dynamics as system (3.1) for

x > − 1
ω

. To do this, multiplying both sides of system (3.1) by the function 1+ωx
β

and introducing a new
time variable τ by dt = 1+ωx

β
dτ yield the following polynomial system:

dx(t)
dτ

= x(a1 + a2x − a3x2 − y) � P2(x, y),

dy(t)
dτ

= b1xy − b2y + b3 + b4x � Q2(x, y),
(3.10)

where a1 = r1
β
, a2 =

r1ω−
r
K

β
, a3 = rω

βK , b1 =
ηβ−δ1ω

β
, b2 = δ1

β
, b3 = τ

β
, b4 = τω

β
, and a1, a3, b1, b2, b3, b4 are all

positive constants, the signs of a2 could vary.
Let B(x, y) = x−1 be the Dulac function [30], by a simple calculation, we can obtain that

∂BP2(x, y)
∂x

=
∂(a1 + a2x − a3x2 − y)

∂x
= a2 − 2a3x,
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∂BQ2(x, y)
∂y

=
∂(b1y − b2x−1y + b3x−1 + b4)

∂y
= b1 − b2x−1,

D �
∂BP2

∂x
+
∂BQ2

∂y
= −x−1[2a3x2 − (a2 + b1)x + b2] � −x−1g(x). (3.11)

It follows from (3.11) that if

∆2 � (a2 + b1)2 − 8a3b2 = (
ηβ − δ1ω −

r
K + r1ω

β
)2 −

8rδ1ω

β2K
< 0,

i.e.,

−2

√
2rδ1ω

K
< ηβ − δ1ω −

r
K

+ r1ω < 2

√
2rδ1ω

K
,

then the function g(x) = 2a3x2−(a2 +b1)x+b2 > 0 for all x ∈ R. That is to say, D < 0 for all (x, y) ∈ R2
+.

Note that for the function g(x), it is easy to see that when a2 + b1 < 0, i.e., ηβ − δ1ω −
r
K + r1ω < 0, we

have g(x) > 0 for all x ≥ 0 and consequently D < 0 for all (x, y) ∈ R2
+.

Therefore, according to the above analyses, we can conclude that if

ηβ − δ1ω −
r
K

+ r1ω < 2

√
2rδ1ω

K
,

which is equivalent to the inequality

(ηβ − δ1ω −
r
K + r1ω)

√
2rδ1ωK

4rδ1ω
< 1, i.e., R4 < 1,

then D < 0, and consequently system (3.10) does not exist with any periodic solutions lying in the
interior of R2

+, which indicates that R1
S 2

is globally stable, as shown in Figure 2A. This completes the
proof.

Remark It is easy to see that the condition R4 < 1 is stronger than the inequality R3 < 1, which
reveals that the local stability of the equilibrium R1

S 2
does not indicate the global stability. However,

extensive numerical investigations show that R1
S 2

is a globally stale equilibrium provided that R3 < 1,
but unfortunately we have no way to prove it at present.

Figure 2. Illustrations of the global stability of the positive equilibrium R1
S 2

and the existence
of a limit cycle. The parameter values are fixed as follows: K = 8, r = 3, β = 3, δ1 = 2,
ω = 2/3, η = 5/6. A: α = 1.2, τ = 0.8 with R4 < 1. B: α = 0.8, τ = 0.2 with R3 > 1.
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Theorem 3.4. If R3 > 1 holds true, then system (3.10) has at least one limit cycle in the interior of
R2

+.

Proof. Based on the analyses in Theorem 3.3, we know that if R3 > 1, then the positive equilibrium
R1

S 2
is an unstable focus (or node). To show the existence of a limit cycle, we define the following four

lines:
L1 : x −

r1K
r

= 0; L2 : x = 0; L3 : y = 0 and L4 : x +
1
b1

y + P = 0,

which form a closed region G, where P is a constant and the positive equilibrium R1
S 2

belongs to G.
For all x ∈

[
0, r1K

r

]
and y > 0, we have

dL1

dt

∣∣∣∣
x=

r1K
r

= −
r1K

r
y < 0,

which indicates that if the trajectories of system (3.10) intersect with the line L1, it will pass from the
right side of the line L1 to the left, entering into the region G. Moreover, it follows from

dL3

dt

∣∣∣∣
y=0

= b3 + b4x > 0

that if the trajectories of system (3.10) intersect with the line L3, it will pass from the below of the line
L3 to the top, entering into the region G. Further, by a simple calculation, we have

dL4

dt

∣∣∣∣
y=−b1(x+P)

= x
(
a1 + a2x − a3x2 +

b4

b1

)
+ (1 + b2) P +

b3

b1
.

Thus, if we choose the constant P such that P < −max
{

1
1+b2

[x(a1 + a2x − a3x2 + b4
b1

) + b3
b1

]
}
, then

dL4
dt

∣∣∣∣
y=−b1(x+P)

< 0. That is to say, if the trajectories of system (3.10) intersect with the line L4, it will

pass from the top of the line L4 to below it, entering into the region G.
Note that L2 is one of the trajectories of system (3.10), which approaches the boundary equilibrium

R0
S 2

and the trajectories initiating from region G will remain in it, i.e., L1, L2, L3 and L4 form a
Bendixson curve. Thus, according to the Poincaré-Bendixson Theorem [30], system (3.10) has at least
one limit cycle around the positive equilibrium R1

S 2
, as shown in Figure 2B. This completes the proof.

Unfortunately, we can not employ the main results shown in literature [30] to address the uniqueness
of the limit cycle. Therefore, in the following, we further consider the uniqueness and stability of the
limit cycle through bifurcation analyses in subsection 3.2.

3.1.2. Case (ii): R0 < 0

In this case, system (3.1) has at most three equilibria in R2
+ including two positive equilibria

R1
S 2

(x1, y1) and R2
S 2

(x2, y2), and a boundary equilibrium R0
S 2

(0, τ
δ1

) which is a stable node if R1 > 0 and
it is an unstable saddle if R1 < 0. Based on the characteristic equation (3.7), for R1

S 2
and R2

S 2
, we have

pR1
S 2

=
1

1 + ωx1

[
2rw
K

x2
1 − (ηβ − δ1ω −

r
K

+ r1ω)x1 + δ1

]
, qR1

S 2
=

x1
√

∆

1 + ωx1
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and

pR1
S 2

=
1

1 + ωx2

[
2rw
K

x2
2 − (ηβ − δ1ω −

r
K

+ r1ω)x2 + δ1

]
, qR1

S 2
= −

x2
√

∆

1 + ωx2
.

Obviously, qR1
S 2
> 0 and qR2

S 2
< 0. That is to say, R2

S 2
is an unstable saddle and R1

S 2
is an elementary

and not saddle-type equilibrium. Further, we have the following results:

Theorem 3.5. If R0 < 0, R1 > 0, R2 < 0 and ∆ > 0, then system (3.1) exists with three equilibria:
R0

S 2
, R1

S 2
and R2

S 2
. Further, R0

S 2
is a locally stable node, R2

S 2
is an unstable saddle and R1

S 2
is a node (or a

focus ) which is locally stable provided R3 < 1.

Theorem 3.6. If R0 < 0, R1 > 0, R2 < 0 and ∆ = 0, then system (3.1) exists with a locally stable
boundary equilibrium R0

S 2
. Moreover, R1

S 2
collides with R2

S 2
, which is a saddle-node of codimension 1

when R3 , 1.

Theorem 3.7. If R0 < 0, R1 > 0, R2 < 0 and ∆ < 0, then system (3.1) exists with a boundary
equilibrium R0

S 2
, which is a globally asymptotically stable node.

Theorem 3.8. If R0 < 0 and R1 < 0, then system (3.1) has an unstable boundary equilibrium R0
S 2

and a positive equilibrium R1
S 2

. Further, if R3 < 1, then R1
S 2

is a locally stable node (or a focus), and it
is globally stable provided that R4 < 1.

Theorem 3.9. If R0 < 0 and R1 = 0, then the boundary equilibrium R0
S 2

is a high order singular
point. More precisely,

(i) R0
S 2

is a saddle-node of codimension 1 if R2 , 0;

(ii) R0
S 2

is an unstable saddle of codimension 2 if R2 = 0.

Proof. The proof of the conclusion (i) is similar to that for Theorem 3.2, we discuss the conclusion
(ii) in the following.

For system (3.4), when R2 = 0, then it can be represented as

dx
dt

=
β

δ1
xy +

r1ωR0

δ1
x3 −

βω

δ1
x2y + M3(x, y) � P2(x, y),

dy
dt

= −δ1y − r1ηR0x2 + (1 +
r1

δ1
)ηβxy + r1ηωR0(1 +

r1

δ1
)x3 − ηβω(1 +

r1

δ1
)x2y + M4(x, y)

� Q2(x, y) − δ1y,

(3.12)

Solving the equation −δ1y + Q2(x, y) = 0, we obtain the implicit solution

φ(x) � −
r1ηR0

δ1
x2 + O(x3). (3.13)

Then substituting φ(x) into P2(x, y), which can be written in the form

ψ(x) � P2(x, φ(x)) = −
r1R2

0

δ2
1

x3 + O(x4). (3.14)

According to Theorems 7.1–7.3 in [30], it is easy to obtain that R0
S 2

is an unstable saddle of
codimension 2 if R0 < 0, R1 = 0 and R2 = 0. The proof is completed.
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3.2. The Bifurcations of system (3.1)

In this section, we will discuss various possible bifurcations of system (3.1) including transcritical,
saddle-node, Hopf and Bogdanov-Takens bifurcations.

3.2.1. Transcritical bifurcation

It follows from Lemma 3.1 and Theorems 3.1–3.3, that the positive equilibrium R1
S 2

collides with
the boundary equilibrium R0

S 2
when R1 = 0, and solving R1 = 0 with respect to τ, we have τ∗0 = r1δ1

β
.

Moreover, if τ < τ∗0, then system (3.1) has two equilibria: R1
S 2

which is a stable node (or focus)
provided that R3 < 1, and R0

S 2
which is an unstable saddle. If τ > τ∗0, then R1

S 2
becomes negative which

is unstable, and R0
S 2

becomes a stable node, which indicates that the transcritical bifurcation occur at
τ∗0, as shown in Figure 3. Further, we can obtain that

T B =
{
(r, α, β, η, ω, τ, δ1)| R0 > 0, τ = τ∗0

}
is a transcritical bifurcation surface. This indicates that there exists a critical releasing rate τ∗0 such that
the pests and natural enemies coexist in the form of a positive equilibrium or a periodic orbit with a
finite period when the releasing rate τ < τ∗0, and the pest population goes extinct when the releasing
rate τ > τ∗0.

Figure 3. Bifurcation diagrams with respect to parameter τ, where T B denotes the
transcritical bifurcation, and the solid black curve indicates that the equilibrium is stable,
otherwise it is unstable. The parameter values are fixed as follows: K = 7, r = 3, β = 2.8,
δ1 = 2, ω = 0.66, η = 0.88, α = 0.65. B: τ = 1.35. C: τ = 2.

3.2.2. Saddle-node bifurcation

From Lemma 3.1 and Theorems 3.5–3.7, we can obtain that

S N = {(r, α, β, η, ω, τ, δ1,K)| R0 < 0,R1 > 0,R2 < 0 and ∆ = 0}

is a saddle-node bifurcation surface. When the parameters pass from the one side of the surface to
the other, the number of positive equilibria of system (3.1) changes from zero to two, and the two
positive equilibria are saddle and node, as shown in Figure 4. Especially, if we choose τ as bifurcation

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7327–7361.



7340

parameter and solving ∆ = 0 with respect to τ, we have τ∗1 =
K[ rδ1

K −r1R0]2

4βrR0
and the above saddle-node

bifurcation surface can be represented as

S N =
{
(r, α, β, η, ω, τ, δ1,K)| R0 < 0,R1 > 0,R2 < 0 and τ = τ∗1

}
.

The saddle-node bifurcation reveals that if the releasing rate τ < τ∗1, then there exist some parameter
spaces such that the pests and natural enemies may coexist in the form of a positive equilibrium or a
periodic orbit with a finite period for different initial values, and if the releasing rate τ > τ∗1, then the
pest population will be driven to extinction, as shown in Figure 4B,C.

Figure 4. Bifurcation diagrams with respect to parameter τ, where S N denotes the saddle-
node bifurcation, and the solid black curve indicates that the equilibrium is stable, otherwise
it is unstable. The parameter values are fixed as follows: K = 8, r = 3, β = 2, δ1 = 2,
ω = 1.55, η = 0.90, α = 0.95. B: τ = 2.5. C: τ = 4.

3.2.3. The Hopf bifurcation

For the characteristic equation related to the positive equilibrium R1
S 2

(x1, y1) of system (3.1), we
have

λ2 + pR1
S 2
λ + qR1

S 2
= 0, (3.15)

where

qR1
S 2

=
2rR0x1

K(1 + ωx1)

[
KR2

2rR0
− x1

]
> 0. (3.16)

and

pR1
S 2

=
1

1 + ωx1

[
2rω
K

x2
1 − (ηβ − δ1ω −

r
K

+ r1ω)x1 + δ1

]
. (3.17)

Obviously, when pR1
S 2

= 0, solving the characteristic equation (3.15), we can get two complex

eigenvalues λ1,2 = ±ib0 with b0 =
√

qR1
S 2

. That is to say, the positive equilibrium R1
S 2

is a center-type

equilibrium of the linear system of system (3.1), which indicates that system (3.1) may undergo a
Hopf bifurcation if the bifurcation parameters are chosen suitably.

We choose the releasing constant τ as the bifurcation parameter and fix all other parameters. To
determine the critical bifurcation value τ∗, we consider the equation pR1

S 2
(τ∗) = 0, i.e.,

m2(τ∗)2 + m1τ
∗ + m0 = 0, (3.18)
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where m2 =
16r2β2a2

4R2
0

K2 , m1 =
4rβR0(2a4a6−a2

5−2r1R0+
2rδ1

K )
K , m0 = a2

4[ rδ1
K − r1R0]4 + (2a4a6 − a2

5)[ rδ1
K − r1R0]2,

a4 = Kω
2rβR2

0
, a5 = K

2rR0
( r1ω−

r
K +ηβ−δ1ω

β
−

r1K
r −

δ1
R0

) and a6 = rω
2βK ( r1K

r + δ1
R0

)2 +
[
δ1
β
−

r1ω−
r
K +ηβ−δ1ω

β
( r1K

2r + δ1
2R0

)
]
.

Denote ∆3 � m2
1 − 4m0m2, then for the existence of critical value τ∗ we have the following results:

Lemma 3.2. The existence of parameter τ∗ can be described as follows:

(i) if ∆3 < 0, then τ∗ does not exist.

(ii) if ∆3 = 0 and m1 < 0, then there exists a unique τ∗.

(iii) if ∆3 > 0, m0 = 0 and m1 < 0, then there exists a unique τ∗.

(V) if ∆3 > 0, m0 < 0, then there exists a unique τ∗.

(IV) if ∆3 > 0, m0 > 0 and m1 < 0, then there exist two critical values of τ∗.

Based on Lemma 3.2, we assume that there exists at least a critical value τ∗ such that pR1
S 2

(τ∗) = 0,
and then address the Hopf bifurcation, i.e., we have the following main results:

Theorem 3.10. For system (3.1), assume that there exists a critical value τ∗ > 0 such that pR1
S 2

(τ∗) =

0, then system (3.1) undergoes a Hopf bifurcation and there is a unique limit cycle in the neighborhood
of R1

S 2
provided R4 > 1.

Proof. Let λ = a(τ) + ib(τ) be a complex root of the characteristic equation (3.15), where a(τ∗) = 0
and b(τ∗) = b0. Substituting it into the characteristic equation (3.15), it becomes

[a(τ) + ib(τ)]2 + pR1
S 2

[a(τ) + ib(τ)] + qR1
S 2

= 0,

which can be represented as a(τ)2 − b(τ)2 + pR1
S 2

(τ)a(τ) + qR1
S 2

(τ) = 0,

2a(τ)b(τ) + pR1
S 2

(τ)b(τ) = 0.
(3.19)

Taking the partial derivative of (3.19) with respect to τ, we can obtain
2
[
a(τ)a′(τ) − b(τ)b′(τ)

]
+ pR1

S 2
(τ)a′(τ) + p′R1

S 2

(τ)a(τ) + q′R1
S 2

(τ) = 0,

2
[
a′(τ)b(τ) + a(τ)b′(τ)

]
+ p′R1

S 2

(τ)b(τ) + pR1
S 2

(τ)b′(τ) = 0.

It follows from a(τ∗) = 0, pR1
S 2

(τ∗) = 0 and b(τ∗) = b0 that we have

a′(τ)|τ=τ∗ = −
1
2

p′R1
S 2

(τ)

∣∣∣∣∣∣
τ=τ∗

, (3.20)

which is called the transversality condition [33, 34].
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If a′(τ)|τ=τ∗ , 0, then the transversality condition (3.20) is satisfied, which indicates that the Hopf
bifurcation takes place and there exists a unique limit cycle in the neighborhood of the positive
equilibrium R1

S 2
. By a simple calculation, we can obtain that

a′(τ)|τ=τ∗ = −
1

2(1 + ωx1)

[
4rw
K

x1 − (ηβ − δ1ω −
r
K

+ r1ω)
]

dx1

dτ

∣∣∣∣∣∣
τ=τ∗

= −
2rω

K(1 + ωx1)

[
(x1 −

K(ηβ − δ1ω −
r
K + r1ω)

4rω

]
dx1

dτ

∣∣∣∣∣∣
τ=τ∗

,

(3.21)

where dx1
dτ

∣∣∣
τ=τ∗

= −
β√

R2
2+

4rR0R1
K

< 0.

It follows from pR1
S 2

= 1
1+ωx1

[
2rω
K x2

1 − (ηβ − δ1ω −
r
K + r1ω)x1 + δ1

]
that x1 is a positive real root of

the following equation:

2rω
K

x2
1 − (ηβ − δ1ω −

r
K

+ r1ω)x1 + δ1 = 0 (3.22)

at τ = τ∗, which indicates that

∆4 � (ηβ − δ1ω −
r
K

+ r1ω)2 −
8rωδ1

K
≥ 0 and ηβ − δ1ω −

r
K

+ r1ω > 0

in the above equation. Solving equation (3.22) yields two roots, denoted by

x11 =
K(ηβ − δ1ω −

r
K + r1ω)

4rω
+

K
√

∆4

4rω
and x12 =

K(ηβ − δ1ω −
r
K + r1ω)

4rω
−

K
√

∆4

4rω
.

If x1 = x11, then we have

a′(τ)|τ=τ∗ = −
K
√

∆4

4rω
dx1

dτ

∣∣∣∣∣∣
τ=τ∗

. (3.23)

If x1 = x12, then we have

a′(τ)|τ=τ∗ =
K
√

∆4

4rω
dx1

dτ

∣∣∣∣∣∣
τ=τ∗

. (3.24)

Therefore, it follows from (3.23) and (3.24) that if ∆4 > 0, which is equivalent to the inequality

(ηβ − δ1ω −
r
K + r1ω)

√
2rδ1ωK

4rδ1ω
> 1, i.e., R4 > 1,

then a′(τ)|τ=τ∗ , 0, and consequently the Hopf bifurcation takes place at τ = τ∗.
To determine the stability of the limit cycle and the direction of the Hopf bifurcation in this case,

we need to compute the first Liapunov coefficient l1(τ∗) [34,35] related to the positive equilibrium R1
S 2

.
To do this, we translate the origin of the coordinates to the positive equilibrium R1

S 2
of system (3.1) by

the change of variables
x̄ = x − x1, ȳ = y − y1,
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rewrite (x̄, ȳ) as (x,y) and expand the right-hand side of system (3.1) in a Taylor series about the origin,
then we can obtain 

dx
dt

= ax + by + a20x2 + 2a11xy + a30x3 + a21x2y + R1(x, y),

dy
dτ

= cx + dy + b20x2 + 2b11xy + b30x3 + b21x2y + R2(x, y),
(3.25)

where a � r1 −
2r
K x1 −

βy1
(1+ωx1)2 , b � − βx1

1+ωx1
, c � ηβy1

(1+ωx1)2 , d � −δ1 +
ηβx1

1+ωx1
, a20 � −

r
K +

βωy1
(1+ωx1)3 , a11 �

−
β

2(1+ωx1)2 , b20 � −
ηβωy1

(1+ωx1)3 , b11 �
ηβ

2(1+ωx1)2 , a30 � −
βω2y1

(1+ωx1)4 , a21 �
βω

(1+ωx1)3 , b30 �
ηβω2y1

(1+ωx1)4 , b21 � −
ηβω

(1+ωx1)3 ,
and R1(x, y) and R2(x, y) are C∞ functions in (x, y) at least of the fourth order.

Therefore, by employing the formula of the first Liapunov number l1(τ∗) at the origin of (3.25)
in [34, 35], we have

l1(τ∗) = −
rωx2

1

Kβb3
0

[
(
r1δ1

β2 −
τ

β
) +

rω(ηβ − δ1ω)
β2K

x3
1 +

βK
2rω

(
δ1

β
−
ηβ − δ1ω

β
x1)(

δ1(ηβ − δ1ω)
β2x1

+
rδ1ω

β2K
)
]

= −
rωx2

1

Kβ3b3
0

[
−R1 +

rωR0

K
x3

1 +
Kδ1R0

2rω
(
δ1

R0
− x1)(

R0

x1
+

rω
K

)
]
.

Moreover, if l1(τ∗) < 0, then system (3.1) undergoes a supercritical Hopf bifurcation at τ = τ∗ and there
is a unique and stable limit cycle [35]. If l1(τ∗) > 0, then system (3.1) undergoes a subcritical Hopf
bifurcation at τ = τ∗ and there is a unique and unstable limit cycle [35]. This completes the proof.

To confirm the main results obtained here, we choose τ as the bifurcation parameter and fix the
others as those shown in Figure 5. Bifurcation diagrams shown in Figure 5A,B indicate there exist
Hopf bifurcation points τ∗i (i = 2, 3, 4) marked as HB. Moreover, by a simple calculation, we have
τ∗4 = 0.27, pR1

S 2
(τ∗4) = 0, a

′

R1
S 2

(τ)|τ=τ∗4 , 0 and l1(τ∗4) < 0, i.e., system (3.1) undergoes a supercritical Hopf

bifurcation at τ∗4 and it has a stable limit cycle in the neighborhood of R1
S 2

, as shown in Figure 5B,C.

Figure 5. Bifurcation diagrams with respect to parameter τ, where HB denotes the Hopf
bifurcation and S N represents the saddle-node bifurcation, and the solid black curve indicates
that the equilibrium is stable, otherwise it is unstable. The parameter values are fixed as
follows: K = 8, r = 3, β = 5.5, δ1 = 1, ω = 3, η = 0.5. A: α = 1.0. B: α = 1.5. C: α = 1.5,
τ = 0.27.
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3.2.4. The Bogdanov-Takens bifurcation

From Lemma 3.1 and Theorem 3.6, we can obtain that if R0 < 0, R1 > 0, R2 < 0 and ∆ = 0, then
R1

S 2
collides with R2

S 2
as shown in Figure 4-A, and for convenience we still denote it by R1

S 2
. According

to the characteristic equation (3.7), by a simple calculation, we have
pR1

S 2
=

1
1 + ωx1

[
2rw
K

x2
1 − (ηβ − δ1ω −

r
K

+ r1ω)x1 + δ1

]
,

qR1
S 2

=
2rR0x1

K(1 + ωx1)

[
KR2

2rR0
− x1

] (3.26)

with x1 = r1K
2r + δ1

2(ηβ−δ1ω) = KR2
2rR0

. Note that we have qR1
S 2

= 0 in this case. And if pR1
S 2

= 0 (i.e.,R3 = 1),

then the characteristic equation (3.7) related to the positive equilibrium R1
S 2

has two zero eigenvalues.
This suggests that system (3.1) may admit a Bogdanov-Takens bifurcation [30, 31, 34] under a small
parameter perturbation if the bifurcation parameters are chosen suitably and we confirm this by giving
the following theorem.

Theorem 3.11. Suppose pR1
S 2

= 0 and qR1
S 2

= 0, then the positive equilibrium R1
S 2

(x1, y1) of system

(3.1) is a cusp of codimension 2 if e f , 0, where e = 2b11+2a20−
2aa11

b and f = aa20−
2a2a11

b +bb20−2ab11.

Proof. Assume that pR1
S 2

= 0 and qR1
S 2

= 0, translating the positive equilibrium R1
S 2

(x1, y1) to the
origin by the change of variables u = x − x1 and v = y − y1, renaming (u, v) as (x, y) and expanding the
right-hand side of system (3.1) in a Taylor series about the origin, then we can obtain

dx
dt

= ax + by + a20x2 + 2a11xy + R3(x, y),

dy
dt

= cx + dy + b20x2 + 2b11xy + R4(x, y),
(3.27)

where R3(x, y) and R4(x, y) are C∞ functions in (x, y) at least of the third order.
Notice that b , 0, making the following change of variables

u = x, v = ax + by

and renaming (u, v) as (x, y), then system (3.27) becomes
dx
dt

= y + (a20 −
2aa11

b
)x2 +

2a11

b
xy + R5(x, y),

dy
dt

= (aa20 −
2a2a11

b
+ bb20 − 2ab11)x2 + (

2aa11

b
+ 2b11)xy + R6(x, y),

(3.28)

where R5(x, y) and R6(x, y) are C∞ functions in (x, y) at least of the third order. Let

u = x −
a11

b
x2, v = y + (a20 −

2aa11

b
)x2

and rename (u, v) as (x, y), then system (3.28) can be written as
dx
dt

= y + R7(x, y),

dy
dt

= (aa20 −
2a2a11

b
+ bb20 − 2ab11)x2 + (2b11 + 2a20 −

2aa11

b
)xy + R8(x, y),

(3.29)
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which can be represented as 
dx
dt

= y + R7(x, y),

dy
dt

= exy + f x2 + R8(x, y),

where e = 2b11 + 2a20 −
2aa11

b and f = aa20 −
2a2a11

b + bb20 − 2ab11, and R7(x, y) and R8(x, y) are C∞

functions in (x, y) at least of the third order.
Therefore, if e f , 0, then the positive equilibrium R1

S 2
of system (3.1) is a cusp of codimension 2 by

the qualitative theory of ordinary differential equations and the theory of differential manifolds [30,34].
This completes the proof.

Further, we choose τ and δ1 as bifurcation parameters, and suppose that there exist parameters
τ∗ > 0 and δ∗1 > 0 such that pR1

S 2
= 0 and qR1

S 2
= 0, i.e.,

2rω
K

[
rδ∗1 + Kr1(ηβ − δ∗1ω)

2r(ηβ − δ∗1ω)

]2

− (ηβ − δ∗1ω −
r
K

+ r1ω)
[
rδ∗1 + Kr1(ηβ − δ∗1ω)

2r(ηβ − δ∗1ω)

]
+ δ∗1 = 0,

4r
K

(βτ∗ − r1δ
∗
1)(ηβ − δ∗1ω) +

[
r1(ηβ − δ∗1ω) +

rδ∗1
K

]2

= 0.

Note that the existence of (τ∗, δ∗1) can be easily confirmed by numerical investigations. We study the
dynamical behavior of system (3.1) when parameters τ and δ1 vary in a small neighborhood of (τ∗, δ∗1),
and analyze the local representations of the bifurcation curves in a small neighborhood of the positive
equilibrium R1

S 2
.

Theorem 3.12. Suppose e f , 0 at the positive equilibrium R1
S 2

, then system (3.1) undergoes a
Bogdanov-Takens bifurcation in a small neighborhood of R1

S 2
as (τ, δ1) varies near (τ∗, δ∗1) provided

that ae + 2 f , 0, and system (3.1) has the following bifurcation behaviors in a small neighborhood of
R1

S 2
:

(i) the saddle-node bifurcation curve: S N = {(ε1, ε2)| ge4

f 3
1

= 0};

(ii) the Hopf bifurcation curve: HB = {(ε1, ε2)| ge4

f 3
1

+ h2e4

f 4
1

= 0, he2

f 2
1
> 0};

(iii) the homoclinic bifurcation curve: HL = {(ε1, ε2)| ge4

f 3
1

+ 49
25

h2e4

f 4
1

= 0, he2

f 2
1
> 0}.

Proof. First of all, let δ1 = δ∗1 − ε1 and τ = τ∗ − ε2, then system (3.1) can be represented as
dx
dt

= r1x −
r
K

x2 −
βxy

1 + ωx
,

dy
dt

=
ηβxy

1 + ωx
− (δ∗1 − ε1)y + (τ∗ − ε2).

(3.30)

Translating the positive equilibrium R1
S 2

(x1, y1) to the origin by the change of variables x̄ = x − x1 and
ȳ = y − y1, renaming (x̄, ȳ) as (x, y) and expanding the right-hand side of system (3.30) in a Taylor
series about the origin, then we can obtain

dx
dt

= ax + by + a20x2 + 2a11xy + R9(x, y, ε1, ε2),

dy
dt

= (ε1y1 − ε2) + cx + d1y + b20x2 + 2b11xy + R10(x, y, ε1, ε2),
(3.31)
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where d1 = (−δ∗1 + ε1) +
ηβx1

1+ωx1
, and R9(x, y, ε1, ε2) and R10(x, y, ε1, ε2) are C∞ functions in (x, y) at least

of the third order, whose coefficients depend smoothly on ε1 and ε2. Let

u = x, v = ax + by

and rename (u, v) as (x, y), then system (3.31) can be written as
dx
dt

= y + (a20 −
2aa11

b
)x2 +

2a11

b
xy + R11(x, y, ε1, ε2),

dy
dt

= b(ε1y1 − ε2) − aε1x + ε1y + (aa20 −
2a2a11

b
+ bb20 − 2ab11)x2 + (

2aa11

b
+ 2b11)xy + R12(x, y, ε1, ε2),

(3.32)
where R11(x, y, ε1, ε2) and R12(x, y, ε1, ε2) are C∞ functions in (x, y) at least of the third order, whose
coefficients depend smoothly on ε1 and ε2. Making the following change of variables

u = x −
a11

b
x2, v = y + (a20 −

2aa11

b
)x2

and renaming (u, v) as (x, y), then system (3.32) becomes
dx
dt

= y + R13(x, y, ε1, ε2),

dy
dt

= b(ε1y1 − ε2) − aε1x + ε1y + exy + f1x2 + R14(x, y, ε1, ε2),
(3.33)

where f1 = aa20 −
2a2a11

b + bb20 − 2ab11 −
aa11

b ε1 − ε1(a20 −
2aa11

b ), and R13(x, y, ε1, ε2) and R14(x, y, ε1, ε2)
are C∞ functions in (x, y) at least of the third order, whose coefficients depend smoothly on ε1 and ε2.

Next, we make the following change of variables

u = x, y = y + R13(x, y, ε1, ε2)

and rename (u, v) as (x, y), then system (3.33) becomes
dx
dt

= y,

dy
dt

= b(ε1y1 − ε2) − aε1x + ε1y + exy + f1x2 + R15(x, y, ε1, ε2),
(3.34)

where R15(x, y, ε1, ε2) is a C∞ function in (x, y) at least of the third order, whose coefficients depend
smoothly on ε1 and ε2. By setting u = x + ε1

e and v = y, renaming (u, v) as (x, y), then system (3.34)
becomes 

dx
dt

= y,

dy
dt

= g + hx + exy + f1x2 + R16(x, y, ε1, ε2),
(3.35)

where g = b(ε1y1 − ε2) +
f1ε2

1
e2 +

aε2
1

e and h = −aε1 −
2 f1ε1

e , and R14(x, y, ε1, ε2) is a C∞ function in (x, y)
at least of the third order, whose coefficients depend smoothly on ε1 and ε2. Moreover,

lim
ε j→0

f1 = aa20 −
2a2a11

b
+ bb20 − 2ab11 = f ,
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where j = 1, 2.
Notice that f1 , 0 when ε j are small. Making the change of variables one more time by setting

u =
e2

f1
x, v =

e3

f 2
1

y, τ =
e
f1

t

when ε j are small, and renaming (u, v, τ) as (x, y, t), then system (3.35) can be represented as
dx
dt

= y,

dy
dt

= µ1(ε1, ε2) + µ2(ε1, ε2)x + xy + x2 + R17(x, y, ε1, ε2),
(3.36)

where µ1(ε1, ε2) =
ge4

f 3
1

and µ2(ε1, ε2) = he2

f 2
1

, and R15(x, y, ε1, ε2) is a C∞ function in (x, y) at least of the
third order, whose coefficients depend smoothly on ε1 and ε2. Moreover, by a simple calculation, we
can obtain that ∣∣∣∣∣∣∂(µ1(ε1, ε2), µ2(ε1, ε2))

∂(ε1, ε2)

∣∣∣∣∣∣
(0,0)

= (−1)
be5

f 5 (ae + 2 f ),

when ae + 2 f , 0, the above parameter transformation is a homeomorphism in a small neighborhood
of the origin [36], and µ1 and µ2 are independent parameters.

Based on the above analyses, according to the theorems in Bogdanov and Takens [30, 31], we can
obtain the local representations of the bifurcation curves of system (3.36) in a small neighborhood of
the origin if ae + 2 f , 0, and it is equivalent to the bifurcation behavior of system (3.1) in a small
neighborhood of R1

S 2
, as shown in Theorem 3.12. This completes the proof.

4. The analysis of non-smooth Filippov system (2.2)

In this section, we mainly analyze the complete behavior of non-smooth Filippov system (2.2)
including the existence, stability of the regular/virtual equilibria, pseudo-equilibria, sliding segments,
sliding bifurcations and sliding periodic solutions.

4.1. The analysis of the sliding segments and tangent points

In order to analyze the dynamical behavior of non-smooth Filippov system (2.2) in R2
+, we need to

analyze the existence and stability of the sliding segments and tangent points firstly.
The sliding segment: by a simple calculation, we can obtain

σ(x, y) = 〈HX(x, y), f1(x, y)〉〈HX(x, y), f2(x, y)〉

= 〈(1, 0), (rx −
r
K

x2 −
βxy

1 + ωx
,
ηβxy

1 + ωx
− δy)〉

〈(1, 0), (rx −
r
K

x2 −
βxy

1 + ωx
− αx,

ηβxy
1 + ωx

− δ1y + τ)〉

= x2
(
r −

r
K

x −
βy

1 + ωx

) (
r1 −

r
K

x −
βy

1 + ωx

)
,
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where r1 = r − α and 0 < ET < K. It is easy to obtain that if x = ET , then σ(x, y) ≤ 0 is equivalent to
the inequalities

r1

β
+ (

r1ω

β
−

r
βK

)ET −
rω
βK

ET 2 ≤ y ≤
r
β

+ (
rω
β
−

r
βK

)ET −
rω
βK

ET 2.

For convenience, denote
ymin �

r1

β
+ (

r1ω

β
−

r
βK

)ET −
rω
βK

ET 2,

ymax �
r
β

+ (
rω
β
−

r
βK

)ET −
rω
βK

ET 2,

where ymin ≥ 0 for all ET ∈ (0, r1K
r ]; ymax > 0 for all ET ∈ (0,K). And if one of the following

conditions
y < ymin or y > ymax

holds true, then σ(x, y) > 0.
Therefore, the sliding segment of non-smooth Filippov system (2.2) is defined as

Σs = {(x, y)|x = ET,max{0, ymin} ≤ y ≤ ymax},

and the crossing set is given as

Σc = {(x, y)|x = ET, 0 ≤ y < max{0, ymin} or y > ymax}.

Moreover, we have

〈HX(x, y), f1(x, y)〉 = 〈(1, 0), (rx −
r
K

x2 −
βxy

1 + ωx
,
ηβxy

1 + ωx
− δy)〉

= rx −
r
K

x2 −
βxy

1 + ωx
> 0

and
〈HX(x, y), f2(x, y)〉 = 〈(1, 0), (rx −

r
K

x2 −
βxy

1 + ωx
− αx,

ηβxy
1 + ωx

− δ1y + τ)〉

= r1x −
r
K

x2 −
βxy

1 + ωx
< 0

for all points (x, y) ∈ Σs, which indicates that the sliding segment Σs is stable.
According to the Filippov convex method [32], we can obtain the following sliding dynamical

equation defined in (x, y) ∈ Σs

dy
dt

= λ(
ηβx

1 + ωx
y − δy) + (1 − λ)(

ηβx
1 + ωx

y − δ1y + τ) � F(y), x(t) = ET, (4.1)

where

λ =
〈(1, 0), ((r1 −

rx
K )x − βx

1+ωxy, ηβx
1+ωxy − δ1y + τ)〉

〈(1, 0), (−αx, (δ − δ1)y + τ)〉
= (1 −

r
α

) +
rET
αK

+
βy

α(1 + ωET )
.

The equilibrium R0(x∗, y∗) ∈ Σs of system (4.1) is called the pseudo-equilibrium of non-smooth
Filippov system (2.2).
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Tangent point: The tangent points Ti(xi, yi)(i = 1, 2) of non-smooth Filippov system (2.2) satisfy
the following equations  H(xi, yi) = 0,

〈HX(xi, yi), fi(xi, yi)〉 = 0.

By a simple calculation, we have x1 = ET, y1 = ymax;
x2 = ET, y2 = ymin.

That is to say, the sliding segment Σs is delimited by tangent points T1(x1, y1) and T2(x2, y2), which lie
between the horizontal non-zero isocline L1

S 1
of subsystem S 1 and L1

S 2
of subsystem S 2, as shown in

Figure 6A. Note that the tangent point T2 becomes an end point of sliding segment once ymin is less
than zero. Therefore, we call T2(ET, ymin) ∈ R2

+ as a tangent point if ET ∈ (0, r1K
r ]. Otherwise, if

ET ∈ ( r1K
r ,K), we call T2 as an end point of the sliding segment Σs.

Figure 6. The sliding segment Σs, tangent points and the distribution of equilibria of non-
smooth Filippov system (2.2), where L1

S 1
and L2

S 1
are non-zero isoclines of subsystem S 1; L1

S 2

and L2
S 2

are non-zero isoclines of subsystem S 2. The parameter values are fixed as follows:
K = 8, r = 3, β = 3, δ = δ1 = 2, ω = 2/3, η = 5/6, τ = 1/2, α = 1 and ET = 3.

4.2. Equilibria of non-smooth Filippov system (2.2)

For the equilibria of non-smooth Filippov system (2.2), there are four types: regular equilibrium,
virtual equilibrium, pseudo-equilibrium and boundary equilibrium, which are associated with the
discontinuity boundary Σ and have been defined in Section 2. For convenience, the equilibria of
subsystem S 1 are denoted by Ri

S 1
(xi

S 1
, yi

S 1
) and the equilibria of subsystem S 2 are denoted by

Ri
S 2

(xi
S 2
, yi

S 2
), i = 0, 1, 2.

For the existence and stability of the pseudo-equilibrium R0(x∗, y∗) of non-smooth Filippov system
(2.2), we only need to consider the existence and stability of equilibrium of system (4.1). Thus, we
consider the equation F(y) = 0, i.e.,

λ
(
ηβET

1 + ωET
y − δy

)
+ (1 − λ)

(
ηβET

1 + ωET
y − δ1y + τ

)
= 0, (4.2)
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which can be represented as

β(δ1 − δ)
α(1 + ωET )

y2 +

[
−δ − (

r
α
−

rET
αK

)(δ1 − δ) +
ηβET

1 + ωET
−

βτ

α(1 + ωET )

]
y +

rτ
α

(
1 −

ET
K

)
= 0. (4.3)

If δ1 = δ (i.e., the pesticide does not affect the predator), solving the above equation with respect to y,
we can obtain

y∗ =

τr
α

( ET
K − 1)

ηβET
1+ωET −

βτ

α(1+ωET ) − δ
,

where y∗ ∈ [max{0, ymin}, ymax] if and only if ET ∈ [x1
S 2
, x2

S 1
]. Moreover, it is easy to obtain that

F′(y∗) = −
βτ

α(1 + ωET )
+

ηβET
1 + ωET

− δ = −
τr
αy∗

(1 −
ET
K

) < 0,

which indicates that the pseudo-equilibrium R0(x∗, y∗) = R0(ET, y∗) ∈ Σs is locally stable. Further, we
have the following result.

Lemma 4.1. Suppose δ1 = δ, then non-smooth Filippov system (2.2) has a unique and stable
pseudo-equilibrium R0(ET, y∗) if and only if ET ∈ [x1

S 2
, x2

S 1
].

If δ1 > δ, it is clear that Eq (4.3) have at most two positive real roots:

y∗1 =
(r − rET

K )(1 + ωET )
2β

+
αδ + βτ − α(ηβ − δω)ET

2β(δ1 − δ)
+
α(1 + ωET )

√
∆5

2β(δ1 − δ)

and

y∗2 =
(r − rET

K )(1 + ωET )
2β

+
αδ + βτ − α(ηβ − δω)ET

2β(δ1 − δ)
−
α(1 + ωET )

√
∆5

2β(δ1 − δ)
,

where

∆5 �

[
−δ − (

r
α
−

rET
αK

)(δ1 − δ) +
ηβET

1 + ωET
−

βτ

α(1 + ωET )

]2

− 4
βrτ(δ1 − δ)(1 − ET

K )
α2(1 + ωET )

> 0. (4.4)

This indicates that there may exist two pseudo-equilibria, denoted by R1
0(ET, y∗1) and R2

0(ET, y∗2), as
shown in Figure 7. Further, by a simple calculation, we can obtain that if max{0, ymin} ≤ y∗2 < y∗1 ≤ ymax,
system (2.2) can exactly exist two pseudo-equilibria, and

F′(y∗1) =
√

∆5 and F′(y∗2) = −
√

∆5,

which indicate that R1
0(ET, y∗1) is unstable provided that it lies in the Σs, and R2

0(ET, y∗2) is locally stable
provided that it lies in the Σs.
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Figure 7. Illustrations of the existence of the pseudo-equilibria, where the parameter values
are fixed as follows: K = 8, r = 3, β = 3, ω = 2/3, η = 5/6, τ = 1/2, α = 1.4. A: ET = 1.5,
δ1 = δ = 2. B: ET = 1.85, δ1 = 2.7, δ = 2.

Note that to show how the threshold value ET affects the existence of pseudo-equilibria of
system (2.2), we first consider the function F(y) defined in (4.1) as a function of x, i.e., the curve L1 or
L2 shown in Figure 7, which can intersect with isoclines L1

S 1
and L1

S 2
at two points R1

S 2
and R2

S 1
.

Therefore, the horizontal components of both points may confirm the ranges of ET , within them
system (2.2) could exist one or two pseudo-equilibria, as shown in Figure 7. In particular, if δ1 = δ,
then there exists a pseudo-equilibrium R0(ET, y∗) ∈ Σs with ET ∈ [x1

S 2
, x2

S 1
]. If δ1 > δ, then for

ET ∈ [x1
S 2
, x2

S 1
), there exists a unique pseudo-equilibrium R1

0; for ET ∈ [x2
S 1
, ET1) with ∆5(ET1) = 0

(here ∆5 is considered as a function of ET defined by (4.4)), there exist two pseudo-equilibria R1
0 and

R2
0, shown in Figure 7B. Especially, if ET = ET1, then R1

0 collides with R2
0.

Based on the above analyses, we can now clarify the types of equilibria of non-smooth Filippov
system (2.2). It follows from the conditions of existence and stability of equilibria of subsystem S 1, as
shown in Section 2, then we consider the following three cases:

(C1) : 0 <
δ

ηβ − δω
< K; (C2) :

δ

ηβ − δω
< 0; (C3) :

δ

ηβ − δω
≥ K.

For Case (C1), according to the properties of subsystem S 2, we obtain that if R0 > 0 and R1 < 0,
then there exist two equilibria: a boundary equilibrium R0

S 2
(0, τ

δ1
) which is a unstable saddle, and a

positive equilibrium R1
S 2

(x1
S 2
, y1

S 2
) with

x1
S 2

=
KR2 − K

√
R2

2 + 4rR0R1
K

2rR0
, y1

S 2
= (r1 −

r
K

x1
S 2

)
1 + ωx1

S 2

β
.

While subsystem S 1 has a unique positive equilibrium R2
S 1

( δ
ηβ−δω

, rη(Kηβ−Kδω−δ)
K(ηβ−δω)2 ).

If δ1 = δ, by a simple calculation, we obtain that x1
S 2
< δ

ηβ−δω
, which indicates that R1

S 2
is on the left

of R2
S 1

, as shown in Figure 6B and Figure 7A. And from Figure 7A, it is easy to see that R0
S 1

is always
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a regular equilibrium for subsystem S 1, R1
S 1

is always a virtual equilibrium for subsystem S 1 and R0
S 2

is always a virtual equilibrium for subsystem S 2. Further, the existence of all types of equilibria will
be discussed briefly in the following:

(i) If 0 < ET < x1
S 2

, we conclude that R2
S 1

is a virtual equilibrium for subsystem S 1, R1
S 2

is a regular
equilibrium for subsystem S 2, and T1 is an invisible tangent point and T2 is a visible tangent
point [23, 24].

(ii) If x1
S 2
< ET < x2

S 1
, we have that R2

S 1
is a virtual equilibrium for subsystem S 1, R1

S 2
becomes a

virtual equilibrium for subsystem S 2, and T1 is an invisible tangent point and T2 becomes an
invisible tangent point. Moreover, there exists a pseudo-equilibrium R0.

(iii) If x2
S 1
< ET < K, then R0 disappears, R2

S 1
becomes a regular equilibrium for subsystem S 1, R1

S 2
is

a virtual equilibrium for subsystem S 2, T1 becomes a visible tangent point and T2 is an invisible
tangent point. Especially, when ET = x1

S 2
(or ET = x2

S 1
), R1

S 2
(or R2

S 1
) collides with Σ, which is a

boundary equilibrium. Moreover, three points T2, R1
S 2

and R0 collide together in this case.

If δ1 > δ, the position relations of all possible equilibria of two subsystems are hard to determine
analytically. However, similar results can be obtained numerically as those shown above, so we omit
them here. For Cases (C2) and (C3), subsystem S 1 only has steady state R0

S 1
(0, 0) which is unstable,

and exists a boundary equilibrium R1
S 1

(K, 0) which is globally stable related to region S 1. The positive
equilibria of subsystem S 2 lie between R0

S 1
(0, 0) and R1

S 1
(K, 0). Therefore, we can discuss the types of

equilibria of system (2.2) similarly.

4.3. Local and global sliding bifurcation analyses

In this subsection, we address the bifurcations related to equilibria and sliding cycles concerning
sliding segment Σs.

4.3.1. τ-bifurcations

Note that one of the main purposes of the present paper is to address the integrated pest management
strategies for pest control and propose the non-smooth Filippov system (2.2), which indicates that
how the key parameters related to control effectiveness affect the dynamics of system (2.2) are quite
important. Thus, in this section we choose the releasing constant τ as a bifurcation parameter and fix
all others to discuss the variations of the trajectories and equilibria of system (2.2).

For Case (C1), if δ1 = δ, there may exist a stable pseudo-equilibrium R0(x∗, y∗). Moreover, the
bifurcation diagrams with respect to τ shown in Figure 8A reveals that the existence interval of pseudo-
equilibrium is an increasing function of τ. In this case, the pseudo-equilibrium R0 is stable with respect
to the sliding segment Σs. All these results confirm that the larger τ, the more easily does the system
stabilize at the pseudo-equilibrium R0, i.e., the number of pests finally stabilizes at the ET , as shown
in Figures 8D and 8E. Note that for the untreated subsystem S 1, the solution may exceed the EIL
resulting in a pest outbreak. However, if we choose the appropriate ET such as ETi(i = 1, 2, 3, 4)
shown in Figures 8D and 8E such that there exists the pseudo-equilibrium R0 ∈ Σs, we can see that
the number of pests is not only less than EIL, but also can be stabilized at the pseudo-equilibrium R0.
Moreover, the lower is ET , the lower is the number of pests.
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Figure 8. The effects of releasing constant τ on the existence interval of the pseudo-
equilibrium R0 with respect to parameter ET , where the vertical thick segment for each
fixed τ represents the interval of ET ∈ [x1

S 2
, x2

S 1
] within which the pseudo-equilibrium R0

exists. The parameter values are fixed as follows: K = 8, r = 3, β = 3, η = 5/6, ω = 2/3,
δ = δ1 = 2.9 and α = 1/3. B: τ = 0.5. C: τ = 1.5. D: τ = 0.5. E: τ = 1.5.

Figure 9. The effects of releasing constant τ on the existence interval of the pseudo-
equilibrium R0 with respect to parameter ET , where the vertical thick segment for each fixed
τ represents the interval ET . The parameter values are fixed as follows: K = 8, r = 3, β = 3,
η = 5/6, ω = 2/3, δ = 2.9, δ1 = 3.7 , α = 1/3. B: τ = 0.5. C: τ = 1.5. D: τ = 0.5. E: τ = 1.5.
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If δ1 > δ, i.e., spraying pesticides could kill natural enemies, then the effect of releasing constant
τ on the existence interval of the pseudo-equilibrium is complex and there may exist two pseudo-
equilibria, as shown in the bifurcation diagrams of Figure 9A,B,C. From these we can see that the
existence interval of the pseudo-equilibrium is a non-monotonic function of τ, which indicates that if
pesticides can kill natural enemies, then the dynamics (particular sliding dynamics) of system (2.2)
could be significantly affected, such as the stabilization level as shown in Figures 9D and 9E. It is
interesting to note that although the number of pests in untreated subsystem S 1 could increase and
exceed the EIL, as shown in Figure 9D, the final size is less than the treated Filippov system (2.2) due
to side effects of the pesticide on natural enemies. And it is easy to obtain that the side effects can be
effectively avoided by increasing the releasing constant τ, as shown in Figure 9E, which can maintain
the number of pests always below the EIL and realizes the control purpose.

For Case (C2), it is easy to obtain that R0
S 1

and R0
S 2

always keep in region S 1, and R1
S 1

always
lies in region S 2. Hence, R0

S 1
is a regular equilibrium for subsystem S 1, R0

S 2
is a virtual equilibrium for

subsystem S 2 and R1
S 1

is a virtual equilibrium for subsystem S 1. Moreover, in this case, R2
S 1

disappears.
If we choose τ as the bifurcation parameter, then system (2.2) may have multiple positive equilibria
such as R1

S 2
and R2

S 2
, as parameter τ varies. And the boundary equilibrium (BE) and pseudo-equilibrium

could also appear. For example, if R1
S 2

collides with the switching line Σ as parameter τ increases, then
a BE appears, as shown in Figure 10. In particular, we have:

(i) if τ∗5 < τ < τ
∗
6, then two virtual equilibria R1

S 2
and R2

S 2
coexist, and R1

S 2
collides with R2

S 2
at τ = τ∗6.

(ii) if τ > τ∗6, R1
S 2

and R2
S 2

disappear simultaneously, and system (2.2) does not exist with any positive
equilibrium.

Figure 10. Bifurcation diagram with respect to τ and the effect of parameter τ on the types
of the equilibria of Filippov system (2.2). The parameter values are fixed as follows: K = 8,
r = 3, β = 2, η = 1, ω = 1.5, δ = δ1 = 2, α = 0.95 and ET = 4.1.

Note that the existence and types of equilibria for non-smooth system (2.2) can be discussed by
using bifurcation analyses of two subsystems with respect to key parameters (Fig.10), which bring
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convenience to the analysis of local bifurcations of the Filippov system, especially those bifurcations
related to equilibria. Thus, the local equilibrium bifurcations for other cases can be similarly addressed
by employing similar techniques.

4.3.2. Codimension-1 local and global sliding bifurcations analysis

In this subsection, we choose ET as the bifurcation parameter to investigate the codimension-1 local
and global bifurcations to analyze the effect of ET on the dynamics of system (2.2). We realize that
there may exist similar local and global sliding bifurcations for Cases (C1), (C2) and (C3), so we will
take (C1) as an example to discuss the possible local and global sliding bifurcations in more detail in
the following.

For Case (C1), if R1 < 0, then system (2.2) could have five equilibria R0
S 1

(0, 0), R1
S 1

(K, 0),
R2

S 1
(x2

S 1
, y2

S 1
), R0

S 2
(0, τ

δ1
), R1

S 2
(x1

S 2
, y1

S 2
). In particular, if δ1 = δ, then x1

S 2
< x2

S 1
, i.e., R1

S 2
is on the left of

R2
S 1

, as shown in Figure 7A, which indicates that R1
S 2

and R2
S 1

can not be the regular equilibria at the
same time and it is impossible to have limit cycles on both sides of the Σ. If δ1 , δ, there may exist
rich bifurcations which will be addressed numerically, as shown in Figure 11. It reveals how the ET
affects the dynamics of system (2.2), it is easy to see that as parameter ET varies, system (2.2) exists
with boundary equilibrium bifurcations and periodic solutions which lie in region S 1 (or S 2).
Moreover, there exist other types of periodic solutions including sliding periodic solutions, which
include a piece of the sliding segment or the entire sliding segment in Σ; crossing periodic solutions,
which only include a point of the sliding segment or without any points of the sliding segment in
Σ [17, 23].

In the following part, we begin to discuss boundary equilibrium bifurcations and other types of
periodic solutions though the global sliding bifurcations as parameter ET varies, as shown in Figure 11.

Touching bifurcation: A standard piece of the cycle can collide with the discontinuity boundary
as parameter ET varies, this bifurcation is called a touching bifurcation (or grazing or even a sliding-
grazing bifurcation) [17, 23]. From Figure 11A,B and C, it is easy to see that if 8.45 < ET < K, there
exists a unique and stable cycle ( i.e., periodic solution) in region S 1. As parameter ET decreases, the
cycle closes to Σ. Especially, when ET ≈ 8.45, a touching bifurcation occurs, as shown in Figure 11B,
where the cycle is tangent to Σs at the visible tangent point T1, denoted by X0(x(t), y(t)). As parameter
ET continues to decrease, X0(x(t), y(t)) will contain a piece of the sliding segment in Σ, becoming a
sliding cycle ( i.e., sliding periodic solution), as shown in Figure 11C with ET = 8. The computation
of the critical cycle X0(x(t), y(t)), which ends at the visible tangent point T1, is equivalent to solving
the following boundary-value problem, which can be solved by XPPAUT software [37].

Ẋ0(x(t), y(t)) = f1(x(t), y(t)),
X0(T1) = 0,
x(T01) = x(0) = ET,

y(T01) = y(0) =
r
β

+ (
rω
β
−

r
βK

)ET −
rω
βK

ET 2,

〈HX(T1), f1(T1)〉 = 0,

where T01 represents the period of the cycle X0(x(t), y(t)).
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Figure 11. The local and global sliding bifurcations for non-smooth Filippov system (2.2).
Here we choose ET as the bifurcation parameter and fix all other parameters as follows:
K=9, r=3, β = 3, η = 5/6, ω = 2/3, δ = 2, δ1 = 2.45, α = 0.5, τ = 0.5. The local and
global sliding bifurcations occur sequentially: touching→ buckling→ crossing→ crossing
→ buckling→ pseudo-homoclinic→ boundary equilibrium bifurcations.
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Buckling bifurcation: From Figure 11C,D, we can obtain that there exists a stable sliding cycle,
which passes the visible tangent point T1 for 7.25 < ET < 8.45. As parameter ET decreases, especially
ET ≈ 7.25, the sliding cycle passes the invisible tangent point T2, denoted by X1(x(t), y(t)). Moreover,
it contains the entire sliding segment Σs, which means that a buckling bifurcation occurs. As parameter
ET continues to decrease, X1(x(t), y(t)) remains but enters into region S 2 before returning back to the
sliding segment for ET > 4.9, as shown in Figure 11E.

Crossing bifurcation: From Figure 11E,F and G, we can see that a stable sliding cycle becomes a
stable crossing cycle as parameter ET decreases. Especially, when ET reaches around 4.9, the sliding
cycle only passes one point of the sliding segment Σs ( i.e., the visible tangent point T1), denoted by
X2(x(t), y(t)). As parameter ET continues to decrease, X2(x(t), y(t)) becomes a stable crossing cycle
without any points of the sliding segment Σs, as shown in Figure 11G. For the above processes, we say
that a crossing bifurcation (or sliding-crossing) has occurred.

Pseudo-homoclinic bifurcation: As parameter ET decreases from 4.3 to 1.9128, the crossing
bifurcation and buckling bifurcation occur again, as shown in Figure 11H,I and J. If parameter ET
continues to decrease, we can see that when ET = 1.8998 ( i.e., ET = x1

S 2
), a stable sliding cycle

surrounds the unstable focus R2
S 1

and the tangent point T2 collides with R1
S 2

simultaneously. As
parameter ET reaches around 1.899, the stable sliding cycle passes the pseudo-equilibrium R0, which
is a pseudo-saddle, forming a homoclinic orbit which contains a piece of sliding segment Σs. In this
case, we say that a pseudo-homoclinic bifurcation [17, 23] occurs and there are limit cycles on both
sides of the Σ, as shown in Figure 11L. In fact, when ET = x1

S 2
, three points T2, R1

S 2
and

pseudo-equilibrium R0 can collide together. As parameter ET continues to decrease, the three points
T2, R1

S 2
and R0 coexist, and there exists a stable sliding cycle surrounding the unstable equilibrium

R1
S 2

, as shown in Figure 11M. It follows from Figure 11(J-M) that a boundary equilibrium
bifurcation (or the pseudo-equilibrium bifurcation) occurs at ET = 1.8998 (i.e., ET = x1

S 2
). This

bifurcation entails the catastrophic disappearance of a stable sliding cycle and a unstable
pseudo-equilibrium R0.

Figure 12. The effects of ET on the number of pests. The parameter values are fixed as
follows: K=8, r=3, β = 3, η = 5/6, ω = 2/3, δ = 2, α = 0.5, τ = 0.5.
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Based on the above discussion, we can conclude that when we choose ET as the bifurcation
parameter and fix all other parameters of system (2.2), there exist rich local and global sliding
bifurcations as follows: touching → buckling → crossing → crossing → buckling →

pseudo-homoclinic→ boundary equilibrium bifurcations. It is interesting to note that it will cause the
change of the regular/virtual equilibria, pseudo-equilibria and trajectories of system (2.2) as ET
varies, as shown in Figures 11 and 12. In particular, the results shown in Figure 12 reveal the
importance of choosing the threshold level ET . Comparing with the two trajectories of treated and
untreated systems shown in Figure12, we conclude that for a given ET, the pest population can be
successfully controlled and maintained below the EIL if the IPM is properly designed.

5. Conclusions and discussions

Based on the implementation of biological control in real life, we propose a new non-smooth
Filippov system (2.2) with constant releasing rate in this paper. The detailed qualitative analyses for
subsystem S 2 were carried out first, which will be crucial for analyzing Filippov system (2.2). Our
main results reveal that the releasing constant τ plays an important role in determining the dynamics
and bifurcations of subsystem S 2. For example, the threshold conditions for the existence and
stability of equilibria and the type of bifurcations including Hopf bifurcation, transcritical bifurcation,
saddle-node bifurcation and Bogdanov-Takens bifurcation can be significantly affected by the
releasing constant. Moreover, from a pest control point of view there exists a critical releasing rate
such that the pest population will be driven to extinction when the releasing rate is greater than the
critical value. Meanwhile, compared with the main results obtained in literature [31], we conclude
that the sign of the constant τ can significantly affect the dynamical behaviour.

Combining the dynamics of two subsystems S 1 and S 2, and employing the techniques for a
non-smooth Filippov system, we focus on some typical cases on system (2.2) with aims to address
how the threshold level ET affects the sliding dynamics and pest control [17, 24]. The existence and
stability of the sliding mode and pseudo-equilibria have been discussed first, and our results indicate
that the releasing constant and side effects of the pesticide on natural enemies could result in multiple
pseudo-equilibria. Especially, the existence interval of pseudo-equilibria can be greatly influenced by
the threshold level ET and releasing constant τ, as shown in Figures 8 and 9. It is interesting to note
that although the number of pests in the untreated subsystem could increase and exceed the EIL, the
stabilization level could be less than ET and stabilizes at a lower level than the treated subsystem (i.e.,
one of stable states of Filippov system (2.2)) due to side effects of the pesticide on natural enemies. In
this case, the paradoxical effects of the Volterra principle occur, i.e., spraying pesticide does not
reduce the number of pests, but increases them. However, the side effects can be effectively avoided
by increasing the releasing constant, which can maintain the number of pests always below the EIL
and realizes the control purpose. Furthermore, by numerical bifurcation analyses, the sliding
bifurcations including boundary equilibrium bifurcation, touching bifurcation, buckling bifurcation,
crossing bifurcation, pseudo-homoclinic bifurcation have been discussed as the threshold level ET
varies, which indicates that the pest population can be successfully controlled and maintained below
the EIL if the IPM strategy is properly designed, as shown in Figure 12.

In summary, the new model presented in this paper not only has new dynamical behaviour, but also
adopts and develops new qualitative techniques. Moreover, the new dynamical behaviour presented in
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the model has clear practical significance which can help to guide pest control. Some new non-smooth
systems involving the development of pest resistance [38,39] and adaptive control strategy [40,41] will
be developed in later research and will be studied in detail.
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