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1. Introduction

In the mathematical modeling of physical and biological systems, situations often arise in which
some facet of the underlying dynamics (in the form of a parameter) is not constant but rather may be
distributed probabilistically within the system or across the population under study. While traditional
inverse problems involve the estimation, given a set of data/observations, of a fixed set of parameters
contained within some finite dimensional admissible set, models with parameters distributed across
the population require the estimation of a probability measure or distribution over the set of admissible
‘parameters’. The techniques for such measure estimation (along with their theoretical justifications)
are widely scattered throughout the literature in applied mathematics and statistics, often with few
cross references to related ideas; reviews are given in [1, 2]. Of course, it is highly likely that individ-
ual parameters might vary from one individual to the next within the sampled population. Thus, our
goal in this case is to use the sample of individuals to estimate the probability measure describing the
distribution of certain parameters in the full population. In some situations (e.g., in certain pharma-
cokinetics and/or pharmacodynamics examples), one is able to follow each individual separately and
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collect longitudinal time course data for each individual. In other investigations, situations arise in
which one is only able to collect aggregate data. Such might be the case, for example, in marine or
insect catch and release experiments in which one cannot be certain of measuring the same individual
multiple times. In other situations, one might be required to sacrifice each individual in the process of
collecting the data (precisely the situation in the data we present below). In these cases, one does not
have individual longitudinal data, but rather histograms showing the aggregate number of individuals
sampled from the population at a given time, having a given size/weight or other characteristic of in-
terest ( [3] and Chapter 9 of [4]). The goal then is to estimate the probability distributions describing
the variability of the parameters across the population.

In our problem below, while one again has a proposed individual model, the data collected cannot
be identified with individuals and is considered to be sampled longitudinally from the aggregate pop-
ulation. It is worth noting that special care must be taken in this case to identify the model such as
that introduced below as an individual model in the sense that it describes an individual subpopulation.
That is, we have all ‘individuals’ (i.e., shrimp [5] or mosquitofish [3, 6, 7] or cancerous mice [8, 9])
described by the model sharing a common growth/birth/death rate function. Mathematically, here we
define the ‘individual’ in terms of the underlying parameters, using ‘individual’ to describe the unit
characterized by a single parameter set (tumor expansion rate, excretion rate, growth/birth/death rate,
damping rate, relaxation times, etc.).

One can also distinguish two generic estimation problems. In the example presented in this
manuscript, we consider the case, as in a structured density model, that one has a mathematical model
for individual dynamics but only aggregate data (we refer to this as the individual dynamics/aggregate
data problem). The second possibility–that one has only an aggregate model (i.e., the dynamics depend
explicitly on a distribution of parameters across the population) with aggregate data is not examined
in this manuscript (we refer to this as the aggregate dynamics/aggregate data problem). Such exam-
ples arise in electromagnetic models with a distribution of polarization relaxation times for molecules
(e.g., [10, 11]); in biology with HIV cellular models [12–14]; and in wave propagation in viscoelastic
materials such as biotissue [15–18]. The measure estimation problem for such examples is sufficiently
similar to the individual dynamics/aggregate data situation and accordingly we do not discuss aggre-
gate dynamics models here.

In the generic estimation problems mentioned above, the underlying goal is the determination of
the probability measure which describes the distribution of parameters across all members of the pop-
ulation. Thus, two main issues are of interest. First, a sensible framework (the Prohorov Metric
Framework as we have developed it–see Chapter 14 of [19] and Chapter 5 of [2]) must be established
for each situation so that the estimation problem is mathematically meaningful. Thus we must de-
cide what type of information and/or estimates are desired (e.g., mean, variance, complete distribution
function, etc. for the tumor size) and determine how these decisions will depend on the type of data
available. Second, we must examine what mathematical techniques are available for the computa-
tion of such estimates. Because the space of probability measures is an infinite dimensional space
(again a mathematical notion), we must make some type of finite dimensional approximations so that
the estimation problem is amenable to convergent computations. A thorough discussion of associated
mathematical, statistical and computational issues can be found in [2].

We now turn to two important questions: the first is how to deal with inverse problems (parameter
estimation) for dynamical systems when longitudinal data does not exist? A second question that we
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shall consider below entails how to efficiently design experiments to collect data (i.e., how much data
and when to collect it) that is necessary to validate models in such aggregate data situations. Our
efforts here are motivated by a set of data collected with NSG (NOD/SCID/GAMMA), or NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ mice injected with with cancer and then sequentially sacrificed to collect
the needed data about T-cell counts. The resulting aggregate data is absolutely common in biological
experiments where data collection requires sacrifice of the subjects. Colleagues at Moffitt Cancer
Center have carried out preliminary trial experiments (data collection already completed) as follows:
At t = −14 (14 days before the trial begins), NSG mice are injected with cancer, which should take
12–14 days to begin growing. At t = 0 (as determined by tumor volume) the mice are further injected
with chimeric antigen receptor [8] or CAR T-cells (engineered T-cells to specifically target cancer
cells). Mice are divided into four groups with different treatments. Autopsies are performed on each
of 5 mice sacrificed at t = 5, 10, and 15 days, respectively, to determine the concentration of the
engineered T-cells within the blood, spleen, and within the tumor. Because of nature of data collection,
longitudinal data is not possible as mice must be killed for data to be collected.

In the present investigation we begin by describing an individual model (as opposed to an aggregate
model) to describe T-cell counts in an individual cancerous mouse. We first perform stability analysis
on the model to understand better its behavior, and carry out sensitivity analysis to identify the most
‘important’ parameters. Next, we describe the aggregate model associated with the individual model,
and some techniques to estimate the probability distribution over a chosen parameter. Finally, we sim-
ulate the Moffitt Cancer Center data set and demonstrate that parameters cannot be properly estimated
with only a handful of time points.

2. Individual model

2.1. Model description

We use the system of ordinary differential equations,

dT
dt

= ρβExtB − βT BT (2.1)

dB
dt

= (βT BT − ρβExtB) + (βS BS − βExtB) (2.2)

dS
dt

= βExtB − βS BS , (2.3)

based on simple mass balance as described in [4], [20], and [21] and depicted in Figure 1 to model the
flow of T-cells in the tumor, T , T-cells in the blood, B, and T-cells in the spleen, S , in a cancerous body.
The number of T-cells in the blood, B, travel to the tumor, T , at a rate ρT x = ρβExt. For each T-cell
that leaves the blood, there may be a transient expansion, ρ, in the tumor due to antigen recognition. If
there is no antigen recognition, ρT x = βExt and ρ = 1, and if there is any antigen recognition, ρT x > βExt

and ρ > 1. The T-cells in the tumor, T , then flow back to the blood, B, at a rate βT B. T-cells in the
blood flow to the spleen, S , at a rate βBS = βExt. That is, the flow rate of T-cells out of the blood to the
spleen is the same as the exit rate of T-cells from the blood to the tumor if ρ = 1 and there is no antigen
recognition. Then the T-cells flow from the spleen back to the blood at a rate βS B. Our four parameters
of interest are thus ρ, βExt, βT B, and βS B, which are all strictly positive. In order to solve the system
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of ODE’s the initial number of T-cells in the tumor, T0 = T (t1), the blood B0 = B(t1), and the spleen
S 0 = S (t1) also need to be specified.

Figure 1. Schematic of the simple compartmental model described in (2.1), (2.2), and (2.3).

In the experiment of interest, cancerous mice are separated into four treatment categories: untrans-
duced T-cells (UT), chimeric antigen receptor therapy (CAR), CAR treatment with added CXCR1
chemokine receptors (CAR+CXCR1), and CAR treatment with added CXCR2 chemokine receptors
(CAR+CXCR2). Each treatment has a different effect on antigen recognition in the tumor, or parame-
ter ρ. The parameters and their values are listed in Table 1 and are partially motivated by reference to
other tumor-related experiments [9]. The ρ values for each treatment are estimations around which we
can study the behavior for each system. The T-cell movement rates, βExt, βT B, and βS B, are estimated
based on knowledge that the exit spleen rate is considerably lower than the exit tumor rate, such that
βExt > βT B > βS B. It is also known that the initial T-cell counts in the tumor and spleen, T0 and S 0,
respectively, are zero, and the initial T-cell count in the blood, B0, ranges from 0 to 10 million. Thus,
B0 = 106 is chosen, and we set T0 = B0 = 0

Table 1. Parameters, initial conditions, and their descriptions in equations (2.1)–(2.3).

θ Definition Chosen Values Units
βExt Rate at which T-cells exit blood 0.01 1/day
βT B Rate at which T-cells exit tumor and enter blood 0.001 1/day
βS B Rate at which T-cells exit spleen and enter blood 0.0001 1/day
ρ Transient expansion factor of T-cells in the tumor – 1
ρUT With no treatment 14 1
ρCAR With CAR treatment 15 1
ρCXCR1 With CAR+CXCR1 treatment 20 1
ρCXCR2 With CAR+CXCR2 treatment 30 1
T0 Initial condition of T at the first time point (T0 = T (t1)) 0 T-cells
B0 Initial condition of B at the first time point (B0 = B(t1)) 106 T-cells
S 0 Initial condition of S at the first time point (S 0 = S (t1)) 0 T-cells
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2.2. Stability analysis

Before comparing data to a mathematical model, it is important to understand the behavior of the
mathematical model, especially the limiting behavior. Since the values in Table 1 are set arbitrarily
for simulation purposes, ideally we want to understand the behavior of the mathematical model for
any realistic parameter values (i.e., values of βExt, βT B, etc.). Although in reality we will not observe
the number of T-cells for longer than a few days, it is important to understand what happens to these
state values in the limit as time becomes large. Equations (2.1), (2.2), and (2.3) make up the first-order
linear homogeneous system of differential equations

dX
dt

= JX(t) (2.4)

where X(t) = [T (t), B(t), S (t)]T is a 3 × 1 vector and

J =


−βT B ρβExt 0
βT B −ρβExt − βExt βS B

0 βExt −βS B

 . (2.5)

is a 3 × 3 matrix sometimes referred to as the Jacobian matrix [22]. Theoretically, the solution of
this system can be found from the eigenvalues and eigenvectors of J (see Chapter 3 of [23]), but for
arbitrary parameter values (βT B, βS B, etc.), these may be difficult or impossible to find. However, by
examining the eigenvalues, we learn about the stability of the system.

The characteristic equation of J is

λ3 + mλ2 + qλ = 0 (2.6)

where

m = βT B + βS B + βExt(ρ + 1)
q = βT BβS B + βT BβExt + βS BβExtρ.

Thus, one of the eigenvalues is λ1 = 0, and by Decartes’ Rule of Signs [24], the other two eigenvalues
λ2 and λ3 are either complex or negative (all parameter values defined in Table 1 are strictly positive).
However, the discriminant

m2 − 4q = (βT B − βS B + βExt(ρ − 1))2 + 4β2
Extρ

is strictly positive, so λ2 and λ3 are both real and negative. Hence, the solution to the system takes the
form

X(t) = c1v1 + c2v2eλ2t + c3v3eλ3t

where c1, c2, and c2 are constants of integration determined by the initial conditions T0, B0, and S 0,
and v1, v2, and v3 are the eigenvectors corresponding to λ1 = 0, λ2, and λ3. Hence, as t −→ ∞, the
solution of the mathematical model approaches the positive steady state X(t) −→ c1v1. The eigenvector
v1 = [βS BβExtρ, βT BβS B, βT BβExt]T is easily found, but λ2, λ3, v2, v3, and the constants c1, c2, and c3 are
complicated algebraically and are not necessary to examine steady state behavior.
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Under the biologically realistic conditions that βExt > βT B > βS B > 0 and ρ ≥ 1, the model has two
different cases of long term behavior, found through v1:

Tumor-Ignoring Case: If ρβS B ≤ βT B, then B̄ < T̄ ≤ S̄ .
Tumor-Targeting Case: If ρβS B > βT B, then B̄ < S̄ < T̄ ,

where limt→∞ X(t) = X̄ = [T̄ , B̄, S̄ ]T is the steady state of the mathematical model. In the Tumor-
Targeting Case, more T-cells are going to the site of the tumor, which is ideal for the patient, but in the
Tumor-Ignoring Case, T-cells are either favoring the spleen or treating the spleen and tumor equally.
At the current parameter values in Table 1, the Tumor-Ignoring Case occurs when ρ ≤ 10, and the
Tumor-Targeting Case occurs when ρ > 10. Thus, at all hypothesized values of the transient expansion
factor ρ, T-cells should target the tumor in the long term. Using values from Table 1 with ρ = 2 for the
Tumor-Ignoring Case and ρ = 15 for the Tumor-Targeting Case, Figure 2 below captures this behavior.

Figures 2a and 2b display short and long-term solution behavior for the solutions of the system
in the Tumor-Ignoring case, when ρ = 2. In this situation, the expansion parameter ρ is less than
ideal, which means that the T-cells are not being shuttled to the tumor in a significant way. Figure 2b
shows that in the long-term, T-cells in the blood will decrease to zero, and although they increase to an
extent in the tumor, they eventually lose numbers and go to the spleen. Figure 2a shows this short-term
behavior, where we can see the relatively slow decay of T-cells in the blood and relatively slow growth
of T-cells in the tumor and spleen.

If we look at short and long-term cases in which ρ > 10, the Tumor-Targeting case, we see a notable
change in behavior of the system. In Figure 2c, we see that T-cells leave the blood and are shuttled
to the tumor at a much higher rate than in the Tumor-Ignoring case, while T-cells in the spleen grow
very slowly. In the long-term, as seen in Figure 2d, the behavior is indeed very dramatic initially, and
then levels out. T-cells in the blood, again, go to zero, while T-cells in the tumor increase significantly
and level out, with T-cells in the spleen remaining low over time. This behavior corresponds with a
value of ρ that reinforces the Tumor-Targeting behavior: when ρ > 10, the body sends the T-cells
to the unwanted tumor, which is what we would expect in a cancer treatment. Note that since T-cell
movement in the body occurs relatively slowly, T, B, and S take a long time to reach their steady states
at biologically relevant parameter values. Thus, using parameter values listed in Table 1, T, B, and S
do not reach their steady state until t > 10, 000 days.

2.3. Parameter selection via local sensitivity analysis

Statistical significance in an inverse problem (fitting data to a mathematical model) depends largely
on the sensitivity of the parameter chosen to be estimated. Utilizing sensitivity analysis, we determine
which parameters are most significant in affecting the behavior of the model. That is, parameters
with high sensitivities dramatically affect the solution, as the observations (T-cell concentrations in the
blood, B, tumor, T , and spleen, S ) are most sensitive to those parameters, while parameters with low
sensitivities have little influence on the model. The sensitivity of observation f to parameter estimates
θ is

χ(θ, t) =
∂ f (t; θ)
∂θ

(2.7)

where t is time, and f = T , f = B, or f = S , and θ is one of the parameters defined in Table 1 (θ = βExt

or θ = βT B or etc.). Since many of the parameters have different orders of magnitude (for example,
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(a) Solutions from t = 0 to t = 15 when ρ = 2. (b) Solutions from t = 0 to t = 2000 when ρ = 2.

(c) Solutions from t = 0 to t = 15 when ρ = 15.
(d) Solutions from t = 0 to t = 15 when ρ =

2000.

Figure 2. Numerical short-term and long-term solutions for our model, where the state
variables, T , B, and S are the number of T-cells in the tumor, blood, and spleen, respectively.
The other parameter values are fixed at values from Table 1. We explore both the Tumor-
Ignoring cases (when ρ ≤ 10) in (a) and (b) and Tumor-Targeting cases (when ρ > 10) in (c)
and (d).

ρ ≈ 101 while βS B ≈ 10−4), it is useful to observe the normalized sensitivities,

χn(θ, t) =
∂ f (t; θ)
∂θ

θ

f (t; θ)
. (2.8)

While general sensitivities, χ look at how the data reacts to the parameters as a whole by taking the
partial derivative of the output factor with respect to the input factor, normalized sensitivities, χn, are
scaled down by dividing the derivative by the observation in order to compare each parameter against
the other.

The sensitivities and normalized sensitivities depend on both time t and the value of the parameter
to which we calculate the observation’s sensitivity, θ. Thus, for the calculation of sensitivities all
parameters are fixed at the values listed in Table 1, and time t is allowed to vary. Since all of the
parameter values are fixed, this is local (as opposed to global) sensitivity analysis. We use complex
step method [25] to numerically evaluate the sensitivities in (2.7) and (2.8).
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For all four categories (UT, CAR, CAR+CXCR1, and CAR+CXCR2) the concentration of T-cells
in the tumor, blood, and spleen, are most sensitive to parameters βExt and ρ. Since graphs of the
sensitivities look very similar for the different treatment categories, we only show graphs of the sensi-
tivities for the last treatment, CAR+CXCR2, where ρ = 30. In order to better compare the sensitivities
to each parameter, for each observation (T , B, and S ) and parameter (see Table 1) we find the maxi-
mum sensitivity and maximum normalized sensitivity over time and plot these results in Figure 3. The
full time-dependent sensitivities are plotted in Figures 4 and 5. Since the observations T , B, and S
are consistently not sensitive to the initial conditions, sensitivities to T0, B0, and S 0 are not plotted in
Figures 4 and 5.

The observations of T-cells in the tumor, blood, and spleen in Figure 3a are most sensitive to the
T-cell movement rates, βExt, βT B, and βS B, followed by antigen recognition in the tumor, ρ. T-cell
counts are not very sensitive to the initial conditions, B0, T0, and S 0. These results are consistent with
our model design. When sensitivities are normalized, the T-cell counts in Figure 3b are most sensitive
to the rate at which T-cell exit the blood, βExt, and antigen recognition in the tumor, ρ followed by the
initial T-cell count in the blood, B0. Thus, according to the normalized sensitivities, T-cell counts are
most effected by parameters βExt and ρ. Since ρ is the transient expansion factor of antigen recognition
in the tumor and changes depending on the treatment, we choose to estimate this parameter. We also
notice that these sensitivities are time-dependent. The normalized sensitivities in Figure 5 shows that
the observations are most sensitive to ρ and βExt initially, while they are sensitive to βT B and βS B later
in time. This is an indication of the behavior of the ODE. Indeed, as T-cells are shuttled out of the
blood (βExt via ρ) initially, they do so at a very dramatic rate, and the number of T-cells in the tumor,
blood, and spleen are sensitive to those rates.

Figure 3. Maximum sensitivities (a) and maximum normalized sensitivities (b) of each ob-
servation, T , B, and S , to each of the parameters over a time period of 30 days. The expansion
factor of T-cells in the tumor ρ = 30, and the initial number T-cells in the tumor, blood, and
spleen [T0, B0, S 0] = [0, 106, 0], since this is data from the CAR+CXCR2 treatment group.
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Figure 4. Sensitivities, χ(t), of observation T , B, and S to parameters βExt, βT B, βS B, and
ρ over a time period of 30 days. These sensitivities are calculated at parameter values from
Table 1 with ρ = 30 to represent the CAR+CXCR2 treatment.
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Figure 5. Normalized sensitivities, χn(t), of observation T , B, and S to parameters βExt, βT B,
βS B, and ρ over a time period of 30 days. These sensitivities are calculated at parameter
values from Table 1 with ρ = 30 to represent the CAR+CXCR2 treatment.

3. Aggregate model

3.1. Parameter estimation methodology

Equations (2.1), (2.2), and (2.3) model the T-cell counts in an individual mouse, which is assumed
to have a single value for T-cell flow from the tumor to the blood, from the blood to the spleen, etc.
(i.e., a single value for each of the parameters listed in Table 1). However, this assumption does not
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apply to the aggregate data set, in which different mice sacrificed and sampled at each time point may
have different parameter values (e.g., ρ, βExt, etc.), varying over some range of values. Thus, using the
individual model we formulate an aggregate model with which we can compare the aggregate data (see
Chapter 5 of [2] for a more complete discussion). Based on the sensitivity analysis and our interest in
the different types of treatment, we choose to estimate the probability distribution of ρ, the transient
expansion of T-cells in the tumor due to antigen recognition.

Consider the deterministic T-cell population vector x(t; ρ) = [T (t; ρ), B(t; ρ), S (t; ρ)]T which is a
solution to Eqs (2.1), (2.2), and (2.3) given parameter values in Table 1, where t is time and ρ is
the transient expansion factor which we choose to estimate (see Section 2.3). There is an aggregate
population vector u(t; p) = [uT (t; P), uB(t; P), uS (t; P)]T corresponding to the individual population
vector x and given by

u(t; P) = E(x(t; ·)|P) =

∫
G

x(t; ρ)dP(ρ),

where ρ is now a random variable, G is the collection of admissible parameter values for ρ, and P is a
probability measure on G. Note that u is the expected value of x, which is also a random vector since it
depends on the random variable ρ. Under the assumption that the probability distribution, P, possesses
a probability density, p, and assuming that G = [ρl, ρu] is some closed interval, the population count is
given by

u(t; P) =

∫ ρu

ρl

x(t; ρ)p(ρ)dρ, (3.1)

where the density P′ = dP
dρ = p(ρ).

Now that we have an aggregate model which can be compared to the data, we follow techniques
from Banks, Hu, and Thompson [2] and Banks, Bekele-Maxwell, Everett, Stephenson, Shao, and
Morgenstern [26] to estimate parameters in our mathematical model. For the inverse problem, consider
the 3-dimensional dynamical system, defined in (3.1) to be estimated using the data. We are interested
in determining the probability density P′ = p(ρ) which gives the best fit of the underlying model
to the aggregate data. However, this parameter estimation problem involves an infinite dimensional
parameter space (the space P(G) of probability measures defined on the set G). Instead of using a
specific probability density function in the aggregate model, we use a family of finite approximations
PM(G). Based on [14, 27, 28], we are guaranteed convergence in the Prohorov metric. In our case
the finite dimensional approximation PM(G) to the probability measure space P(G) is defined using M
linear splines.

Let u j = [T j, B j, S j]T represent the T-cell count data or observations collected from the mice at
time t j for j = 1, ...,N. We note that there is some uncertainty between the actual phenomenon, which
is represented through the data, and in the above observation process. This uncertainty is accounted
for in the statistical model (again, see Chapter 3 of [2] where it is explained that both a mathematical
model and a statistical model are required to carry out an inverse problem properly with uncertainty in
observations)

U j︸︷︷︸
data representation

= u(t j; PM
0 )︸    ︷︷    ︸

aggregate model

+ uγ(t j; PM
0 ) ◦ E j︸            ︷︷            ︸

weighted error

,

where PM
A is the nominal probability density approximation. Note that PM

0 has a density PM′ = dPM

dρ =

pM(ρ) which is defined using linear splines. The values γ = [γ1, γ2, γ3]T , γi ≥ 0 in the error term
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are weighting factors corresponding to each of the three aggregate observations (T-cells in the tumor,
blood, and spleen) respectively. These weighting factors can be calculated from real data before an
inverse problem is completed [29], but since this manuscript only deals with simulated data, these
techniques are not discussed. These represent the dependency of error on the dynamics, and the model
itself corresponds to the choices of data.

Note that ◦ is the Hammond or Schur product of component wise multiplication of two vectors.
The random error vectors E j = [E1

j ,E
2
j ,E

3
j]

T corresponding to each of the three aggregate observations
(T-cells in the tumor, blood, and spleen) respectively are assumed to be independent and identically dis-
tributed (i.i.d.) with mean zero, Var(E1

j) = σ2
01, Var(E2

j) = σ2
02, and Var(E3

j) = σ2
03. The corresponding

realizations (for the random vector U j) are

u j︸︷︷︸
aggregate data

= u(t j; PM
0 )︸    ︷︷    ︸

aggregate model

+ uγ(t j; PM
0 ) ◦ ε j︸            ︷︷            ︸

weighted error

.

This multiplicative structure of the observational error in the above statistical model exists, because
often in biological models the size of the resulting observation error is proportional to the size of the
observations. A rather thorough discussion of these issues, along with concrete examples, is given in
Chapter 3 of [2]. For γ ≥ 0, a generalized least squares method or an iterative reweighted weighted
least squares (IRWLS) method [26] is appropriate to perform the inverse problem. In order to estimate
P̂M ≈ PM

0 (or the corresponding density p̂M(ρ) = pM(ρ)), we want to minimize the distance between
the collected data and aggregate mathematical model, where the observables are weighted according
to their variability and, for each observable, the observations over time are weighted unequally (once
again, we refer the reader to [26] and [2] for a more detailed discussion and relevant examples). A
detailed description of the IRWLS method applied to an aggregate model as described above is outlined
in section 4.1 of [30].

If we assume γ = [γ1, γ2, γ3] = [0, 0, 0], then our statistical model is called an absolute error model
and an ordinary least squares method is appropriate for parameter estimation. However, we believe it
is more biologically realistic to assume the observation error is proportional to the size of the observed
quantity i.e., a relative error model for our data sets and models investigated here. In the next section,
we simulate aggregate data to test our aggregate model and the inverse problem.

3.2. Data simulation

Now that we have ascertained some specific features of the behavior of the mathematical model and
its parameters, we want to carry out a series of inverse problems to estimate the approximate probability
distribution PM

0 (or its corresponding density pM(ρ)) of the desired parameter ρ for a given number
of time observations. We attempt to estimate PM

0 using observations of the aggregate engineered T-
cell concentrations in the tumor T , blood B, and spleen S compartments. However, since currently
available data sets contain data at only three distinct time observations, our inverse problem might not
be feasible. Nonetheless we proceed in our efforts using a rather straightforward if unsophisticated
approach to the question of how many mice must be sacrificed in order to reliably estimate a finite
approximation PM

0 to the desired parameter distribution of ρ.
In order to see this problem from a bigger picture and determine how many time points are needed

to accurately estimate parameters, we now step away from the experimental data and simulate our own
data. We wish to mirror the experiment the best way possible. That is, our simulation will assume
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aggregate data per time point, and we will focus upon a parameter estimation for the CAR treatment,
which assumes an parameter value of ρ ≈ 15 for the individual model. Thus, we will initialize our
problem with an expected or assumed distribution of ρ, where 10 ≤ ρ ≤ 20.

Our methods of data simulation are as follows: We first generate a normal distribution for ρ, where
ρ ∼ N(15, 1), that is, we assume that ρ has a mean value of µ = 15 and has a standard deviation
of σ = 1 to account for the differences in the mice. We can call this “actual” distribution PA and
the corresponding probability density function pA(ρ). Since our actual experimental data comes from
a time frame of 0 to 15 days, we simulate data based on this same time frame and assume the same
initial conditions and parameter values from Table 1. Although it may be advantageous to sample more
frequently at certain times in the experiment, for simplicity we only generate uniformly spaced time
points. In order to simulate the sacrifice of five mice per time point as in the experiments, we generate
five data points from the model for each observation time point. To do this, we use the distribution PA,
from which we randomly draw out one value of ρ for each mouse. Thus, if we want to simulate n time
points of data, we will draw n × 5 values of ρi j for i = 1, ..., 5 mice per j = 1, ..., n time points. This
generates a set of five data points per time observation to which we add noise.

Since we are using the iterative reweighted weighted least squares approach described in the previ-
ous section, we set the variance of the random error vectors to be Var(E1

j) = Var(E2
j) = Var(E3

j) = 0.01,
and we set the weighting factors to be γ = [0.5, 0.5, 0.5]T . We then average these simulated data values
to give us one aggregate data point per time point for each of the observations T , B, and S . Thus, our
simulated data takes the form

u j = [T j, B j, S j]T =
1
5

5∑
i=1

[x(t j; ρi j) + xγ(t j; ρi j)ε i j] (3.2)

where ε i j are realizations of the normally distributed random vector Ei j for each of the i = 1, ..., 5 mice
at each of the j = 1, ..., n time points.

A qualitative image of this simulation for a simple time grid of n = 4 (or n = 3 data points, since
we do not consider the first point at t = 0 to be a data point), for T-cells in the tumor only, can be seen
in Figure 6a–c. For the first time point, t = 5, 5 mice are simulated, the T-cell counts in their tumors
are plotted in Figure 6a, and each of these counts have weighted noise added to them. The same is
done for the second (t = 10 in Figure 6b) and third time points (t = 15 in Figure 6c) for a total of 15
simulated mice each with a different value of ρ and added weighted noise. For each time point, we
also plot the average solutions (or average T-cell counts in the tumors of the five mice), and the average
noisy T-cell count in the tumor, which forms the simulated data points T j as described in (3.2). In
Figure 6d the density of the “true” distribution of ρ, pA(ρ) and the corresponding 15 randomly chosen
ρi j realizations (for i = 1, ..., 5 mice per j = 1, ..., n time points, t, after t = 0) to generate our simulated
data. Using this simulated data, we investigate the results of the inverse problems assuming availability
of different numbers of equally spaced time point observations of the aggregate T-cell concentrations in
the tumor, blood, and spleen, and attempt to answer the question: how many time points are necessary
for accurate parameter estimation?
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(a) Five simulated data points, averaged, from five dif-
ferent solutions, for t = 5.

(b) Five simulated data points, averaged, from five dif-
ferent solutions, for t = 10.

(c) Five simulated data points, averaged, from five dif-
ferent solutions, for t = 15.

(d) Randomly generated ρ values from a uniform dis-
tribution, PA, from which solutions were found to sim-
ulate aggregate data.

Figure 6. For n = 4 time points, data is simulated from different ρ values per mouse per
time point (dotted lines), with an initial time point of t = 0, and parameter values and initial
conditions from Table 1. We add noise to the solution found at each time point (stars).
These solutions are averaged (solid line) to show one single data point per time observation
(big dot). For the sake of simplicity and illustration, these solutions show the T-cells in the
tumor only.

3.3. Error quantification

Before performing inverse problems, we establish the methodology used to determine how accurate
an estimated probability distribution of ρ is using a given simulated data set. The estimated distribution
P̂M (and its corresponding density p̂M will most likely differ from the “actual” distribution PA (and its
corresponding density pA). While we can visually compared these two probability density functions,
it is useful to quantify their differences. Since the density function p̂M is defined using M linear spline
functions, this function will have k = 0, ...,M spline nodes ρk. Thus, we use the L2 norm to calculate

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7299–7326.



7313

the difference between p̂M and the “actual” density pA at each of these nodes by measuring the sum
of squared differences between the approximated spline nodes and their corresponding solution on the
normal curve. Thus, this L2 norm is defined by

‖∆p‖2 =

√√
M∑

k=0

∣∣∣∣pA(ρk) − p̂M(ρk)
∣∣∣∣2 (3.3)

where pA(ρ) is the true PDF (probability density function) of PA, and p̂M(ρ) is the estimated spline
approximation of the true PDF, calculated for each ρk nodes, k = 0, ...,M. Similarly, the infinity norm,
‖∆p‖∞, which takes the maximum vectored error, is defined by

‖∆p‖∞ = max(|∆p0|, |∆p1|, ..., |∆pM |) (3.4)

where ∆p = (pA(ρk) − p̂M(ρk)) for each ρk node, k = 0, ...,M.

4. Results

4.1. Case 1: n = 4 time points

In Case 1, we simulate as few as 4 time points and attempt to estimate the probability distribution.
Figure 7a shows the results of the estimated distribution from the inverse problem graphed against the
“actual” distribution of ρ, which isN(15, 1). As we see in Figure 7a, the estimated probability density
of ρ, p̂M, which is shaded in, does not overlap with the “actual” probability density of ρ, pA, which
was previously assumed. (Note that the probability densities p̂M and pA each have a corresponding
probability distributions P̂M and PA, respectively.) To quantify this difference, we can look at the L2

norm, ‖∆p‖2 = 1.27. In Figure 7b we plot n = 4 time points of the simulated aggregate data, which
were simulated under the assumption that ρ ∼ N(15, 1). As can be seen, there is a significant amount
of systematic (non-random) error between the simulated data and the estimated solution. Figure 7c
plots the residual errors between the approximated solution and the simulated data points for each of
the three state solutions, T , B, and S (tumor, blood, and spleen). We see they are fairly normally
distributed and decrease per time point. Errors are quite high for the number of T-cells in the tumor
and blood solutions, but quite small for the spleen, which is most likely because the flow of T-cells to
and from the spleen does not rely on the ρ parameter.

This discrepancy in Figure 7a is most likely due to the fact that 4 time observations is too few
to glean sufficient information. As such, we get a skewed distribution of the parameter ρ, which
does not provide an accurate result as to the true dynamics of the system. Finally, we investigate the
condition number of the Fisher Information Matrix (FIM). This condition number is used to determine
the uncertainty in the estimated probability distribution and compare the uncertainty in different cases.
The FIM is approximated using the sensitivity and covariance matrices, the method through which is
described in [30]. It is known that if the condition number of the Fisher Information Matrix is very
large, then there is more uncertainty regarding the probability density coefficient estimates. For case 1,
the condition number of the FIM is 2.93 × 1017. We note that we are using n = 4 data points to
estimate M = 6 linear spline functions (which is defined using 7 spline nodes), so this is an ill-posed
least squares problem (i.e., there are more unknown parameters than known data points), [31] which
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is unsolvable. Even if we attempt to use M = 2 spline functions (3 spline nodes), we are left with 0
degrees of freedom. Thus, more data points are needed.

(a) Estimated probability density p̂M of ρ, compared
to the “actual” normal probability density pA of ρ ∼
N(µ = 15, σ = 1).

(b) n = 4 time points of simulated aggregate data com-
pared to the aggregate solutions using the estimated
probability distribution P̂M .

(c) Residuals u j − u(t j; P̂M) for n = 4 time points,
between the approximated solution and the simulated
data.

Figure 7. Case 1: n = 4 time points of simulated aggregate observations of the number of
T-cells in the tumor uT , blood uB, and spleen uS , (b), assuming that ρ is normally distributed
with mean µ = 15 and standard deviation σ = 1, used to estimate the probability distribution
P̂M, (a). All parameter values except for ρ are set at values from Table 1.
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4.2. Case 2: n = 8 time points

We now consider n = 8 time points of simulated aggregate data. In this case, the estimated dis-
tribution P̂Mof ρ is bimodal, encompassing extreme sides of PA, and still fails to capture the “actual”
probability distribution that was assumed, as can be seen in Figure 8a. The L2 norm in this case is
‖∆p‖2 = 0.577, however, which shows a significant decrease from when n = 4, meaning that the ap-
proximation is improving. Figure 8b shows considerable less error between the simulated points and
the solution based on the estimated probability distribution for ρ. Figure 8c plots the residuals, and we
see a lower order of magnitude for each error. The condition number of the FIM is 1.18 × 1017, which
is still the same magnitude as in Case 1.

(a) Estimated probability density p̂M of ρ,
compared to the “actual” normal probability
density pA of ρ ∼ N(µ = 15, σ = 1).

(b) n = 8 time points of simulated aggregate
data, compared to the solution using the esti-
mated probability distribution.

(c) Residuals u j − u(t j; P̂M) for n = 8 time
points, between the approximated solution
and the simulated data

Figure 8. Case 2: n = 8 time points of simulated aggregate observations, assuming that ρ
is normally distributed with mean µ = 15 and standard deviation σ = 1, of the number of
T-cells in the tumor T , blood B, and spleen S , used to estimate the probability distribution
of ρ, and compared to estimated aggregate observations of T , B, and S given the estimated
distribution. All parameter values except for ρ are set at values from Table 1.
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4.3. Case 3: n = 12 time points

In Case 3, we slightly increase the number of time points to n = 12, and already see a dramatic
increase in accuracy. Figure 9a demonstrates that the approximated probability density of ρ has over-
lapped with the “actual” density, with only a small deviation on the left, which can be quantified by the
L2 norm of ‖∆p‖2 = 0.174, which is even lower than previous cases. It can be seen in Figure 9b that
the approximated solutions are matching the simulated data quite well. The residuals of the tumor, T ,
and blood, B, observations in Figure 9c are much larger than the residuals of the spleen observation
S , because the T-cell counts in the blood and spleen are much larger. The FIM is 5.2 × 1016,which is
one order magnitude smaller than previous cases.

(a) Estimated probability distribution of ρ,
compared to the “actual” normal probability
density pA of ρ ∼ N(µ = 15, σ = 1).

(b) n = 12 time points of simulated aggre-
gate data, compared to the solution using the
estimated probability distribution.

(c) Residuals u j − u(t j; P̂M) for n = 12 time
points, between the approximated solution
and the simulated data

Figure 9. Case 3: n = 12 time points of simulated aggregate observations, assuming that ρ
is normally distributed with mean µ = 15 and standard deviation σ = 1, of the number of
T-cells in the tumor T , blood B, and spleen S , used to estimate the probability distribution
of ρ, and compared to estimated aggregate observations of T , B, and S given the estimated
distribution. All parameter values except for ρ are set at values from Table 1.
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4.4. Case 4: n = 16 time points

In Case 4, we increase the number of time points to 16. From Figure 10a, we see that the estimated
probability density of ρ still matches the “actual” density very well, with a slight leftward difference.
The L2 norm is ‖∆p‖2 = 0.186, which is slightly larger than in Case 3. We still see a reasonable
fit between the simulated data and the solution curve in Figure 10b, while Figure 10c shows that the
residuals between the solution and data are similar in magnitude to residuals in Case 3. The condition
number of the FIM is 3.45 × 1016.

(a) Estimated probability density p̂M of ρ,
compared to the “actual” normal probability
density pA of ρ ∼ N(µ = 15, σ = 1).

(b) n = 16 time points of simulated aggre-
gate data, compared to the solution using the
estimated probability distribution

(c) Residuals u j − u(t j; P̂M) for n = 16 time
points, between the approximated solution
and the simulated data

Figure 10. Case 4: n = 16 time points of simulated aggregate observations, assuming that
ρ is normally distributed with mean µ = 15 and standard deviation σ = 1, of the number of
T-cells in the tumor T , blood B, and spleen S , used to estimate the probability distribution
of ρ, and compared to estimated aggregate observations of T , B, and S given the estimated
distribution. All parameter values except for ρ are set at values from Table 1.
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4.5. Case 5: n = 32 time points

In Case 5, we double the number of simulated time points to n = 32. As in Case 4, the estimated
probability density of ρ is aligned with the “actual” distribution, as seen in Figure 11a, with an L2 norm
of ‖∆p‖2 = 0.197, which i slightly larger than in Case 5. Thus, the approximation is becoming slightly
worse as the number of time points increase. The condition number of the FIM is 1.67 × 1016, which
has a similar magnitude as Case 3 as well. Figure 11b shows that the approximated solution curve fits
better with the simulated data as time points are increased. The residuals, plotted in Figure 11c, are
also similar to the residuals plotted in Case 3.

(a) Estimated probability distribution of ρ,
compared to the “actual” normal probability
distribution of ρ ∼ N(µ = 15, σ = 1).

(b) n = 32 time points of simulated aggre-
gate data, compared to the solution using the
estimated probability distribution

(c) Residuals u j − u(t j; P̂M) for n = 32 time
points, between the approximated solution
and the simulated data

Figure 11. Case 5: n = 32 time points of simulated aggregate observations, assuming that
ρ is normally distributed with mean µ = 15 and standard deviation σ = 1, of the number of
T-cells in the tumor T , blood B, and spleen S , used to estimate the probability distribution
of ρ, and compared to estimated aggregate observations of T , B, and S given the estimated
distribution. All parameter values except for ρ are set at values from Table 1.
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4.6. Case 6: n = 40 time points

Now that we notice a pattern of convergence between the approximated distribution and the actual
distribution to which we are comparing, with little change as we increase the time points from n = 16
to n = 32, we can assume that our approximation has reached its peak and can produce no better
results. Indeed, in Case 6, we look at a very small increase in time points, for n = 40. Figure 12a,
shows that the approximated probability distribution for ρ has multiple modes, and now has outliers
on the far left and right, deviating further from the “actual” distribution. Indeed, the L2 norm for the
probability distribution, ‖∆p‖2 = 0.227, is larger than previous cases. Likewise, the condition number
of the FIM is 1.45 × 1017, which is an order of magnitude larger than that for our best n.

(a) Estimated probability distribution of ρ,
compared to the “actual” normal probability
distribution of ρ ∼ N(µ = 15, σ = 1).

(b) n = 40 time points of simulated aggre-
gate data, compared to the solution using the
estimated probability distribution

(c) Residuals u j − u(t j; P̂M) for n = 40 time
points, between the approximated solution
and the simulated data

Figure 12. Case 6: n = 40 time points of simulated aggregate observations, assuming that
ρ is normally distributed with mean µ = 15 and standard deviation σ = 1, of the number of
T-cells in the tumor T , blood B, and spleen S , used to estimate the probability distribution
of ρ, and compared to estimated aggregate observations of T , B, and S given the estimated
distribution. All parameter values except for ρ are set at values from Table 1.
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While Figures 12b and 12c show a good line fit, with random residuals, our estimated probability
density is clearly inaccurate. This indicates that increasing the number of time points without bound
will not consistently result in a better approximation. In fact, an n that is too large may actually provide
an incorrect estimate. This phenomenon may be due to the fact that it is possible to run into trouble with
spline-based methods for a very large number of data points. Indeed, this may produce an ill-posedness
due to excessive computational error in the inverse problems, and is discussed more in [31, 32].

5. Conclusions and discussion

Sensitivity Analysis Takeaway: For all four categories (UT, CAR, CAR+CXCR1, and
CAR+CXCR2) the model observations T , B, and S (the number of T-cells in the tumor, blood, and
spleen, respectively) are most sensitive to parameters ρ and βExt. Because of this, we can consider
these parameters the most important when comparing the data to the model.

Stability Analysis Takeaway: At different values of ρ, the transient expansion factor of tumor anti-
gen recognition by the immune system, the mathematical model described in (2.1)–(2.3) has different
long-term behaviors. Behavior changes when ρ = 10. For ρ ≤ 10, we see that the transient expansion
factor is not enough and the T-cells essentially ignore the tumor in the long term. While T-cells in the
blood decrease to zero, they do so slowly with a rise in the T-cells in the spleen. Biologically speaking,
a situation in which ρ ≤ 10 indicates that the body is not fighting the foreign object as it should, and
the T-cells are not doing their job. For ρ > 10, we see that there is a large-enough transient expansion
term for the T-cells to exit the blood and target the tumor, which is to be expected in a cancer treatment,
and is thus biologically relevant. In this case, T-cells in the blood both decrease to zero and increase
in the tumor very quickly. It should be noted that in our analysis, we look at both short and long term
behavior. In actuality, our specific model will only consider a time-line of, at most, a few years (several
hundred days). However, it is important to understand long term behavior of the system.

Parameter Estimation Takeaway: In order to save on costly experiments, we should use the mini-
mum number of data points necessary to feasibly estimate the probability distribution of our parameter
of interest, ρ. Utilizing our estimation methods and the aggregate version of our model with fixed
parameters set at biologically relevant values (see Table 1), we find that between n = 12 time points
results in the most accurate estimated distribution of ρ. With n < 12 time points, we have inaccurate
results, and with n > 32, not only do our results not improve, but they become less accurate.

Since we are simulating data, it is possible to compare the estimated and “actual” probability dis-
tributions. By investigating norms of these differences, we can see how the number of time points, n,
influences the error between the true probability density function and the approximated spline estima-
tion. Figure 13a shows that for smaller values of n, the error between the true PDF of PA, pA(ρ), and
the approximated spline estimation, p̂M(ρ) is highest, and decreases the most at n = 12. It then slowly
starts to rise again, but not dramatically. Still, though, the L2 norm only increases as n increases for
even the largest values, reinforcing the fact that the ideal approximation for this problem does depend
on an ideal n. Figure 13b shows the result of the infinity norms as we increase our number of time
points taken. Again, we see that the maximum errors are highest for small values of n, and decrease
for n = 12 and n = 40. We do know that the approximation is not ideal for n = 40, from the L2 norm,
but its maximum norm is indeed smallest.

Finally, we see from Figure 13c that the condition number of the Fisher Information Matrix (FIM)
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for the approximate solutions is highest at both very small and large values of n. As we approach the
ideal number of time points for an accurate approximation, the condition number dips down. We can
see that for all solutions, the magnitude of the condition number for the FIM is 1016 − 1017, which
is somewhat high. While there is actually no ideal value for the condition number of the FIM, a
smaller number indicates that the uncertainty factor in the approximation is improving. Regardless, it
is a useful tool to compare conditions of different inverse problems, in a relative rather than absolute
fashion.

(a) L2 norm for the probability distribution as we
increase our number of n observations

(b) Infinity norm for the probability distribution
as we increase our number of n observations

(c) The condition number of the Fisher Informa-
tion Matrix of the approximate solution as the
number of time points, n is changed

Figure 13. A comparison of errors and accuracy between the approximated spline estimation
solution for the parameter ρ, and the true probability density function of PA. We use both
the L2 norm and the infinity norm, as well as the condition number for the Fisher Informa-
tion Matrix. All results are based on approximated and simulated data, assuming the CAR
treatment in which we assume 10 ≤ ρ ≤ 20 .

Although these methods lead to satisfactory results that inform future data collection, our method
of experimental design is still very elementary. (For example, the aggregate time points are assumed
to be equally spaced, which limits the possibilities for experimental design.) None of these efforts
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involve use of the sophisticated optimal experimental design formulations outlined in Section 6 below.
An obvious next step would include use of these design ideas to attempt to further refine the number
of and specific times of the needed observations to successfully carry out the needed distributional
estimations with aggregate data.

6. Future work

We turn to the question of how best to design experiments to collect data (how much data? and
when to collect it?) necessary to validate models with only aggregate data available. To this point we
have discussed various aspects of uncertainty arising in inverse problem techniques. All discussions
have been in the context of a given set or sets of data carried out under various assumptions on how
(e.g., independent sampling, absolute measurement error, relative measurement error) the data were
collected. For many years now [33–40] scientists (and especially engineers) have been actively in-
volved in designing experimental protocols to best study engineering systems, including parameter-
describing mechanisms. Recently, with increased involvement of scientists working in collaborative
efforts with ecologists, biologists, and quantitative life scientists, renewed interest in design of “best”
experiments to elucidate mechanisms has been seen [33]. Thus, a major question that experimental-
ists and inverse problem investigators alike often face is how best to collect the data to enable one
to efficiently and accurately estimate model parameters. This is the well-known and widely studied
optimal design problem. A rather through review is given in [2]. Briefly, traditional optimal design
methods (D-optimal, E-optimal, c-optimal) [34–37] use information from the model to find the sam-
pling distribution or mesh for the observation times (and/or locations in spatially distributed problems)
that minimizes a design criterion, quite often a function of the Fisher Information Matrix (FIM). Ex-
perimental data taken on this optimal mesh are then expected to result in accurate parameter estimates.
We briefly mention a framework based on the FIM for a system of ordinary differential equations
(ODEs) to determine when an experimenter should take samples and what variables to measure when
collecting information on a physical or biological process modeled by a dynamical system.

Inverse problem methodologies are often discussed in the context of a dynamical system or mathe-
matical model where a sufficient number of observations of one or more states (variables) are available.
The choice of method depends on assumptions the modeler makes on the form of the error between the
model and the observations (the statistical model). The most prevalent source of error is observation
error, which is made when collecting data. (One can also consider model error, which originates from
the differences between the model and the underlying process that the model describes. However, this
is often quite difficult to quantify.) Measurement error is most readily discussed in the context of sta-
tistical models. The three techniques commonly addressed are maximum likelihood estimation (MLE),
used when the probability distribution form of the error is known; ordinary least squares (OLS), for
error with constant variance across observations; and generalized least squares (GLS), used when the
variance of the data can be expressed as a non-constant function. Uncertainty quantification is also
described for optimization problems of this type, namely in the form of observation error covariances,
standard errors, residual plots, and sensitivity matrices. Techniques to approximate the variance of the
error are also included in these discussions. In [41], the authors develop an experimental design theory
using the FIM to identify optimal sampling times for experiments on physical processes (modeled by
an ODE system) in which scalar or vector data is taken.
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In addition to when to take samples, the question of what variables to measure is also very important
in designing effective experiments, especially when the number of state variables is large. Use of such
a methodology to optimize what to measure would further reduce testing costs by eliminating extra
experiments to measure variables neglected in previous trials [42]. In the CAR-T therapy example
presented in this paper, it may only be necessary to measure, for example, the T-cells in the blood and
the tumor or the tumor and the spleen, etc in order to obtain accurate estimations of ρ. In [43], the best
set of variables for an ODE system modeling the Calvin cycle is identified using two methods. The
first, an ad-hoc statistical method, determines which variables directly influence an output of interest at
any one particular time. Such a method does not utilize the information on the underlying time-varying
processes given by the dynamical system model. The second method is based on optimal design ideas.
Extension of this method is developed in [44, 45]. Specifically, in [44] the authors compare the SE-
optimal design introduced in [46] and [41] with the well-known methods of D-optimal and E-optimal
design on a six-compartment HIV model [47] and a thirty-one dimensional model of the Calvin Cycle.
Such models, in which a wide range of possible observational variables exist, are not only ideal through
which to test the proposed methodology, but are also widely encountered in applications.
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